105 research outputs found

    ์ง€์† ํ˜ธ๋ชฐ๋กœ์ง€๋ฅผ ์ด์šฉํ•œ ํ† ๋Ÿฌ์Šค ์ƒ์—์„œ์˜ ๋ฒ”ํ”„ ํ—ŒํŒ…

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ์ž์—ฐ๊ณผํ•™๋Œ€ํ•™ ํ†ต๊ณ„ํ•™๊ณผ, 2023. 8. ์ •์„ฑ๊ทœ.Our research aims to identify density modes within the torus space where the circular data exhibits significant concentration. We employ persistent homology, primarily utilising the von Mises kernel density estimator and mixture model. To address the uncertainty inherent in the density estimator's persistent homology, we compare four methods, including a newly proposed approach in this article. Additionally, a scale-space approach is applied. Our comprehensive discussion centers around the implementation of persistent homology on the torus space, considering both theoretical foundations and practical applications.๋ณธ ์—ฐ๊ตฌ๋Š” ๊ฐ๋„ ๋ฐ์ดํ„ฐ ๋“ฑ ์ˆœํ™˜ํ•˜๋Š” ์ž๋ฃŒ๋“ค์ด ํ† ๋Ÿฌ์Šค ๊ณต๊ฐ„ ์œ„์— ์žˆ๋‹ค๊ณ  ๊ฐ€์ •ํ•˜๊ณ  ๊ทธ๋“ค์„ ํ†ตํ•ด ๋ฐ€๋„ํ•จ์ˆ˜์˜ ์ตœ๋นˆ๊ฐ’(mode)๋“ค์„ ์ฐพ์Œ์œผ๋กœ์จ ์ž๋ฃŒ๋“ค์ด ์ง‘์ค‘์ ์œผ๋กœ ๋ถ„ํฌ๋œ ๊ณณ์„ ํƒ์ƒ‰ํ•จ์„ ๋ชฉํ‘œ๋กœ ํ•œ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ๋ฐ€๋„ํ•จ์ˆ˜๋ฅผ ํฐ ๋ฏธ์‹œ์Šค(von Mises) ์ปค๋„ ๋ฐ€๋„ํ•จ์ˆ˜ ์ถ”์ •๋Ÿ‰๊ณผ ํ˜ผํ•ฉ ๋ชจํ˜•์„ ์ด์šฉํ•˜์—ฌ ์ถ”์ •ํ•˜๊ณ  ์ด๋“ค์„ ํ†ตํ•ด ์ง€์† ํ˜ธ๋ชฐ๋กœ์ง€(persistent homology) ๋ฐฉ๋ฒ•์„ ์‚ฌ์šฉํ•  ๊ฒƒ์ด๋‹ค. ๋ฐ€๋„ํ•จ์ˆ˜ ๋Œ€์‹  ์ถ”์ •๋Ÿ‰์„ ์‚ฌ์šฉํ•จ์œผ๋กœ ํŒŒ์ƒ๋œ ์ง€์† ํ˜ธ๋ชฐ๋กœ์ง€์˜ ๋ถˆํ™•์‹ค์„ฑ์„ ๊ณ„๋Ÿ‰ํ•˜๊ธฐ ์œ„ํ•ด ์šฐ๋ฆฌ๋Š” ๋„ค ๊ฐ€์ง€ ๋ฐฉ๋ฒ•์„ ๋น„๊ตํ•  ๊ฒƒ์ธ๋ฐ, ๊ทธ ์ค‘ ์…‹์€ ์„ ํ–‰์—ฐ๊ตฌ์—์„œ ์ œ์‹œ๋œ ๊ฒƒ์ด๊ณ , ํ•˜๋‚˜๋Š” ์šฐ๋ฆฌ๊ฐ€ ์ด ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด ์ƒˆ๋กญ๊ฒŒ ์ œ์‹œํ•˜๋Š” ๋ฐฉ๋ฒ•์ด๋‹ค. ๋˜ํ•œ ๊ธฐ์กด ์œ„์ƒํ•™์  ์ž๋ฃŒ ๋ถ„์„ ์„ ํ–‰์—ฐ๊ตฌ์—์„œ ์ œ์‹œ๋œ ์ธก๋„๋ชจ์ˆ˜๊ณต๊ฐ„ ๋ฐฉ๋ฒ•(scale-space approach)์„ ์ ๊ทน์ ์œผ๋กœ ํ™œ์šฉํ•˜์—ฌ ์—ฌ๋Ÿฌ ์ธก๋„๋ชจ์ˆ˜์— ์˜ํ•œ ๋ฐ€๋„ํ•จ์ˆ˜ ์ถ”์ •๋Ÿ‰ ์ตœ๋นˆ๊ฐ’๋“ค, ์ง€์† ํ˜ธ๋ชฐ๋กœ์ง€์™€ ๊ทธ ์œ ์˜์„ฑ์˜ ๋ณ€ํ™”๋ฅผ ์‚ดํŽด๋ณผ ๊ฒƒ์ด๋‹ค. ์ด๋Ÿฌํ•œ ์—ฐ๊ตฌ๋Š” ์ด๋ก ์ ์ธ ๋‚ด์šฉ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ํ˜„์กดํ•˜๋Š” ๋ฐ์ดํ„ฐ๋“ค์„ ์ด์šฉํ•œ ์‹คํ—˜์„ ํ†ตํ•ด ๊ทธ ์œ ์šฉ์„ฑ์„ ๊ฒ€์ฆํ•˜๋Š” ์ ˆ์ฐจ๋„ ํฌํ•จํ•˜๊ณ  ์žˆ๋‹ค.1 Introduction 1 Significance and Contribution of This Paper 2 2 Definitions and Backgrounds 4 1 Torus Space 4 2 Persistent Homology 4 3 Confidence Sets for Persistent Homology 6 3 Calculating Persistent Homology 9 1 Density Estimation on the Torus 9 1. Kernel Density Estimator 9 2. Elliptical Mixture Model 11 2 Uncertainty Measurement of Persistence Diagram 14 1. Bootstrap Method 15 2. Finite Sample Method 20 3. A Scale Space Approach 23 4 Experiments 25 5 Conclusion and Discussions 29 Appendix 30 References 31 ๊ตญ๋ฌธ์ดˆ๋ก 35์„
    • โ€ฆ
    corecore