34 research outputs found
๊ณ ์ฑ๋ฅ ์ ์ฅ ์ฅ์น๋ฅผ ์ํ ๋ธ๋ญ ์ ์ถ๋ ฅ ์๋ธ์์คํ ์ต์ ํ
ํ์๋
ผ๋ฌธ (๋ฐ์ฌ)-- ์์ธ๋ํ๊ต ๋ํ์ : ์ ๊ธฐยท์ปดํจํฐ๊ณตํ๋ถ, 2012. 8. ์ผํ์.๋ฉ๋ชจ๋ฆฌ ๊ธฐ์ ์ ๋ฐ๋ฌ์ ์ ์ฅ ์ฅ์น ํ๋์จ์ด์ ๋ฐ์ ์ ๊ฐ์ ธ์ค๊ฒ ๋์๊ณ , ์ด๋ ๋ฐ์ดํฐ ์ ๊ทผ์ ํจ๋ฌ๋ค์์ ๊ธฐ๊ณ์ ๋ฐฉ์์์ ์ ๊ธฐ์ ๋ฐฉ์์ผ๋ก ์ด๋ํ๊ฒ ๋ง๋ค์๋ค. ๊ทธ ๊ฒฐ๊ณผ, ์๋ฆฌ๋ ์คํ
์ดํธ ๋๋ผ์ด๋ธ (SSD)์ ์๋ต์๊ฐ์ ๋ง์ดํฌ๋ก์ด ์์ค์ผ๋ก ์ค์ด๋ค๊ฒ ๋์๋ค. ํ์ง๋ง ์ด๋ฌํ ๋น ๋ฅธ ์ ์ฅ ์ฅ์น์ ๋ฑ์ฅ์๋ ๋ถ๊ตฌํ๊ณ , ๊ธฐ์กด์ ์คํ ๋ฆฌ์ง ์คํ์ ๊ทธ๋ฌํ ์๋ก์ด ์ฅ์น์ ์๋๋ฅผ ๋ฐ๋ผ์ฌ ์ ์๋ ๋ฌธ์ ๋ฅผ ๊ฐ์ง๊ณ ์๋๋ฐ, ๊ทธ ์ด์ ๋ ์คํ ๋ฆฌ์ง ์คํ์ด ์์ญ๋
๊ฐ ๋งค์ฐ ๋๋ฆฐ ๋์คํฌ์ ๊ธฐ๋ฐํ์ฌ ์ต์ ํ ๋์ด์๊ธฐ ๋๋ฌธ์ด๋ค. Fusion-IO ๋ OCZ ์ ๊ฐ์ ์ ์ฅ ์ฅ์น ์ ์กฐ ํ์ฌ๋ค
์ ์์ฌ์ ๊ณ ์ฑ๋ฅ ์ ์ฅ ์ฅ์น์ ์ด์ ์ ๊ทน๋ํํ๊ธฐ ์ํด ์ต์ ํ๋ ๋ณ๋ ์ ์คํ ๋ฆฌ์ง ์คํ์ ๊ตฌํํ๊ธฐ ์์ํ๋ค. ์ด์ ์คํ ๋ฆฌ์ง ์์คํ
์ ๋น ๋ฅธ ์ ์ฅ ์ฅ์น์ ๋ฎ์ ์๋ต ์๊ฐ ํน์ฑ์ ์ต๋ํ ์ด์ฉํ ์ ์์ด์ผ ํ๋ค๋ ๋์ ์์ง๋ฉดํด์๋ค.
๋ณธ ๋
ผ๋ฌธ์์๋, ๋งค์ฐ ๋ฎ์ ์๋ต ์๋๋ฅผ ๊ฐ์ง๋ SSD์ ์ฑ๋ฅ์ ์ต๋ํ ์ด์ฉํ ์ ์๋ ๋ธ๋ญ ์
์ถ๋ ฅ ์๋ธ์์คํ
์ 6๊ฐ์ง ํ์
์ ๋ํด ์ ์ํ๋ค. ์ฐ๋ฆฌ์ ์ต์ ํ ๊ธฐ๋ฒ์ ๋ค์์ ๋๊ฐ์ง๋ก ์์ฝํ ์ ์๋ค1) ์
์ถ๋ ฅ ๊ฒฝ๋ก๋ฅผ ์ฌ๋์์ธํจ์ผ๋ก์จ ๊ฐ๋ณ ์์ฒญ์ ์ค๋ฒํค๋๋ฅผ ์ค์ด๋ ๊ฒ, 2) ๋ค์์ ์์ฒญ์ ๋ชจ์์ ์ฒ๋ฆฌํจ์ผ๋ก์จ ๊ฐ๋ณ ์์ฒญ์ ์ค๋ฒํค๋๋ฅผ ๊ฐ๋ฆฌ๋
๊ฒ์ด๋ค. ๋๋ฐ์ด์ค ํด๋ง๊ณผ ๋๊ธฐ์ ์
์ถ๋ ฅ ๊ฒฝ๋ก๊ฐ ์ฒซ๋ฒ์งธ ๊ธฐ๋ฒ์ ํด๋นํ๊ณ , ๋น์ฐ์ ์์ฒญ์ ํ๋์ I/O๋ก ์ฒ๋ฆฌํ๋ ๊ฒ์ด ๋๋ฒ์งธ ๊ธฐ๋ฒ์ ํด๋นํ
๋ค. ๊ธฐ์กด์ ์ผ๋ค์ด ๋ถํ์ํ ์ํํธ์จ์ด ๊ณ์ธต์ ์ ๊ฑฐํ๋๋ฐ ์ด์ ์ ๋์๋ ๊ฒ๊ณผ๋ ๋ฌ๋ฆฌ, ์ฐ๋ฆฌ๋ ์ ๊ทน์ ์ผ๋ก ๊ธฐ์กด์ ์ํํธ์จ์ด ์ปดํฌ๋ํธ๋ค
์ ์ต์ ํํ๊ณ ์๋ก์ด ๊ธฐ๋ฅ์ ์ถ๊ฐํ์ฌ ๋ฎ์ ์๋ต์๋์ ๋์ ์ฒ๋ฆฌ๋
(throughput)์ ๋ฌ์ฑํ ์ ์๋๋ก ํ์๋ค. ์ฐ๋ฆฌ์ ๋ธ๋ญ ์
์ถ๋ ฅ ์๋ธ์์คํ
์ ๋ฆฌ๋
์ค ์ปค๋ 2.6.32 ๊ธฐ๋ฐ์ผ๋ก ๊ตฌํ๋์๋ค. ์คํ ๊ฒฐ๊ณผ์ ๋ฐ๋ฅด๋ฉด, ๋๊ธฐ์ ์ธ ์
์ถ๋ ฅ ๊ฒฝ๋ก (SyncPath)์ ๊ฒฝ์ฐ, ๋จ์ผ ์ฐ๋ ๋ ๊ธฐ๋ฐ ์ํฌ๋ก๋์์ ์ฝ 3.3๋ฐฐ ์ ๋ ์ํํธ์จ์ด ์ค๋ฒํค๋๋ฅผ ์ค์ผ ์ ์์๊ณ , ์ด์ค ๋ฒํผ๋ง (2Q)์ ๊ฒฝ์ฐ ๋ค์ค ์ฐ๋ ๋ ๊ธฐ๋ฐ์ ์ํฌ๋ก๋์์ 4.4๋ฐฐ ์ ๋์ ์ฒ๋ฆฌ๋ ํฅ์์ ๋ณผ ์ ์์๋ค. ๋ํ ํผํฉ ์
์ถ๋ ฅ ๊ฒฝ๋ก ๋์์ธ (HTM)์ ๊ฒฝ์ฐ ์
์ถ๋ ฅ ์์ฒญ์ ์ ๊ทผ ํจํด์ด๋ ํ์
๊ณผ ์๊ด์์ด ์ ์ฅ ์ฅ์น์ ์ฑ๋ฅ์ 87%โผ100% ๊น์ง ์ด๋์ด ๋ผ ์ ์์๋ค. ์ ์๋ ๋ธ๋ญ ์
์ถ๋ ฅ ์๋ธ์์คํ
๋์์ธ์ ๋งค์ฐ ์ผ๋ฐ์ ์ด๊ธฐ ๋๋ฌธ์ ์ฐจ์ธ๋ SSD๊ฐ ๋ฑ์ฅํ ์์ ์๋ ํจ๊ณผ์ ์ผ๋ก ์ ์ฉ๋ ์ ์์ ๊ฒ์ผ๋ก ๊ธฐ๋ํ๋ค.I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivation: Slow Software on Fast Hardware . . . . . . . . 3
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
II. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Trends in Storage Technology . . . . . . . . . . . . . . . . 9
2.2 Analysis of I/O Path . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Optimization Techniques by I/O Subsystem . . . . . . . . . 13
III. Analyzing the Legacy of Disk-based I/O Subsystem . . . . . 15
3.1 Problem 1: High Software Latency . . . . . . . . . . . . . . 16
3.1.1 Interrupt Latency . . . . . . . . . . . . . . . . . . . 16
3.1.2 Delayed Execution . . . . . . . . . . . . . . . . . . 17
3.2 Problem 2: Low Random Throughput . . . . . . . . . . . . 20
3.2.1 Narrow Block I/O Interface . . . . . . . . . . . . . 20
3.2.2 Disk-oriented Configuration of I/O Subsystem . . . 22
IV. Design Exploration of I/O Subsystem . . . . . . . . . . . . . 25
4.1 Baseline Design: Asynchronous I/O Path and Interrupt . . . 26
4.2 Design 1: Making Entire I/O Path Synchronous . . . . . . . 26
4.3 New I/O Interface: Dispatching Discontiguous Block Requests
in a Single I/O Request . . . . . . . . . . . . . . . .
4.4 Design 2: Merging Discontiguous Block Requests Synchronously 30
4.5 Design 3: Merging Discontiguous Block Requests Asynchronously
. . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.6 Design 4: Choosing I/O Path Dynamically Based on a Request
Property . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.7 Design 5: Including Upper Layer to Bridge Semantic Gap
between VFS and Block I/O Subsystem . . . . . . . . . . . 38
4.8 Design 6: Using Double Buffering to Avoid Lock Contention 40
4.9 Design Summary . . . . . . . . . . . . . . . . . . . . . . . 42
V. Implementation Details . . . . . . . . . . . . . . . . . . . . . 44
5.1 Block I/O Subsystem in Linux . . . . . . . . . . . . . . . . 44
5.2 New Storage Device Interface . . . . . . . . . . . . . . . . 47
VI. Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.1 Latency Reduction . . . . . . . . . . . . . . . . . . . . . . 48
6.2 Microbenchmark 1: Iozone . . . . . . . . . . . . . . . . . . 50
6.3 Microbenchmark 2: Fio . . . . . . . . . . . . . . . . . . . . 53
6.4 Macrobenchmark 1: Postmark . . . . . . . . . . . . . . . . 53
6.5 Macrobenchmark 2: TPC-C . . . . . . . . . . . . . . . . . . 56
6.6 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . 58
6.7 CPU Utilization . . . . . . . . . . . . . . . . . . . . . . . . 60
6.8 Temporal Merge Count . . . . . . . . . . . . . . . . . . . . 62
VII. RelatedWork . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
7.1 Software Stack Optimization . . . . . . . . . . . . . . . . . 65
7.1.1 Network I/O Subsystem . . . . . . . . . . . . . . . 65
7.1.2 Block I/O Subsystem . . . . . . . . . . . . . . . . . 67
7.2 Exploiting Device Functionality . . . . . . . . . . . . . . . 68
7.3 Extending Device Interface . . . . . . . . . . . . . . . . . . 69
VIII. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . 86Docto
๋ผ์ง ์ฌ๊ด์ ์๊ธฐ๊ณต๋ช ์์์์ ๋ํด ์ฐ๊ณจ์ ์ง๋ฐฉ์ต์ T2 map ๊ธฐ๋ฒ :
ํ์๋
ผ๋ฌธ (์์ฌ)-- ์์ธ๋ํ๊ต ๋ํ์ : ์ํ๊ณผ ์์์ํ ์ ๊ณต, 2016. 2. ํ์ฑํ.Purpose: To investigate the effect of fat suppression on T2 mapping of the articular cartilage in porcine knee joint at MR imaging.
Materials and Methods: Eleven porcine knee joints were harvested en bloc with intact capsules and surrounding muscles. We performed T2 mapping of articular cartilage in the medial femoral condyle with (FST2) and without (cT2) fat suppression in sagittal plane with two frequency encoding directions: from superior to inferior (SI) and from inferior to superior (IS). Consequently, four types of T2 map were obtained: FST2-SI, FST2-IS, cT2-SI and cT2-IS. Two observers measured T2 values of the medial femoral condyle cartilage at four regions including anterior oblique, central horizontal, posterior oblique and posterior vertical portions.
Results: There was no significant difference of mean T2 values between FST2-SI and FST2-IS at all regions (p = 0.165, 0.873, 0.077, 0.483, respectively). Mean T2 values of cT2-SI were, however, significantly lower than those of cT2-IS at three regions (p = 0.057, 0.033, <0.001, 0.019, respectively). Coefficient of variation (CV) values between two FST2 maps were lower than those between two cT2 maps in all four regions (17.91-25.57 vs. 25.51-78.72). In addition, ICC between two FST2 maps was higher than that between two cT2 maps (0.276-0.800 vs -0.032-0.455) at three regions except the central horizontal region.
Conclusion: Frequency encoding direction greatly affects T2 values of the articular cartilage in conventional T2 mapping. In comparison with conventional T2 mapping, fat-suppressed T2 mapping provides more reproducible T2 values of the articular cartilage by eliminating chemical shift artifact.Introduction 1
Materials and Methods 2
Results 5
Discussion 7
Reference 11
Abstract in Korean 23Maste
Analysis of Sony corporations operation strategy
Thesis(masters) --์์ธ๋ํ๊ต ๊ฒฝ์์ ๋ฌธ๋ํ์ :๊ฒฝ์ํ๊ณผ(SNUGlobal MBA์ ๊ณต),2010.8.Maste