45 research outputs found

    Intraindividual Comparison between Gadoxetate-Enhanced Magnetic Resonance Imaging and Dynamic Computed Tomography for Characterizing Focal Hepatic Lesions: A Multicenter, Multireader Study

    Get PDF
    OBJECTIVE: To compare the diagnostic accuracy of dynamic computed tomography (CT) and gadoxetate-enhanced magnetic resonance imaging (MRI) for characterization of hepatic lesions by using the Liver Imaging Reporting and Data System (LI-RADS) in a multicenter, off-site evaluation. MATERIALS AND METHODS: In this retrospective multicenter study, we evaluated 231 hepatic lesions (114 hepatocellular carcinomas [HCCs], 58 non-HCC malignancies, and 59 benign lesions) confirmed histologically in 217 patients with chronic liver disease who underwent both gadoxetate-enhanced MRI and dynamic CT at one of five tertiary hospitals. Four radiologists at different institutes independently reviewed all MR images first and the CT images 4 weeks later. They evaluated the major and ancillary imaging features and categorized each hepatic lesion according to the LI-RADS v2014. Diagnostic performance was calculated and compared using generalized estimating equations. RESULTS: MRI showed higher sensitivity and accuracy than CT for diagnosing hepatic malignancies; the pooled sensitivities, specificities, and accuracies for categorizing LR-5/5V/M were 59.0% vs. 72.4% (CT vs. MRI; p < 0.001), 83.5% vs. 83.9% (p = 0.906), and 65.3% vs. 75.3% (p < 0.001), respectively. CT and MRI showed comparable capabilities for differentiating between HCC and other malignancies, with pooled accuracies of 79.9% and 82.4% for categorizing LR-M, respectively (p = 0.139). CONCLUSION: Gadoxetate-enhanced MRI showed superior accuracy for categorizing LR-5/5V/M in hepatic malignancies in comparison with dynamic CT. Both modalities had comparable accuracies for distinguishing other malignancies from HCC.ope

    Liver imaging reporting and data system (LI-RADS) version 2014: understanding and application of the diagnostic algorithm

    Get PDF
    Liver Imaging Reporting and Data System (LI-RADS) is a system for interpreting and reporting of computed tomography and magnetic resonance imaging of the liver in patients at risk for hepatocellular carcinoma (HCC). LI-RADS has been developed to address the limitations of prior imaging-based criteria including the lack of established consensus regarding the exact definitions of imaging features, binary categorization (either definite or not definite HCC), and failure to consider non-HCC malignancies. One of the most important goals of LI-RADS is to facilitate clear communication between all the personnel involved in the diagnosis and treatment of HCC, such as radiologists, hepatologists, surgeons, and pathologists. Therefore, clinicians should also be familiar with LI-RADS. This article reviews the LI-RADS diagnostic algorithm, and the definitions and management implications of LI-RADS categories.ope

    Magnetization-tagged MRI is a simple method for predicting liver fibrosis

    Get PDF
    BACKGROUND/AIMS: To assess the usefulness of magnetization-tagged magnetic resonance imaging (MRI) in quantifying cardiac-induced liver motion and deformation in order to predict liver fibrosis. METHODS: This retrospective study included 85 patients who underwent liver MRI including magnetization-tagged sequences from April 2010 to August 2010. Tagged images were acquired in three coronal and three sagittal planes encompassing both the liver and heart. A Gabor filter bank was used to measure the maximum value of displacement (MaxDisp) and the maximum and minimum values of principal strains (MaxP1 and MinP2, respectively). Patients were divided into three groups (no fibrosis, mild-to-moderate fibrosis, and significant fibrosis) based on their aspartate-aminotransferase-to-platelet ratio index (APRI) score. Group comparisons were made using ANOVA tests. RESULTS: The patients were divided into three groups according to APRI scores: no fibrosis (≀ 0.5; n=41), moderate fibrosis (0.5-1.5; n=23), and significant fibrosis (>1.5; n=21). The values of MaxDisp were 2.9 Β± 0.9 (mean Β± SD), 2.3 Β± 0.7, and 2.1 Β± 0.6 in the no fibrosis, moderate fibrosis, and significant fibrosis groups, respectively (P<0.001); the corresponding values of MaxP1 were 0.05 Β± 0.2, 0.04 Β± 0.02, and 0.03 Β± 0.01, respectively (P=0.002), while those of MinP2 were -0.07 Β± 0.02, -0.05 Β± 0.02, and -0.04 Β± 0.01, respectively (P<0.001). CONCLUSIONS: Tagge d MRI to quantify cardiac-induced liver motion can be easily incorporated in routine liver MRI and may represent a helpful complementary tool in the diagnosis of early liver fibrosis.ope

    Hepatocellular Carcinoma with Irregular Rim-Like Arterial Phase Hyperenhancement: More Aggressive Pathologic Features

    Get PDF
    Background and Aims: The purpose of our study was to examine the histopathologic characteristics of hepatocellular carcinoma (HCC) with irregular rim-like arterial phase enhancement (IRE), which has been reported to be associated with more aggressive tumor behavior. Methods: We investigated 84 pathologically confirmed HCCs in 84 patients who underwent curative hepatic resection after gadoxetate-enhanced magnetic resonance imaging between January 2008 and February 2013. Two abdominal radiologists independently reviewed these images and classified HCCs into two categories: HCC showing IRE (IRE-HCC) and HCC showing hypoenhancement or diffuse arterial enhancement (non-IRE-HCC). Twenty-two HCCs were classified as IRE-HCCs, and 51 were classified as non-IRE-HCCs concordantly by both reviewers. The remaining 11 HCCs, on whose radiologic classifications the reviewers disagreed, were classified as HCCs with intermediate enhancement patterns. The HCC clinicopathologic characteristics and patient outcomes were then compared. Results: IRE-HCCs showed more frequent microvascular invasion (91 vs. 35%), lower microvascular density (246.5 vs. 426.5/mm2), higher proportions of sinusoid-like microvascular pattern (55 vs. 0%) and macrotrabecular pattern (45 vs. 0%), and larger areas of tumor necrosis (15 vs. 0%) and fibrous stroma (8.3 vs. 2.1%) than non-IRE-HCCs. IRE-HCCs also expressed higher levels of immunomarkers of hypoxia (carbonic anhydrase IX, 64 vs. 8%) and stemness (EpCAM, 50 vs. 20%). p values were < 0.001 for all comparisons except for EpCAM (p = 0.026). HCCs with intermediate enhancement patterns showed mixed/intermediate pathologic features from both IRE- and non-IRE-HCCs. IRE-HCC patients showed poorer 5-year disease-free survival after curative resection than non-IRE-HCC patients (p = 0.005). Conclusions: IRE-HCCs demonstrate aggressive histopathologic features, including more hypoxic and fibrotic tumor microenvironments and increased stemness, compared to non-IRE-HCCs. IRE might therefore serve as a noninvasive imaging biomarker for aggressive HCC.ope

    Failure of hepatocellular carcinoma surveillance: inadequate echogenic window and macronodular parenchyma as potential culprits

    Get PDF
    PURPOSE: The purpose of this study was to examine the associations between ultrasonography (US) quality and clinical outcomes in patients undergoing surveillance for hepatocellular carcinoma. METHODS: Between 2008 and 2013, 155 patients were diagnosed with liver cancer during regular surveillance by positive US results (US group, n=82) or by computed tomography (CT) or magnetic resonance image (MRI) scanning as alternative modalities (CT/MRI group, n=73). The quality of the echogenic window, macronodularity of the liver parenchyma, and occurrence of surveillance failure (initial tumor diagnosis beyond the Milan criteria or at Barcelona Clinic Liver Cancer stage B or C) were evaluated. Overall survival was compared according to whether surveillance failure occurred. RESULTS: The patients in the CT/MRI group with negative US results had a higher proportion of parenchymal macronodularity on US than those in the US group (79.5% vs. 63.4%, P=0.028). Surveillance failure tended to be more common in the US group than in the CT/MRI group (40.2% vs. 26.0% by the BCLC staging system [P=0.061]). In the US group, surveillance failure occurred more frequently when the echogenic window was inadequate (50.0% vs. 19.4% by the Milan criteria [P=0.046]). Significantly poorer 5-year overall survival was associated with surveillance failure (P≀0.001). CONCLUSION: Parenchymal macronodularity hindered the detection of early-stage tumors during US surveillance. Using an alternative imaging modality may help prevent surveillance failure in patients with macronodular parenchyma on US. Supplemental surveillance strategies than US may also be necessary when the echogenic window is inadequate.ope

    A lexicon for hepatocellular carcinoma surveillance ultrasonography: benign versus malignant lesions

    Get PDF
    BACKGROUND/AIMS: To suggest a lexicon for liver ultrasonography and to identify radiologic features indicative of benign or malignant lesions on surveillance ultrasonography. METHODS: This retrospective study included 188 nodules (benign, 101; malignant, 87) from 175 at-risk patients identified during surveillance ultrasonography for hepatocellular carcinoma. We created a lexicon for liver ultrasonography by reviewing relevant literature regarding the ultrasonographic features of hepatic lesions. Using this lexicon, two abdominal radiologists determined the presence or absence of each ultrasonographic feature for the included hepatic lesions. Independent factors associated with malignancy and interobserver agreement were determined by logistic regression analysis and kappa statistics, respectively. RESULTS: Larger tumor size (odds ratio [OR], 1.12; 95% confidence interval [CI], 1.06-1.183; P<0.001), multinodular confluent morphology (OR, 7.712; 95% CI, 1.053-56.465; P=0.044), thick hypoechoic rim (OR, 5.878; 95% CI, 2.681-12.888; P<0.001), and posterior acoustic enhancement (OR, 3.077; 95% CI, 1.237-7.655; P=0.016) were independently associated with malignant lesions. In a subgroup analysis of lesions <2 cm, none of the ultrasonographic features were significantly associated with malignancy or benignity. Interobserver agreement for morphology was fair (ΞΊ=0.36), while those for rim (ΞΊ=0.427), echogenicity (ΞΊ=0.549), and posterior acoustic enhancement (ΞΊ=0.543) were moderate. CONCLUSIONS: For hepatic lesions larger than 2 cm, some ultrasonography (US) features might be suggestive of malignancy. We propose a lexicon that may be useful for surveillance US.ope

    Feasibility of radiation dose reduction with iterative reconstruction in abdominopelvic CT for patients with inappropriate arm positioning

    Get PDF
    BACKGROUND: The arms-down position increases computed tomography (CT) radiation dose. Iterative reconstruction (IR) could enhance image quality without increasing radiation dose in patients with arms-down position. AIM: To investigate the feasibility of reduced-dose CT with IR for patients with inappropriate arm positioning. METHODS: Twenty patients who underwent two-phase abdominopelvic CT including standard-dose and reduced-dose CT (performed with 80% of the radiation dose of the standard protocol) with their arms positioned in the abdominal area were included in this study. Reduced-dose CT images were reconstructed using filtered back projection (FBP), hybrid IR, and iterative model reconstruction (IMR). These images were compared with standard-dose CT images reconstructed with FBP. Objective image noise in the liver and subcutaneous fat was measured by standard deviation for the quantitative analysis. Then, two radiologists qualitatively assessed beam hardening artifacts, artificial texture, noise, sharpness, and overall image quality in consensus. RESULTS: Reduced-dose CT with all IR levels had lower objective image noise compared to standard-dose CT with FBP reconstruction (P < 0.05). Quantitatively measured beam hardening artifacts were similar in reduced-dose CT with iDose levels 5-6 and fewer with IMR compared to standard-dose CT. In the qualitative analysis, beam hardening artifacts and noise decreased as the IR levels increased. However, artificial texture was significantly aggravated with iDose 5-6 and IMR, and overall image quality significantly worsened with IMR. CONCLUSIONS: IR algorithms can reduce beam hardening artifacts in a reduced-dose CT setting in patients with arms-down position, and an intermediate level of hybrid IR allows radiologists to obtain the best image quality. Because the retrospective and single-center nature of our study limited the number of patients, multicenter prospective clinical studies are required to validate our results.ope

    Growth rate of early-stage hepatocellular carcinoma in patients with chronic liver disease

    Get PDF
    BACKGROUND/AIMS: The goal of this study was to estimate the growth rate of hepatocellular carcinoma (HCC) and identify the host factors that significantly affect this rate. METHODS: Patients with early-stage HCC (n=175) who underwent two or more serial dynamic imaging studies without any anticancer treatment at two tertiary care hospitals in Korea were identified. For each patient, the tumor volume doubling time (TVDT) of HCC was calculated by comparing tumor volumes between serial imaging studies. Clinical and laboratory data were obtained from the medical records of the patients. RESULTS: The median TVDT was 85.7 days, with a range of 11 to 851.2 days. Multiple linear regression revealed that the initial tumor diameter (a tumor factor) and the etiology of chronic liver disease (a host factor) were significantly associated with the TVDT. The TVDT was shorter when the initial tumor diameter was smaller, and was shorter in HCC related to hepatitis B virus (HBV) infection than in HCC related to hepatitis C virus (HCV) infection (median, 76.8 days vs. 137.2 days; P=0.0234). CONCLUSIONS: The etiology of chronic liver disease is a host factor that may significantly affect the growth rate of early-stage HCC, since HBV-associated HCC grows faster than HCV-associated HCC.ope

    Diagnosis of Hepatocellular Carcinoma with Gadoxetic Acid-Enhanced MRI: 2016 Consensus Recommendations of the Korean Society of Abdominal Radiology

    Get PDF
    Diagnosis of hepatocellular carcinoma (HCC) with gadoxetic acid-enhanced liver magnetic resonance imaging (MRI) poses certain unique challenges beyond the scope of current guidelines. The regional heterogeneity of HCC in demographic characteristics, prevalence, surveillance, and socioeconomic status necessitates different treatment approaches, leading to variations in survival outcomes. Considering the medical practices in Korea, the Korean Society of Abdominal Radiology (KSAR) study group for liver diseases has developed expert consensus recommendations for diagnosis of HCC by gadoxetic acid-enhanced MRI with updated perspectives, using a modified Delphi method. During the 39th Scientific Assembly and Annual Meeting of KSAR (2016), consensus was reached on 12 of 16 statements. These recommendations might serve to ensure a more standardized diagnosis of HCC by gadoxetic acid-enhanced MRI.ope

    Dual-energy computed tomography arthrography of the shoulder joint using virtual monochromatic spectral imaging: optimal dose of contrast agent and monochromatic energy level.

    Get PDF
    OBJECTIVE: To optimize the dose of contrast agent and the level of energy for dual-energy computed tomography (DECT) arthrography of the shoulder joint and to evaluate the benefits of the optimized imaging protocol. MATERIALS AND METHODS: Dual-energy scans with monochromatic spectral imaging mode and conventional single energy scans were performed on a shoulder phantom with 10 concentrations from 0 to 210 mg/mL of iodinated contrast medium at intervals of 15 or 30 mg/mL. Image noise, tissue contrast, and beam hardening artifacts were assessed to determine the optimum dose of contrast agent and the level of monochromatic energy for DECT shoulder arthrography in terms of the lowest image noise and the least beam hardening artifacts while good tissue contrast was maintained. Material decomposition (MD) imaging for bone-iodine differentiation was qualitatively assessed. The optimized protocol was applied and evaluated in 23 patients. RESULTS: The optimal contrast dose and energy level were determined by the phantom study at 60 mg/mL and 72 keV, respectively. This optimized protocol for human study reduced the image noise and the beam-hardening artifacts by 35.9% and 44.5%, respectively. Bone-iodine differentiation by MD imaging was not affected by the iodine concentration or level of energy. CONCLUSION: Dual-energy scan with monochromatic spectral imaging mode results in reduced image noise and beam hardening artifacts.ope
    corecore