7 research outputs found

    ๋ฌผ๋ถ„ํ•ด ์ ์šฉ์„ ์œ„ํ•œ ์ „์ด ๊ธˆ์† ํ™”ํ•ฉ๋ฌผ ๊ธฐ๋ฐ˜ ์ „๊ธฐ ์ด‰๋งค์˜ ๊ตฌ์กฐ ์„ค๊ณ„์— ๊ด€ํ•œ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์žฌ๋ฃŒ๊ณตํ•™๋ถ€, 2020. 8. ์ฃผ์˜์ฐฝ.์ง€๋‚œ ์ˆ˜์‹ญ ๋…„ ๋™์•ˆ ํ™”์„ ์—ฐ๋ฃŒ๋ฅผ ๋Œ€์ฒดํ•˜๊ณ ์ž ์ง€์† ๊ฐ€๋Šฅํ•œ ์—๋„ˆ์ง€์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๊ฐ€ ์ง€์†์ ์œผ๋กœ ์ฆ๊ฐ€ํ•˜๊ณ  ์žˆ์œผ๋ฉฐ, ๊ทธ ์ค‘ ์ˆ˜์†Œ๋Š” ๊ฐ€์žฅ ์œ ๋งํ•œ ๋Œ€์ฒด ์—๋„ˆ์ง€์› ์ค‘ ํ•˜๋‚˜์ด๋‹ค. ์ˆ˜์†Œ ์ƒ์‚ฐ์„ ์œ„ํ•œ ๊ธฐ์ˆ ์—๋Š” ๋‹ค์–‘ํ•œ ๋ฐฉ๋ฒ•์ด ์žˆ์œผ๋‚˜, ๊ทธ ์ค‘ ๋ฌผ๋ถ„ํ•ด๋Š” ์ˆ˜์†Œ ์ƒ์‚ฐ์— ์žˆ์–ด์„œ ๊ฐ€์žฅ ์œ ๋งํ•œ ๊ธฐ์ˆ  ์ค‘ ํ•˜๋‚˜๋กœ ์•Œ๋ ค์ ธ ์žˆ๋‹ค. ํ˜„์žฌ, ๋ฌผ๋ถ„ํ•ด๋ฅผ ์œ„ํ•œ ์ „๊ธฐ ์ด‰๋งค๋Š” ๋Œ€๊ฐœ ๋ฐฑ๊ธˆ, ์ด๋ฆฌ๋“๊ณผ ๊ฐ™์€ ๊ท€๊ธˆ์†์ด ๋งŽ์ด ์‚ฌ์šฉ๋˜๋Š”๋ฐ, ๊ท€๊ธˆ์† ๊ณ„์—ด์˜ ๋น„์šฉ ๋ฌธ์ œ ๋“ฑ์œผ๋กœ ์ธํ•ด ์ด๋ฅผ ๋น„๊ท€๊ธˆ์† ๊ธฐ๋ฐ˜์˜ ์ „์ด ๊ธˆ์† ํ™”ํ•ฉ๋ฌผ๋กœ ๋Œ€์ฒดํ•˜๊ณ ์ž ํ•˜๋Š” ์—ฐ๊ตฌ๊ฐ€ ๋ณด๊ณ ๋˜๊ณ  ์žˆ๋‹ค. ์ „์ด ๊ธˆ์† ํ™”ํ•ฉ๋ฌผ์€ ๊ท€๊ธˆ์†๊ณผ ๋น„๊ตํ•˜์—ฌ ์ €๋ ดํ•œ ๋น„์šฉ๊ณผ ๊ท€๊ธˆ์†๊ณผ ๋น„๊ตํ• ๋งŒํ•œ ์„ฑ๋Šฅ ๊ตฌํ˜„์ด ๊ฐ€๋Šฅํ•จ์— ๋”ฐ๋ผ ๋ฌผ๋ถ„ํ•ด ์ด‰๋งค ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ, ์ด์‚ฐํ™”ํƒ„์†Œ ํ™˜์›, ์งˆ์†Œ ํ™˜์› ์ด‰๋งค, ๋ฆฌํŠฌ-๊ณต๊ธฐ ์ „์ง€ ๋“ฑ๊ณผ ๊ฐ™์€ ์ „๊ธฐ ํ™”ํ•™ ์ด‰๋งค ๋ฐ ์†Œ์ž ์‹œ์Šคํ…œ์˜ ์œ ๋งํ•œ ์ด‰๋งค ๋ฐ ์ „๊ทน ๋ฌผ์งˆ ์ค‘ ํ•˜๋‚˜๋กœ ์—ฐ๊ตฌ๋˜๊ณ  ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ „์ด ๊ธˆ์† ํ™”ํ•ฉ๋ฌผ ๊ธฐ๋ฐ˜ ์ „๊ธฐ ์ด‰๋งค๋Š” ๋Œ€๋Ÿ‰ ์ƒ์‚ฐ์„ ์œ„ํ•œ ๋Œ€๊ทœ๋ชจ ์ ์šฉ์„ ๊ฐ€๋Šฅ์ผ€ ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์ „๊ธฐ ์ด‰๋งค ์„ฑ๋Šฅ์˜ ๊ฐœ์„ ์ด ์—ฌ์ „ํžˆ ํ•„์š”ํ•˜๋‹ค. ์ˆ˜์†Œ ์—๋„ˆ์ง€ ์ƒ์„ฑ์„ ์œ„ํ•œ ๋ฌผ๋ถ„ํ•ด ์‹œ์Šคํ…œ์€ ํฌ๊ฒŒ ์‚ฐ์†Œ ๋ฐœ์ƒ ๋ฐ˜์‘๊ณผ ์ˆ˜์†Œ ๋ฐœ์ƒ ๋ฐ˜์‘ ์ „๊ธฐ ์ด‰๋งค์˜ ์ „๊ทน์œผ๋กœ ๊ตฌ์„ฑ๋˜์–ด ์žˆ๋‹ค. ํ˜„์žฌ ์ˆ˜์†Œ ๋ฐœ์ƒ ๋ฐ˜์‘๊ณผ ๋น„๊ตํ•  ๋•Œ ์‚ฐ์†Œ ๋ฐœ์ƒ ๋ฐ˜์‘์€ ๋งŽ์€ ์ „์ž๊ฐ€ ๊ด€์—ฌ๋œ ๋ฐ˜์‘์œผ๋กœ ์ธํ•ด ์ƒ๋Œ€์ ์œผ๋กœ ๋Š๋ฆฐ ๋ฐ˜์‘ ์†๋„๋ฅผ ๋ณด์ด๊ฒŒ ๋˜๊ณ  ์ด๋กœ ์ธํ•ด ๋ฌผ๋ถ„ํ•ด ์„ฑ๋Šฅ ๊ฐœ์„ ์— ํฐ ๋ฐฉํ•ด๊ฐ€ ๋˜๊ณ  ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ, ์‚ฐ์†Œ ๋ฐœ์ƒ ๋ฐ˜์‘์€ ์ „์ฒด ๋ฌผ๋ถ„ํ•ด ์‹œ์Šคํ…œ์˜ ์„ฑ๋Šฅ์„ ๊ฐœ์„ ํ•˜๊ธฐ ์œ„ํ•œ ์ฃผ์š” ๋ฐ˜์‘์ด๋ผ ๋ณผ ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ, ์‚ฐ์†Œ ๋ฐœ์ƒ ๋ฐ˜์‘ ์กฐ๊ฑด ํ•˜์—์„œ ์ „์ด ๊ธˆ์† ํ™”ํ•ฉ๋ฌผ ๊ธฐ๋ฐ˜ ์ „๊ธฐ ์ด‰๋งค์˜ ์ œํ•œ๋œ ์ „ํ•˜ ์ „๋‹ฌ์€ ๋น„ํšจ์œจ์ ์ธ ์‚ฐ์†Œ ๋ฐœ์ƒ ๋ฐ˜์‘์„ ์ดˆ๋ž˜ํ•˜๊ณ , ์ „๊ธฐ ์ด‰๋งค์˜ ์„ฑ๋Šฅ์€ ํ™œ์„ฑ ๋ถ€์œ„์˜ ๋…ธ์ถœ ๋˜๋Š” ๋ณ€ํ˜• ์ œ์–ด์— ํฌ๊ฒŒ ์˜์กดํ•œ๋‹ค. ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์˜ ๋ชฉ์ ์€ ํšจ์œจ์ ์ธ ๋ฌผ๋ถ„ํ•ด๋ฅผ ์œ„ํ•œ ์ „์ด ๊ธˆ์† ํ™”ํ•ฉ๋ฌผ ๊ธฐ๋ฐ˜ ์ „๊ธฐ ์ด‰๋งค์˜ ๊ตฌ์กฐ์  ์„ค๊ณ„์— ๊ด€ํ•œ ๊ฒƒ์œผ๋กœ, ์—ด์—ญํ•™์ ์œผ๋กœ ๊ณ ๋ ค๋œ ๊ณต์ • ์กฐ๊ฑด๊ณผ ์ •๋ฐ€ํ•˜๊ฒŒ ์ œ์–ด๋œ ํ™œ๋ฌผ์งˆ์˜ ์ƒ ๋ฐ ๊ตฌ์กฐ์— ๊ด€ํ•œ ์ „๊ธฐ ์ด‰๋งค ์„ค๊ณ„์˜ ์ง€์นจ์„ ์ œ๊ณตํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ๋จผ์ € ํšจ์œจ์ ์ธ ์‚ฐ์†Œ ๋ฐœ์ƒ ๋ฐ˜์‘์„ ์œ„ํ•œ ๋‚˜๋…ธ๊ตฌ์กฐ๋ฅผ ๊ฐ–๋Š” ์ „๊ธฐํ™”ํ•™์  ์‚ฐํ™”๋ฅผ ๊ฑฐ์นœ ์ด์ข… ์›์†Œ๊ฐ€ ๋„ํ•‘๋œ ๋‹ˆ์ผˆ-์ฒ  ์ธต์ƒ ์ด์ค‘ ์ˆ˜์‚ฐํ™”๋ฌผ (NiFe LDH) ์ „๊ธฐ ์ด‰๋งค๋Š” ์ˆ˜์—ด ํ•ฉ์„ฑ๊ณผ ์ด์ข… ์›์†Œ ๋„ํ•‘ ๊ณผ์ •, ์—ด์—ญํ•™์ ์œผ๋กœ ํ”„๋กœ๊ทธ๋ž˜๋ฐ๋œ ์ „๊ธฐํ™”ํ•™์  ์‚ฐํ™” ๊ณต์ •์„ ํ†ตํ•ด ์ œ์ž‘๋˜์—ˆ๋‹ค. ์ด์ข… ์›์†Œ์ธ ๋ถ•์†Œ ๋„ํ•‘์˜ ๋ชฉ์ ์€ NiFe LDH์˜ ์ƒ๋Œ€์ ์œผ๋กœ ์—ด์•…ํ•œ ์ „ํ•˜ ์ „๋‹ฌ๊ณผ ๋‚ฎ์€ ์ „๋„์„ฑ์„ ๊ทน๋ณตํ•˜๊ณ  ์ด๋กœ ์ธํ•œ ์ด‰๋งค ํ™œ์„ฑ์„ ๋†’์ด๋Š” ๊ฒƒ์ด๋‹ค. ์ง€๊ธˆ๊นŒ์ง€ ๋ถ•์†Œ ๋„ํ•‘ ํ˜น์€ ์ „์ด ๊ธˆ์† ๋ถ•ํ™”๋ฌผ ํ˜•์„ฑ์„ ์œ„ํ•œ ๋ถ•์†Œํ™” ๊ณผ์ •์€ ๋ถ•์†Œ ์ž์ฒด์˜ ๋†’์€ ๋น„์ ๊ณผ ์œต์ ์œผ๋กœ ์ธํ•ด ์ œํ•œ๋˜์–ด ๊ณ ์˜จ์„ ์ดˆ๋ž˜ํ–ˆ๋‹ค. ๋”ฐ๋ผ์„œ, ๋ณธ ์—ฐ๊ตฌ์—์„œ ์ง„ํ–‰๋œ ๋ถ•์†Œํ™” ๊ณผ์ •์€ ๋ถ•์†Œ๊ฐ€ ์•„๋‹Œ ๋ถ•์†Œ ๊ธฐ๋ฐ˜ ์ „๊ตฌ์ฒด๋ฅผ ๊ณต๊ธ‰์›์œผ๋กœ ์‚ฌ์šฉํ•˜์—ฌ ๊ธฐ์ƒ ์ƒํƒœ์˜ ๋ถ•์†Œํ™”๋ฅผ ๋น„๊ต์  ๋‚ฎ์€ ์˜จ๋„์—์„œ ์ง„ํ–‰ํ•˜์˜€์œผ๋ฉฐ, ์ด๋Š” ๋ณด๋‹ค ๊ฐ„๋‹จํ•œ ๊ณต์ •์œผ๋กœ, ๋ถ•์†Œ ๋„ํ•‘๋œ NiFe LDH๋ฅผ ์ œ์กฐํ•˜์—ฌ ์ „ํ•˜ ์ „๋‹ฌ ์ €ํ•ญ์ด ๊ฐœ์„ ๋œ ๋†’์€ ์‚ฐ์†Œ ๋ฐœ์ƒ ๋ฐ˜์‘ ์„ฑ๋Šฅ์„ ๋‹ฌ์„ฑํ•˜์˜€๋‹ค. ๋˜ํ•œ, ํ™œ์„ฑํ™” ๊ณผ์ •์„ ํ†ตํ•œ ๋ถ•์†Œ ๋„ํ•‘๋œ NiFe LDH๋Š” ์ „๊ธฐํ™”ํ•™์  ์‚ฐํ™” ๊ณผ์ •์„ ํ†ตํ•ด ๋ถ•์†Œ ๋„ํ•‘๋œ NiFe LDH ๋‚ด์˜ ์˜ฅ์‹œ์ˆ˜์‚ฐํ™”๋ฌผ์˜ ๋น„์œจ์„ ์„ฑ๊ณต์ ์œผ๋กœ ์ฆ๊ฐ€์‹œ์ผฐ๋‹ค. ์ด๋Ÿฌํ•œ ์ „๊ธฐํ™”ํ•™์  ์‚ฐํ™” ๊ณผ์ •์„ ๊ฑฐ์นœ ๋ถ•์†Œ ๋„ํ•‘๋œ NiFe LDH์€ ๋„ํ•‘๋œ ๋ถ•์†Œ๋กœ ์ธํ•ด ํ™œ์„ฑ ๋ถ€์œ„๋ฅผ ๊ฐœ์„ ์‹œํ‚จ๋‹ค๊ณ  ์•Œ๋ ค์ ธ ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ ์ œ์กฐ๋œ ์ „๊ธฐํ™”ํ•™์  ์‚ฐํ™” ๊ณผ์ •์„ ๊ฑฐ์นœ ๋ถ•์†Œ ๋„ํ•‘๋œ NiFe LDH์€ 10 mA cm-2์˜ ์ „๋ฅ˜ ๋ฐ€๋„์— ๋„๋‹ฌํ•˜๊ธฐ ์œ„ํ•ด 229 mV์˜ ์šฐ์ˆ˜ํ•œ ์‚ฐ์†Œ ๋ฐœ์ƒ ๋ฐ˜์‘ ์„ฑ๋Šฅ์„ ํ•„์š”๋กœ ํ•˜๋ฉฐ, ์ด๋Š” ๊ฐ™์€ ์กฐ๊ฑด์—์„œ ๊ท€๊ธˆ์†์ธ ์ด๋ฆฌ๋“๋ณด๋‹ค ์•ฝ 140 mV ๋‚ฎ๊ณ , ๊ณต์ • ๊ณผ์ •์„ ๊ฑฐ์น˜์ง€ ์•Š์€ NiFe LDH๋ณด๋‹ค 86 mV ๋‚ฎ์€ ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋‹ค์Œ์œผ๋กœ, ์‚ฐ์†Œ ๋ฐ ์ˆ˜์†Œ ๋ฐœ์ƒ ๋ฐ˜์‘์ด ๋ชจ๋‘ ๊ฐ€๋Šฅํ•˜๊ณ  ํšจ์œจ์ ์ธ ์ „์ฒด ๋ฌผ๋ถ„ํ•ด๋ฅผ ์œ„ํ•œ ์ƒ์ด ์ œ์–ด๋œ ๊ณ„์ธต์  ๋‹ค๊ณต์„ฑ ๊ตฌ์กฐ๋ฅผ ๊ฐ€์ง„ ์ฝ”๋ฐœํŠธ ํ™ฉํ™”๋ฌผ ๊ธฐ๋ฐ˜ ์ „๊ธฐ ์ด‰๋งค๋ฅผ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ์ฝ”๋ฐœํŠธ ํ™ฉํ™”๋ฌผ์€ ๋‹ค์–‘ํ•œ ์ƒ์„ ๊ฐ–์ง€๋งŒ, ์—ด์—ญํ•™ ๊ณ„์‚ฐ์— ๊ธฐ์ดˆํ•œ ์˜ˆ์ธก ํ•ฉ์„ฑ์„ ํ†ตํ•œ ํ™ฉ์˜ ๋น„์œจ์— ๋”ฐ๋ผ ์ฝ”๋ฐœํŠธ ํ™ฉํ™”๋ฌผ์˜ ์ƒ์„ ์„ฑ๊ณต์ ์œผ๋กœ ์ œ์–ดํ•˜์˜€๋‹ค. ํ™œ์„ฑ ๋ถ€์œ„์˜ ๋…ธ์ถœ์„ ์œ„ํ•œ ๊ณ  ๋‹ค๊ณต์„ฑ ์ฝ”๋ฐœํŠธ ์ดํ™ฉํ™”๋ฌผ (CoS2) ๋‚˜๋…ธ ์ž…์ž๋Š” ์ ์ ˆํ•œ ์–‘์˜ ํ™ฉ๊ณผ ๊ธˆ์†-์œ ๊ธฐ ๊ณจ๊ฒฉ์ฒด ์ค‘ ํ•˜๋‚˜์ธ ์ฝ”๋ฐœํŠธ ํ”„๋Ÿฌ์‹œ์•ˆ ๋ธ”๋ฃจ ์•„๋‚ ๋กœ๊ทธ์˜ ๋น„๋ฅผ ์ œ์–ดํ•จ์œผ๋กœ์จ ํ•ฉ์„ฑ๋˜์—ˆ๋‹ค. ์ƒˆ๋กญ๊ฒŒ ์„ค๊ณ„๋œ ๊ธˆ์†-์œ ๊ธฐ ๊ณจ๊ฒฉ์ฒด ๊ธฐ๋ฐ˜ CoS2 ์ „๊ธฐ ์ด‰๋งค๋Š” ์•ฝ 4 nm์˜ ๋‚˜๋…ธ๊ธฐ๊ณต์„ ๊ฐ–๋Š” ๋‹ค๊ณต์„ฑ ๊ตฌ์กฐ์ด๋ฉฐ, ์•ฝ 30 nm์˜ ํฌ๊ธฐ์˜ ๊ท ์ผํ•œ ์ž…์ž ํฌ๊ธฐ๋ฅผ ๊ฐ–๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ ๊ตฌ์กฐ๋กœ ์ธํ•ด 915.6 m2 g-1์˜ ๋„“์€ ๋น„ํ‘œ๋ฉด์ ์„ ๊ฐ–๊ฒŒ ๋˜๊ณ , ํ™œ์„ฑ ๋ถ€์œ„์˜ ๋…ธ์ถœ๋„๋ฅผ ๋†’์ผ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋”ฐ๋ผ์„œ, ํ•ฉ์„ฑ๋œ ์ „๊ธฐ ์ด‰๋งค๋Š” ํšจ์œจ์ ์ธ ์‚ฐ์†Œ ๋ฐ ์ˆ˜์†Œ ๋ฐœ์ƒ ๋ฐ˜์‘ ์„ฑ๋Šฅ์„ 10 mA cm-2์˜ ์ „๋ฅ˜ ๋ฐ€๋„์—์„œ ๊ฐ๊ฐ 298 mV, -196 mV์˜ ๋‚ฎ์€ ๊ณผ์ „์••์„ ํ†ตํ•ด ํ™•์ธํ–ˆ์œผ๋ฉฐ, ์ง€์†์ ์ธ ๊ฐ€์Šค ๋ฐœ์ƒ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ , 10 mA cm-2์—์„œ ์•ˆ์ •์ ์ธ ์‚ฐ์†Œ ๋ฐ ์ˆ˜์†Œ ๋ฐœ์ƒ ๋ฐ˜์‘์„ ๋‚˜ํƒ€๋ƒˆ๋‹ค. ์ด๋Ÿฌํ•œ ์šฐ์ˆ˜ํ•œ ํ™œ์„ฑ์€ ์‹ค์ œ ์ƒ์šฉํ™”์— ๊ฐ€๊นŒ์šด 2์ „๊ทน์˜ ์ „์ฒด ์…€ ์‹œ์Šคํ…œ์—์„œ 2๊ธฐ๋Šฅ์„ฑ ์ „๊ธฐ ์ด‰๋งค ํŠน์„ฑ์„ ํ†ตํ•ด 10 mA cm-2 ์ „๋ฅ˜๋ฐ€๋„์—์„œ 1.65 V์˜ ๊ณผ์ „์••์„ ๋‚˜ํƒ€๋‚ด๋Š” ๊ฒƒ์œผ๋กœ ํ™•์ธํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ์ „์ด ๊ธˆ์† ํ™”ํ•ฉ๋ฌผ์˜ ์ƒ๊ณผ ๊ตฌ์กฐ๋ฅผ ์—ด์—ญํ•™์ ์œผ๋กœ ์ •๋ฐ€ํ•˜๊ฒŒ ์ œ์–ดํ•˜๋Š” ๋ฐฉ๋ฒ•๋ก ์„ ์ดํ•ดํ•˜๋Š” ๋ฐ์— ์œ ์šฉํ•œ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ๋ฌผ๋ถ„ํ•ด๋ฅผ ์œ„ํ•œ ์ „์ด ๊ธˆ์† ํ™”ํ•ฉ๋ฌผ ๊ธฐ๋ฐ˜ ์ „๊ธฐ ์ด‰๋งค์˜ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ๋‹ค์–‘ํ•œ ์„ค๊ณ„ ๋ฐ ๋ฐฉ๋ฒ•๋ก ์— ๋Œ€ํ•ด ์ œ๊ณตํ•œ๋‹ค.The earth-abundant transition metal based compounds have been intensively investigated as one of the most promising electrode of electrochemical catalyst and device systems, e.g., water splitting, carbon dioxide reduction, nitrogen reduction, Li air batteries, and electrochemical capacitors, due to their low-cost and affordable electrochemical performance, compared with noble metals. However, transition metal compounds based electrocatalysts still require further improvement of their catalytic performances for large-scale application. In particular, the oxygen evolution reaction (OER) is the main key in water splitting system for hydrogen energy production, although it is currently obstructed by the sluggish kinetic of OER compared with hydrogen evolution reaction (HER). Limited charge transport of transition metal compounds based electrocatalysts under water oxidation conditions leads to a relatively inefficient OER performances. In addition, catalytic performance is highly dependent on controlling the exposure or modification of the active sites. The objective of this thesis is thermodynamically optimal transition metal compounds based electrocatalysts of highly efficient water splitting and to provide guidelines for electrocatalysts design with the respect to the precisely controlled phase and structure of catalysts. First, nanostructured designed nickel iron layered double hydroxide (NiFe LDH) electrocatalysts for water oxidation were developed using hydrothermal method followed by gaseous boronization for boron doping and by thermodynamically programmed electrochemical oxidation to enhance OER performance. The purpose of boron doping in NiFe LDH is catalytic activity to overcome the relatively poor charge transfer and intrinsic conductivity of NiFe LDH that result in a low potential of commercialization. Until now, the boronization about boron doping or formation of borides has been limited to the high boiling point of boron, which has resulted in high temperature for boronization. The gaseous boronization with boron source, boron precursor not boron, make it easy to obtain the boron doped NiFe LDH at relatively low temperature to could be reached high OER performance due to improved charge transfer resistance. Furthermore, the activated boron doped NiFe LDH was successfully synthesized through its electrochemical oxidation, which consisted of the surface of boron doped NiFe LDH converted to oxyhydroxide. The boron doped NiFe LDH with electrochemical oxidation brings the improvement of the active site due to the doped boron species as the activation, electrochemical oxidation, step. The electrochemical oxidized boron doped NiFe LDH required an excellent OER performance 229 mV to reach 10 mA cm-2 of current density, which confirmed that it was approximately 140 mV lower than Ir, noble metal, and about 86 mV lower than pristine NiFe LDH under the same conditions. The second focus is to control the phase in cobalt sulfide, e.g., Co, Co9S8, and CoS2, and to develop hierarchically porous structure of electrocatalyst for efficient overall water splitting, which contains evolution reaction in both electrodes, OER and HER. While cobalt sulfides have various phase, it was successfully controlled cobalt sulfide phase according to the sulfur ratio through predicted synthesis based on thermodynamic. A highly porous CoS2 nanoparticles for exposure of active sites was directly synthesized by controlling the ratio of sulfur and cobalt Prussian blue analogues (Co3[Co(CN)6]2), one of the metal organic frameworks (MOFs). The newly-designed MOF-driven CoS2 electrocatalysts show high catalytic activity in HER, OER, and overall water splitting and the CoS2 in this work shows a highly porous and uniform particle size. The synthesized MOF-driven CoS2 has approximately 30 nm with ~ 4 nm pores, resulting in a large surface area of 915.6 m2 g-1. The synthesized catalysts achieved a catalytic current density of 10 mA cm-2 at overpotential as low as 300, -200 mV from OER, HER, respectively. Furthermore, it has outstanding long-term stability at 10 mA cm-2 despite of vigorously evolved gas. These excellent activity leads to outstanding performance of full-cell system of overall water splitting for a practical two-electrode system, which exhibited an overpotential of 1.65 V at 10 mA cm-2. This study could provide useful information for understanding the methodology to thermodynamically precisely control the phase and structure of transition metal compound and suggested versatile design that how to enhance the performance of transition metal compound based electrocatalysts for water splitting.Table of Contents Abstractโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ i Table of Contentsโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ iv List of Tablesโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ viii List of Figuresโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ ix Chapter 1. Introduction 1.1. Materials for electrocatalysts of water splitting โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ 1 1.2. Charge transfer and phase issues in water splitting catalyst โ€ฆโ€ฆโ€ฆ 7 1.2.1. NiFe LDH based electrocatalysts for water oxidation ......... 7 1.2.2. CoS2 based electrocatalysts for overall water splitting ......... 13 1.3. Objective of the thesis .................................................................... 17 1.4. Organization of the thesis ............................................................ 21 Chapter 2. Theoretical Background 2.1. Fundamentals of electrochemical water splitting ............................... 22 2.1.1. Thermodynamics of water splitting reactions ........................ 22 2.1.2. Electrocatalytic kinetics and related parameters ................. 26 2.1.3. Charge and mass transfer ..................................................... 37 2.2. Electrochemical oxygen evolution reaction (OER) ........................ 39 2.2.1. Theory of electrochemical OER .............................................. 41 2.2.2. Summary of OER electrocatalysts and performances ......... 47 2.3. Electrochemical hydrogen evolution reaction (HER) ........................ 53 2.3.1. Theory of electrochemical HER .............................................. 54 2.3.2. Summary of HER electrocatalysts and performances ......... 57 2.4. Electrochemical oxidation methods .............................................. 60 2.4.1. Cyclic voltammetry method .............................................. 61 2.4.2. Galvanostatic method ............................................................. 62 2.5. Water splitting cell configuration ...................................................... 63 Chapter 3. Experimental Procedures 3.1. Sample preparation ..................................................................... 66 3.1.1. Fabrication of NiFe LDH based electrocatalysts ......................... 66 3.1.2. Fabrication of CoS2 based electrocatalysts ......................... 68 3.2. Thermodynamic calculation .............................................................. 70 3.3. Electrochemical analysis ...................................................................... 71 3.4. Morphological and phase analysis ....................................................... 72 3.5. Physical and chemical analysis ....................................................... 72 Chapter 4. Fabrication of B doped NiFe LDH with Galvanostatic Oxidation 4.1. Introduction ................................................................................... 73 4.2. Fabrication of boron doped NiFe LDH ............................................... 73 4.2.1. Optimization of boron sources for boronization ................. 73 4.3. Electrochemical oxidation of boron doped NiFe LDH ......................... 80 4.3.1. Optimization of electrochemical oxidation ......................... 80 4.3.2. Reaction step of electrochemical oxidation ......................... 86 4.4. Characterization of NiFe LDH based electrocatalysts ......................... 88 4.5. Summary ............................................................................................ 100 Chapter 5. Electrochemical Performance of NiFe LDH based catalysts 5.1. Introduction ..................................................................................... 101 5.2. Electrochemical performances ....................................................... 102 5.2.1. Effects of boron doping in NiFe LDH ......................................... 113 5.2.2. Effects of electrochemical oxidation ......................................... 116 5.3. Summary ............................................................................................. 123 Chapter 6. Design and Fabrication of Porous CoS2 electrocatalysts 6.1. Introduction ..................................................................................... 124 6.2. Fabrication of MOF-driven CoS2 nanoparticles ................................. 125 6.2.1. Thermodynamic calculation ................................................ 125 6.2.2. Design of the sulfurization ........................................................ 129 6.3. Characterization of MOF-driven CoS2 nanoparticles .......................... 132 6.4. Summary ............................................................................................. 143 Chapter 7. Electrochemical Performance of Porous CoS2 electrocatalysts 7.1. Introduction ..................................................................................... 144 7.2. Electrochemical performances ........................................................ 145 7.2.1. Effects of nanopores in electrocatalysts .................................. 156 7.2.2. Effects of phase control in cobalt sulfide .................................. 162 7.3. Summary ............................................................................................. 170 Chapter 8. Conclusion 8.1. Summary of results ............................................................................... 171 8.2. Future works and suggested research ................................................. 174 References ..................................................................................................... 179 Abstract (In Korean) ...................................................................................... 201 Curriculum Vitae .............................................................................................. 204Docto

    Translation of jiu in the Bible translation

    No full text

    The Yesterday, Today, and Tomorrow of Interpreting Studies in Korea - Focusing on paradigm shifts in interpreting studies -

    No full text
    corecore