46 research outputs found

    CCAAT/enhancer binding protein regulates the promoter activity of the rat GLUT2 glucose transporter gene in liver cells

    Get PDF
    The liver-specific expression of the GLUT2 glucose transporter gene is suppressed in cultured hepatoma cell lines as well as in hepatocytes in primary culture. To understand the underlying mechanism involved in this process, we analysed the rat GLUT2 promoter region. A DNase I footprinting assay with rat liver nuclear extract revealed eight protected regions within a -500 bp region of the GLUT2 promoter (sites A to H). Three of these sites (B, F and H) were occupied by transcription factors that are considerably enriched in liver cells compared with spleen or kidney. The proteins binding to these sites were investigated by a combination of DNase I footprinting assay and electrophoretic mobility-shift assay with the addition of specific oligonucleotide competitors and specific antibody against known transcription factors. As a result it was revealed that hepatocyte nuclear factor 3 binds to site B (-120 to -70), and CCAAT/enhancer binding protein alpha (C/EBPalpha) and C/EBPbeta bind to site F (-375 to -356) and site H (-500 to -471). The binding of C/EBP to sites F and H was markedly decreased within 4 h when liver cells were subjected to primary culture, suggesting that C/EBP might be responsible for the decreased expression of GLUT2 in this process. In contrast, Western blot analysis revealed that C/EBPalpha began to decrease after 1 h of hepatocyte culture, and C/EBPbeta was not changed significantly throughout the culture period, suggesting that C/EBP could be regulated at the transcriptional level as well as the post-translational level when hepatocytes were put in culture. To confirm the role of C/EBP in the regulation of GLUT2 promoter activity, sites F and H were ligated to a chloramphenicol acetyltransferase (CAT) reporter gene and co-transfected with a C/EBP expression vector into HepG2 cells. The co-expression of C/EBPalpha and C/EBPbeta resulted in 9.1-fold and 3. 8-fold increases of CAT activities in the site F-CAT and site H-CAT constructs respectively. These results indicate that C/EBPalpha and C/EBPbeta regulate the promoter activity of the GLUT2 gene and might be responsible for the down-regulation of the GLUT2 gene when hepatocytes are subjected to primary culture.ope

    HNF1 and/or HNF3 may contribute to the tissue specific expression of glucokinase gene

    Get PDF
    A possible role of hepatocyte nuclear factor 1 (HNF1) or HNF3, a predominant trans-acting factors of hepatic or pancreatic ฮฒ-cells, was examined on the tissue specific interdependent expression of glucokinase (GK) in liver, H4IIE, HepG2, HIT-T15 and MIN6 cell line. The tissues or cell lines known to express GK showed abundant levels of HNF1 and HNF3 mRNA as observed in liver, H4IIE, HepG2, HIT-T15 and MIN6 cells, whereas they were not detected in brain, heart, NIH 3T3, HeLa cells. The promoter of glucokinase contains several HNF3 consensus sequences and are well conserved in human, mouse and rat. Transfection of the glucokinase promotor linked with luciferase reporter to liver or pancreatic ฮฒ cell lines showed high interacting activities with HNF1 and HNF3, whereas minimal activities were detected in the cells expressing very low levels of HNFs. The binding of HNF1 or HNF3 to the GK promoter genes was confirmed by electrophoretic mobility shift assay (EMSA). From these data, we propose that the expression of HNF1 and/or HNF3 may, in part, contribute to the tissue specific expression of GK.ope

    A Journey to Understand Glucose Homeostasis: Starting from Rat Glucose Transporter Type 2 Promoter Cloning to Hyperglycemia

    Get PDF
    My professional journey to understand the glucose homeostasis began in the 1990s, starting from cloning of the promoter region of glucose transporter type 2 (GLUT2) gene that led us to establish research foundation of my group. When I was a graduate student, I simply thought that hyperglycemia, a typical clinical manifestation of type 2 diabetes mellitus (T2DM), could be caused by a defect in the glucose transport system in the body. Thus, if a molecular mechanism controlling glucose transport system could be understood, treatment of T2DM could be possible. In the early 70s, hyperglycemia was thought to develop primarily due to a defect in the muscle and adipose tissue; thus, muscle/adipose tissue type glucose transporter (GLUT4) became a major research interest in the diabetology. However, glucose utilization occurs not only in muscle/adipose tissue but also in liver and brain. Thus, I was interested in the hepatic glucose transport system, where glucose storage and release are the most actively occurring.ope

    Liver glucokinase can be activated by peroxisome proliferator-activated receptor-gamma

    Get PDF
    Thiazolidinediones (TZDs), synthetic ligands of peroxisome proliferator-activated receptor (PPAR)-gamma, are known to decrease hepatic glucose production and increase glycogen synthesis in diabetic animals. Recently it was reported that glucokinase (GK) expression was increased by TZDs in the liver of diabetic ZDF rats. However, the mechanism whereby TZDs increase GK expression is not yet studied. We have assumed that liver type glucokinase (LGK) induction by TZDs could be achieved by direct transcriptional activation. Thus, we have dissected the LGK promoter to explore the presence of a PPAR response element (PPRE) in the promoter. From this study, we were able to localize a PPRE in the -116/-104 region of the rat LGK gene. The PPAR-gamma/retinoid X receptor-alpha heterodimer was bound to the element and activated the LGK promoter. The LGK promoter lacking the PPRE or having mutations in the PPRE could not be activated by PPAR-gamma. Furthermore, troglitazone increased endogenous GK mRNA in primary hepatocytes. These results indicate that PPAR-gamma can directly activate GK expression in liver and may contribute to improving glucose homeostasis in type 2 diabetes.ope

    Acetylation of glucokinase regulatory protein decreases glucose metabolism by suppressing glucokinase activity

    Get PDF
    Glucokinase (GK), mainly expressed in the liver and pancreatic ฮฒ-cells, is critical for maintaining glucose homeostasis. GK expression and kinase activity, respectively, are both modulated at the transcriptional and post-translational levels. Post-translationally, GK is regulated by binding the glucokinase regulatory protein (GKRP), resulting in GK retention in the nucleus and its inability to participate in cytosolic glycolysis. Although hepatic GKRP is known to be regulated by allosteric mechanisms, the precise details of modulation of GKRP activity, by post-translational modification, are not well known. Here, we demonstrate that GKRP is acetylated at Lys5 by the acetyltransferase p300. Acetylated GKRP is resistant to degradation by the ubiquitin-dependent proteasome pathway, suggesting that acetylation increases GKRP stability and binding to GK, further inhibiting GK nuclear export. Deacetylation of GKRP is effected by the NAD(+)-dependent, class III histone deacetylase SIRT2, which is inhibited by nicotinamide. Moreover, the livers of db/db obese, diabetic mice also show elevated GKRP acetylation, suggesting a broader, critical role in regulating blood glucose. Given that acetylated GKRP may affiliate with type-2 diabetes mellitus (T2DM), understanding the mechanism of GKRP acetylation in the liver could reveal novel targets within the GK-GKRP pathway, for treating T2DM and other metabolic pathologies.ope

    Modulation of the Transcriptional Activity of Peroxisome Proliferator-Activated Receptor Gamma by Protein-Protein Interactions and Post-Translational Modifications

    Get PDF
    Peroxisome proliferator-activated receptor gamma (PPARฮณ) belongs to a nuclear receptor superfamily; members of which play key roles in the control of body metabolism principally by acting on adipose tissue. Ligands of PPARฮณ, such as thiazolidinediones, are widely used in the treatment of metabolic syndromes and type 2 diabetes mellitus (T2DM). Although these drugs have potential benefits in the treatment of T2DM, they also cause unwanted side effects. Thus, understanding the molecular mechanisms governing the transcriptional activity of PPARฮณ is of prime importance in the development of new selective drugs or drugs with fewer side effects. Recent advancements in molecular biology have made it possible to obtain a deeper understanding of the role of PPARฮณ in body homeostasis. The transcriptional activity of PPARฮณ is subject to regulation either by interacting proteins or by modification of the protein itself. New interacting partners of PPARฮณ with new functions are being unveiled. In addition, post-translational modification by various cellular signals contributes to fine-tuning of the transcriptional activities of PPARฮณ. In this review, we will summarize recent advancements in our understanding of the post-translational modifications of, and proteins interacting with, PPARฮณ, both of which affect its transcriptional activities in relation to adipogenesis.ope

    Transcriptional regulation of glucose sensors in pancreatic ฮฒ-cells and liver: an update

    Get PDF
    Pancreatic ฮฒ-cells and the liver play a key role in glucose homeostasis. After a meal or in a state of hyperglycemia, glucose is transported into the ฮฒ-cells or hepatocytes where it is metabolized. In the ฮฒ-cells, glucose is metabolized to increase the ATP:ADP ratio, resulting in the secretion of insulin stored in the vesicle. In the hepatocytes, glucose is metabolized to CO(2), fatty acids or stored as glycogen. In these cells, solute carrier family 2 (SLC2A2) and glucokinase play a key role in sensing and uptaking glucose. Dysfunction of these proteins results in the hyperglycemia which is one of the characteristics of type 2 diabetes mellitus (T2DM). Thus, studies on the molecular mechanisms of their transcriptional regulations are important in understanding pathogenesis and combating T2DM. In this paper, we will review a recent update on the progress of gene regulation of glucose sensors in the liver and ฮฒ-cells.ope

    Role of transcription factor acetylation in the regulation of metabolic homeostasis

    Get PDF
    Post-translational modifications (PTMs) of transcription factors play a crucial role in regulating metabolic homeostasis. These modifications include phosphorylation, methylation, acetylation, ubiquitination, SUMOylation, and O-GlcNAcylation. Recent studies have shed light on the importance of lysine acetylation at nonhistone proteins including transcription factors. Acetylation of transcription factors affects subcellular distribution, DNA affinity, stability, transcriptional activity, and current investigations are aiming to further expand our understanding of the role of lysine acetylation of transcription factors. In this review, we summarize recent studies that provide new insights into the role of protein lysine-acetylation in the transcriptional regulation of metabolic homeostasis.ope
    corecore