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Abstract: Pancreatic β-cells and the liver play a key role in glucose homeostasis. After a 

meal or in a state of hyperglycemia, glucose is transported into the β-cells or hepatocytes 

where it is metabolized. In the β-cells, glucose is metabolized to increase the ATP:ADP 

ratio, resulting in the secretion of insulin stored in the vesicle. In the hepatocytes, glucose 

is metabolized to CO2, fatty acids or stored as glycogen. In these cells, solute carrier  

family 2 (SLC2A2) and glucokinase play a key role in sensing and uptaking glucose. 

Dysfunction of these proteins results in the hyperglycemia which is one of the 

characteristics of type 2 diabetes mellitus (T2DM). Thus, studies on the molecular 

mechanisms of their transcriptional regulations are important in understanding 

pathogenesis and combating T2DM. In this paper, we will review a recent update on the 

progress of gene regulation of glucose sensors in the liver and β-cells. 
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1. Introduction 

 

Glucose is one of the most important molecules that acts as a basic fuel for energy source and a 

substrate for intermediary metabolism as well. Because of its essential role in the metabolism, most 

cells have evolved to have an apparatus to sense and transport extracellular glucose into the cells. The 

glucose sensing in mammalian cells is regulated by both direct and indirect pathways. In the 

postprandial state, temporarily increased glucose has to be disposed of to prevent the cells from  

gluco-toxicity. After meal, glucose in the blood is absorbed near the portal vein, and metabolized in 

the liver and pancreas [1].  

Blood glucose is transported into the liver and β-cells of pancreas through solute carrier family 2 

(SLC2A2, also known as GLUT2) and immediately phosphorylated by glucokinase present in the liver 

(LGCK) or β-cells (βGCK) which acts as a glucose sensor. Glucose-6-phosphate in the hepatocytes 

undergoes glycolysis, glycogenesis, pentose phosphate pathway, or hexosamine biosynthetic pathway 

depending on the metabolic needs. Both SLC2A2 and GCK have high Km values and high capacity and 

thus are able to sense and transport glucose into hepatocytes or β-cells in proportion to the blood 

glucose level [2]. 

In the β-cells, glucose is metabolized and thereby increases intracellular the ATP:ADP ratio which 

causes suppression of ATP-sensitive K+ channel and triggers insulin secretion [3-5]. In addition, the 

gene expression of insulin is stimulated by glucose and is subjected to control at the  

transcriptional level.  

Most of the type 2 diabetes mellitus (T2DM)-associated genes are mainly involved both in β-cell 

function and peripheral insulin sensitivity. Mutations in the GCK gene are associated with maturity 

onset diabetes of the young (MODY), a subtype of diabetes characterized by monogenic autosomal 

dominant transmission, early age of onset (typically less than 25 years of age) and primary defects in 

β-cell function. MODY are also associated with mutations in the genes encoding transcription factors 

like, hepatic nuclear factor 4 alpha (HNF4A), HNF1 homeobox A (HNF1A), pancreatic and duodenal 

homeobox 1 (PDX1), HNF1 homeobox B (HNF1B) and neurogenic differentiation 1  

(NEUROD1) [6-8]. Furthermore, these transcription factors are known to be involved in the regulation 

of tissue-specific expression of SLC2A2 and/or GCK genes [9]. Dysfunctional mutation in SLC2A2 

gene is also found in one patient with T2DM [10].  

The gene expression of SLC2A2 and GCK is affected by metabolic conditions and are also  

tissue-specific. SLC2A2 is primarily expressed in the liver and β-cells [11,12] and its gene expression 

is affected by the blood glucose and insulin [13,14]. In diabetic animal models, SLC2A2 mRNA level 

is increased in the liver [15], whereas it is decreased in β-cells [16,17]. GCK is expressed mainly in the 

mammalian liver and β-cells, with two alternative promoters that govern tissue-specific  

expression [18-21]. The βGCK promoter (upstream promoter) is regulated by glucose, whereas the 

LGCK promoter (downstream promoter) is regulated by insulin and glucagon [21].  

In this review, we will focus on an update on the transcriptional regulation of SLC2A2 and GCK 

genes in the liver and β-cells. Studying the molecular mechanisms in relation to T2DM will help 

understand its pathogenesis and find potential drug targets for the development of therapeutic drugs. 
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2. Transcriptional Regulation of SLC2A2 in the Liver and β-Cells of Pancreas 

 

Since the cloning of the promoter regions of SLC2A2 gene, numerous studies on the transcriptional 

regulation have been performed (for a review see [9]). Unlike those of human or mouse SLC2A2 genes, 

rat Slc2a2 promoter contains three noncoding exons (exons 1A, 1B, and 1C; Figure 1) [22]. As shown, 

several HNFs are involved in transcriptional regulation of SLC2A2 genes. 

Figure 1. Schematics of transcriptional regulatory elements on the SLC2A2 gene promoter.  

 
 
Abbreviations: HNF1A, HNF1 homeobox A; EP300, E1A binding protein p300; FOXA2, forkhead 
box A2 (also known as HNF3B); PDX1, pancreatic and duodenal homeobox 1; SP1, Sp1 
transcription factor; PAX6, paired box 6; MXD1, MAX dimerization protein 1; EGR1, early 
growth response 1; MAFA, v-maf musculoaponeurotic fibrosarcoma oncogene homolog A; 
NEUROD1, neurogenic differentiation 1; PPARA, peroxisome proliferator-activated receptor 
alpha; PPARG, peroxisome proliferator-activated receptor gamma; FOXO1, forkhead box O1; 
RXRA, retinoic X receptor alpha; ONECUT1, one cut homeobox 1 (also known as HNF6); NR4A1, 
nuclear receptor subfamily 4, group A, member 1; SREBF1c, sterol regulatory element binding 
transcription factor 1c; CEBPA, CCAAT/enhancer binding protein (C/EBP) alpha; CEBPB, 
CCAAT/enhancer binding protein (C/EBP) beta; HRE, HNF response element; PPRE, PPAR 
response element; NBRE, nerve growth factor I-B response element; SRE, SREBF response 
element; C/EBPRE, CEBP response element. +1, transcription start site. 

 

 



Sensors 2010, 10              

 

 

5034

HNF1A is an essential transcription factor for the expression of Slc2a2 gene in β-cells. In 

transgenic mice over-expressing a dominant negative form of HNF1A, the expression of Slc2a2 gene 

is decreased in the pancreatic islets. In Hnf1a knockout mice, the expression of Slc2a2 gene was 

decreased in the pancreatic islets, but not affected in the liver [23-25].  

Both HNF1A and forkhead box A2 (FOXA2, also known as HNF3B) are responsible for  

the tissue-specific expression of the human SLC2A2 gene. These factors synergistically increase the 

promoter activity of human SLC2A2 gene in NIH-3T3 cells. Binding of HNF1A and FOXA2  

to +96/+108 and +114/+120 bp region of human SLC2A2 promoter was identified and these binding 

sites were well conserved in the mouse and rat gene [26]. HNF1A and FOXA2 also upregulate Slc2a2 

mRNA in the kidney of diabetic rats [27]. Another HNF1A binding site (+200/+212 bp) was found in 

the promoter of human SLC2A2 gene. A mutation study revealed that the +200/+212 bp site is more 

important than the +96/+108 bp one in HNF1A-induced SLC2A2 gene expression. Moreover, E1A 

binding protein p300 (EP300) potentiates activity of the human SLC2A2 promoter by interacting with 

the transactivation domain of HNF1A [28]. 

In transgenic mice or adenoviral transduction of recombinant Foxa2 (AdFoxa2), Slc2a2 mRNA 

level was decreased in the liver [29, 30], presumably because FOXA2 represses one cut homeobox 1 

(Onecut1, also known as Hnf6) gene expression, which is a positive regulator of Slc2a2 gene in the 

mouse liver [31]. However, mRNA levels of Slc2a2 and Onecut1 were not altered in liver specific 

Foxa2 knockout mice [32]. In addition, Slc2a2 gene expression was not altered in β-cell specific 

Foxa2 knockout mice [33]. These reports suggest that transactivating effect of FOXA2 on Slc2a2 

promoter may be weak or absent in mouse liver and β-cells.  

FOXA3 (also known as HNF3G) is known to act as a positive regulator of the Slc2a2 gene in the 

liver, although upregulation of the gene was not observed in β-cells [34]. HNF4A is also known to 

activate SLC2A2 gene expression in embryonic stem cells [35] and β-cells [36].  

PDX1 plays a key role in the development of pancreas by orchestrating gene regulation in  

β-cells [37] and is known to upregulate Slc2a2 gene expression through TAAT motif in the Slc2a2 

promoter [38]. Slc2a2 gene expression in the β-cell specific Pdx1 knockout [39,40] and Pdx1 

heterozygote mice [41] is dramatically reduced when compared to that of wild type mice.  

Although PDX1 was shown to bind in vitro to the promoter region of β-cell specific genes, 

including Slc2a2 (EMSA data), chromatin immunoprecipitation (ChIP) assays indicated that PDX1 did 

not bind to the promoter of Slc2a2 gene in the β-TC3 cells. These results suggest that selectivity of 

PDX1 may depend on the cell type specific chromatin structures and/or the presence of interacting 

proteins [42]. Indeed, PDX1 of which binding to Slc2a2 promoter is reinforced by high-mobility group 

N 3 (HMGN3), a chromatin binding protein that is highly expressed in β-cells [43].  

Since various transcription factors, like HNF1A, FOXA2, Sp1 transcription factor (SP1) [44], 

paired box 6 (PAX6) [45], MAX dimerization protein 1 (MXD1) [46], early growth response-1 

(EGR1) [47,48], v-maf musculoaponeurotic fibrosarcoma oncogene homolog A (MAFA) [49], 

neurogenic differentiation 1 (NEUROD1) [50], peroxisome proliferator–activated receptor alpha 

(PPARA) [51] and peroxisome proliferator–activated receptor gamma (PPARG) [52], were known to 

be positive-regulators of PDX1 gene, it was speculated that many of these transcription factors may 

indirectly affect gene expression of SLC2A2 through PDX1. Slc2a2 mRNA level was decreased in 

INS832/13 cells in which forkhead transcription factor FOXO1 is overexpressed [53]. Since FOXO1 
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binds to the PDX1 promoter and inhibits FOXA2-induced PDX1 expression, the effect of  

FOXO1-suppression of Slc2a2 gene expression might occur in an indirect way [54].  

V-maf musculoaponeurotic fibrosarcoma oncogene homolog B (MAFB) is a critical transcription 

factor for β-cell differentiation, although its expression was not observed in adult pancreas  

β-cells [55-57]. Slc2a2 and Pdx1 gene expression is reduced in the embryonic pancreas of Mafb 

knockout mice and MAFB binds to the promoter of Slc2a2 gene in vivo [57]. Because PDX1 is a 

positive regulator of Slc2a2 gene expression, Slc2a2 gene expression may be regulated by MAFB 

either directly or indirectly. Furthermore, Slc2a2 expression is decreased in Mafa-deficient mice [58]. 

However, MAF response element(s) in the Slc2a2 promoter has not been identified.  

PPARG directly activates SLC2A2 gene expression in the liver and β-cells [59-61]. Rosiglitazone 

increased SLC2A2 mRNA level in the primary cultured hepatocytes, Alexander [59] and INS-1  

cells [62]. Troglitazone also increased Slc2a2 mRNA level in primary cultured islets from rats [52,60]. 

In addition, decreased Slc2a2 gene expression in the islets of db/db mouse was restored by 

pioglitazone treatment [63, 64]. RNAi-suppression of Pparg in INS-1 cells caused reduction in Slc2a2 

mRNA levels [52]. The functional PPAR response elements (PPREs) have been identified in the 

promoters of rat [60] and mouse [59] Slc2a2 gene. Therefore, thiazolidinediones (TZDs) may 

contribute to the transport glucose into the liver or β-cell by upregulating SLC2A2 gene [61]. PPARA 

also upregulates the Slc2a2 gene expression in the β-cells [51,65]. Ppara null mice showed low level 

of Slc2a2 mRNA in the pancreas [66].  

Glucose increased the Slc2a2 gene expression in the liver and β-cells, both in vivo and  

in vitro [14,67-70]. Recently, we have identified a sterol regulatory element binding transcription 

factor 1 (SREBF1) response element (SRE) in the promoter of mouse Slc2a2 gene, which is responsive 

to glucose in primary cultured hepatocytes [69]. Furthermore, glucose-induction of the Slc2a2 gene 

expression in pancreatic islets was not found in Srebf1 knockout mice [70].  

Also, cyclic adenosine monophosphate (cAMP) prevents the glucose-mediated stimulation of 

Slc2a2 gene expression in hepatocytes. The –312/+49 bp region of the mouse Slc2a2 promoter is 

responsible for cAMP responsiveness [71]. However, functional cAMP response element(s) within this 

region has not been identified.  

An orphan nuclear receptor NR4A1 (nuclear receptor subfamily 4, group A, member 1) binds to 

nerve growth factor I-B response element (NBRE) in mouse Slc2a2 promoter (–82/–75 bp) and 

increases mRNA level in primary cultured hepatocytes and liver. Furthermore, Slc2a2 mRNA induced 

by NR4A1 is synergistically enhanced by PPARG coactivator 1 alpha (PPARGC1A) [72]. Because 

NR4A1 expression is highly regulated by the cAMP axis in the liver [72], these results are not 

consistent with the previous report that cAMP decreases the promoter activity of the Slc2a2 gene [71]. 

Further studies are needed to elucidate these contradictory results.  

Insulin plays a negative role in Slc2a2 gene expression in the liver [14]. Since insulin-FOXO1 

pathway is responsible for the negative role in insulin-mediated gene expression [73], it is tempting to 

speculate that FOXO1 may be a negative regulator of Slc2a2 gene expression. However, there is no 

evidence that FOXO1 is involved in the gene expression of Slc2a2 in the liver, although its negative 

role of FOXO1 in the Slc2a2 gene expression was shown in β-cells.  



Sensors 2010, 10              

 

 

5036

CCAAT/enhancer binding protein (CEBP) is shown to activate rat Slc2a2 promoter in HepG2 cells. 

The promoter has two CEBP consensus sequences binding CEBPA and CEBPB (Figure 1). These 

factors synergistically activate the promoter [74]. 

Kruppel-like factor 7 (KLF7) is known to reduce mRNA level of SLC2A2 in HIT-T15 and HepG2 

cells. Because KLF7 is shown to reduce PDX1 gene expression in HIT-T15 cells [75], SLC2A2 gene 

expression may be regulated by KLF7 either directly or indirectly.  

Although tissue-specific transcriptional regulation is not absolutely consistent between human and 

mouse [76], SLC2A2 gene expression in liver was activated by ONECUT1, FOXA3, PPARG, 

SREBF1c, NR4A1, CEBPA, CEBPB and KLF7. On the other hand, SLC2A2 gene expression in  

β-cells was activated by HNF1A, HNF4A, PDX1, HMGN3, MAFA, MAFB, PPARA, PPARG and 

KLF7 and was suppressed by FOXO1. The gene expression or activity of these regulators in abnormal 

conditions like high-fat or high-carbohydrate diet and cellular stress may contribute to the etiology  

of T2DM. 

 

3. Transcriptional Regulation of Glucokinase (GCK) 

 

3.1. Beta Cell Glucokinase (βGCK)  

 

GCK plays a critical role in maintaining the postprandial glucose level near 5 mM, which is 

achieved by glucose stimulated insulin secretion (GSIS) from β-cells and glucose metabolism in the 

liver [77]. βGCK is a primary determinant of blood glucose level because it senses glucose for GSIS.  

Upregulation of βGck gene expression by glucose is mediated by insulin. In this mechanism, insulin 

receptor B type, PI3K class 1a and p70 s6 kinase pathway are known to be involved in  

glucose-regulated βGck transcription [78]. Furthermore, βGck gene expression is increased when 

MIN6 cells were cultured at 30 mM glucose [79]. However, βGck mRNA level is not changed in rats 

which are subjected to fasting/refeeding although LGck gene expression is significantly increased [80]. 

Indeed, the 4 kb promoter reporter construct of the βGck gene was not activated either by glucose (30 

mM) or insulin (20 nM) [81]. These studies indicate that the role of glucose or insulin in the activation 

of βGCK may occur by stabilization rather than upregulation of βGck gene expression in insulinoma 

cells [21].  

As shown in Figure 2, the gene expression of βGCK is regulated by various transcription factors. In 

its 5’-flanking region, there are three upstream promoter elements (UPEs) and two Pal motifs. 

Particulary, UPE-3 and Pal motifs are well conserved in the rat, mouse and human genes [19,82,83]. 

The Pal motifs consist of inverted repeats separated by 1 bp (TGGTCACCA). The promoter activity of 

βGck gene was decreased by the introduction of mutation in the Pal motifs. These Pal motifs are 

pivotal determinants for the neural/neuroendocrine cell-specific expression of the Gck  

promoter [82,83]. 

UPEs have AT-rich sequence, which is known to be responsible for PDX1 activation. PDX1 is a 

master regulator for maintaining function and differentiation of β-cell. In the presence of glucose, 

PDX1 is phosphorylated and translocated into nucleus [84-86]. Expression of PDX1 increased the 

reporter activity of βGck promoter in CHO cells. PDX1 binding site is conserved at UPE3 region in 

human βGCK promoter and may play an essential role for β-cell function [87]. However, β-cell 
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specific disruption of Pdx1 did not affect the expression of βGck although Slc2a2 expression was 

down-regulated [39]. The transcriptional role of PDX1 on the βGCK gene is not fully understood.  

A basic helix-loop-helix (bHLH) transcription factor, NEUROD1 is known to bind βGck promoter 

(–221/–216 bp; E-box) with E47 as a heterodimeric partner and transactivates the βGck gene [88]. In 

addition, nuclear receptor subfamily 0, group B, member 2 (NR0B2, also known as SHP) interacts 

with NEUROD1 and represses the transcriptional activity of NEUROD1 by competing with 

coactivator EP300 [89]  

PPARG/RXRA (retinoic X receptor alpha) binds to the promoter of rat βGck gene of which binding 

element (PPRE) is located at +47/+68 bp. In addition, troglitazone increased the endogenous 

expression and enzyme activity of βGCK [24]. Knockdown of Pparg using siRNA resulted in a 

decrease in the mRNA level of Pdx1, Gck,  Slc2a2 and insulin II [52].  

Figure 2. Schematics of transcriptional regulatory elements on the βGCK gene promoter.  

 
 
Abbreviations: PDX1, pancreatic and duodenal homeobox 1; SP1, Sp1 transcription factor; FOXO1, 
forkhead box O1; NEUROD1, neurogenic differentiation 1; E47, an immunoglobulin  
enhancer-binding factor; EP300, E1A binding protein p300; NR0B2, nuclear receptor subfamily 0, 
group B, member 2 (also known as SHP); PPARG, peroxisome proliferator-activated receptor 
gamma; RXRA, retinoic X receptor alpha; UPE, upstream promoter element; FRE, FOXO1 
response element; PPRE, PPAR response element. 
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In addition, insulin-like growth factor 1 (IGF1) is known to induce βGck gene expression by 

phosphorylating FOXO1. FOXO1 response element (FRE) is located at –550/–543 bp of rat βGck 

promoter and FOXO1 binding to FRE is decreased by IGF1 in vitro [90]. 

Although PDX1, NEUROD1 and NK2 homeobox 2 (NKX2-2) bind to the region of –285/–5 bp in 

the mouse βGck promoter, their respective response elements in the βGck promoter have not been 

characterized [91]. Consistent with a role of NKX2-2 on the βGck promoter, Nkx2-2 knockout mice 

revealed a reduction in the βGck mRNA level. In addition, NKX2-2 appeared to play an important role 

for the differentiation of β-cells [92]. 

 

3.2. Liver Glucokinase (LGCK) 

 

The gene expression of LGck is decreased in streptozotocin-induced diabetic rats and restored by 

insulin administration [93]. In addition, LGck gene expression is increased by insulin and decreased by 

the glucagons-cAMP system in primary cultured hepatocytes [94]. Insulin-induction of LGck gene 

expression is shown to be blocked by LY294002 or wortmannin, a PI3K inhibitor [95]. Furthermore, 

LGck gene expression is inhibited by a dominant negative form of insulin receptor substrate 1  

(IRS1) [96]. These studies support that insulin is a principal regulator of LGck gene expression. 

SREBF1c, one of the master regulators of lipogenesis, is dramatically induced by insulin [97,98]. 

Administration of recombinant adenovirus of Srebf1c to streptozotocin-induced diabetic mice restored 

LGck and lipogenic enzymes normalizing blood glucose level despite that insulin is absent [99]. In 

addition, adenoviral expression of dominant negative form of SREBF1c in primary cultured 

hepatocytes decreased insulin-induction of LGck gene, suggesting a direct participation of SREBF1c 

in the LGck gene expression [100]. Furthermore, direct binding site of SREBF1c on rat LGck promoter 

is identified [101]. However, LGck gene expression is still increased by refeeding the Srebf1c 

knockout mice [102]. Moreover, LGck gene expression is not changed even though Srebf1c was 

knockdown by siRNA although fatty acid synthase mRNA level is decreased. These studies suggest 

that SREBF1c is not likely to be a mediator of LGck gene expression [103, 104]. Further studies are 

needed to answer these contradictory results. 

HNF4A is known to be an important transcription factor for glucose and lipid homeostasis [35,105]. 

HNF4A increases the LGCK gene expression and its binding site HRE (HNF response element) is 

identified in human [106] and rat [107]. During the fasting period, LGCK transcription by HNF4A is 

repressed by FOXO1 which acts as a corepressor, whereas the suppression is restored by feeding 

where FOXO1 is phosphorylated and extruded to cytosol by insulin [106].  

Hypoxia inducible factor 1 alpha subunit (HIF1A) also affects promoter activity of rat LGck gene. 

HIF1A binding site is localized at -87/-80 bp region of the promoter. Both insulin [108] and  

hypoxia [21,109,110] upregulate LGck gene expression by increasing HIF1A level and its  

DNA-binding activity. Transactivation by HIF1A was also enhanced by co-expression of HNF4A and 

EP300. Moreover, HIF1A interacts with HNF4A and each of these factors also interacts with EP300. It 

was suggested that synergy and cooperative interactions between HIF1A, HNF4A and EP300 might be 

necessary for insulin-stimulated LGck expression [109].  

Signal transducer and activator of transcription 5B (STAT5B) is known to be regulated by  

insulin [111,112]. STAT5B phosphorylated by insulin is translocated to the nucleus and increases its 
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binding to the cis-acting elements, thereby increasing the transcription of target genes. Activated 

STAT5B by insulin increased LGCK gene expression [113,114]. In humans, the binding site of 

STAT5B is characterized at -1368/-1360 bp region, but the mouse STAT5 response element 

(STAT5RE) was unknown. The binding affinity of STAT5B to the human LGCK promoter is also 

increased by insulin and the activation by insulin occurs in a janus kinase (JAK)-independent manner. 

Thus, it is suggested that STAT5B plays an important role in the insulin-mediated upregulation of 

LGck gene [113]. However, insulin is known to increase the transcription of LGck in primary cultured 

hepatocytes although the tyrosine phosphorylation of STAT5 was not detectable [114].  

Figure 3. Schematics of transcriptional regulatory elements on the LGCK gene promoter.  

 
 
Abbreviations: STAT5B, signal transducer and activator of transcription 5B; HNF4A, hepatic 
nuclear factor 4 alpha; FOXO1, forkhead box O1; ONECUT1, one cut homeobox 1 (also known as 
HNF6); SREBF1c, sterol regulatory element binding transcription factor 1c; LXRA, liver X 
receptor alpha (also known as NR1H3); RXRA, retinoid X receptor alpha; NR0B2, nuclear 
receptor subfamily 0, group B, member 2 (also known as SHP); EP300, E1A binding protein p300; 
PPARG, peroxisome proliferator-activated receptor gamma; USF2, upstream stimulatory factor 2; 
HIF1A, hypoxia induced factor 1 alpha subunit; STAT5RE, STAT5B response element; HRE, 
HNF response element; FRE, FOXO1 response element; SRE, SREBF response element; PPRE, 
PPAR response element; HIFRE, HIF1A response element; LXRE, LXR response element. 

 

During the fasting period, sirtuin 1 (SIRT1), an NAD+-dependent deacetylase, decreases the rat 

LGck gene expression by deacetylating FOXO1, which results in an increase in binding of FOXO1 to 
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FRE (–537/–529 bp) of its promoter. They also observed that resveratrol enhances interaction of 

between FOXO1 and HNF4A, causing a decrease in the binding affinity of HNF4A to the HRE [115].  

Upstream stimulating factor 2 (USF2) is responsible for the regulation of LGck gene expression by 

binding to the P2 element (–89/–81 bp), and thus, the transcription factor may be in part responsible 

for the glucose homeostasis [116].  

TZDs are anti-diabetic drugs improving glucose utilization and insulin sensitivity. Troglitazone is a 

synthetic ligand of PPARG and is shown to upregulate LGck gene expression. The PPRE is located at 

the –116/–104 bp of LGck gene promoter [117]. 

Recently, liver X receptor alpha (LXRA, also known as NR1H3) was shown to upregulate LGck 

gene expression by binding to the LXR response element (LXRE) (–52/–39 bp) in its promoter. In 

addition, LXRA increases LGck gene expression by inducing SREBF1c and increasing transcriptional 

activity of PPARG. Furthermore, NR0B2 induced by LXRA plays a role in the fine-tuning the LGck 

gene expression [118]. Because the binding site of LXRA and HNF4A seems to be overlapped [107], 

detailed studies are needed to elaborate their precise roles of these factors with regard to specific 

metabolic conditions. 

In mice, ONECUT1 binding site in the LGck gene promoter is localized at –7613/–7622 bp  

and –877/–868 bp, suggesting a possible link between Onecut1 deficiency and development of T2DM. 

This study could explain why T2DM occurs in Onecut1 knockout mice [119,120].  

 

4. Effect of Promoter Polymorphisms on SLC2A2 and GCK Transcription 

 

Single nucleotide polymorphisms (SNPs) in the promoter regions can affect the binding of 

transcription factors regulating the transcription of genes. Some significant promoter SNPs of SLC2A2 

and GCK genes were reported in T2DM patients. 

 

4.1. Promoter Polymorphisms in SLC2A2 Gene 

 

Three common SNPs, –149C > A (rs5393), –122T > C (rs5394) and –44G > A (rs5396), in SLC2A2 

promoter were identified in a Danish population. These SNPs were not significantly different in the 

genotype frequency between T2DM patients and control subjects. In addition, clinical characteristics 

of T2DM were not significantly associated [121]. However, SNPs rs5393 and rs5394 of SLC2A2 could 

be  high risk genotypes to predict the conversion of T2DM in an obese Finnish subject who had 

impaired glucose tolerance [122]. This discrepancy is not explained at present, but it may be due to 

differences in the ethnic group or study population. Detailed functional studies of the effects of 

promoter SNPs on SLC2A2 transcription are needed.  
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4.2. Promoter Polymorphisms in GCK Gene 

 

Recently, a functional βGCK promoter mutation (–71G > C) was identified in Slovakian and British 

patients with GCK-MODY phenotype who have no abnormality of the GCK coding seqeuence. The 

mutation was associated with increased fasting plasma glucose (FPG) levels. In addition, the βGCK 

promoter of the –71C allele showed remarkable reductions of promoter reporter activity in INS-1 cells 

due to the decreased SP1 binding to –82/–67 bp region (Figure 2). These data suggested that the 

mutation was cosegregated with fasting hyperglycemia due to loss of SP1 binding [123]. 

Two SNPs, –6612G > A (rs4607517) [124,125] and –30G > A (rs1799884) [126-129], in the βGCK 

promoter were significantly associated with fasting plasma glucose level in several populations. 

Moreover, the –30G > A SNP has been associated with reduced β-cell function [130], impaired 

glucose tolerance [131] and T2DM [126]. These data suggested that rare alleles of these two SNPs 

may also inhibit the βGCK transcription. However, functional studies of these two SNPs are needed to 

clarify cause-effect in terms of βGCK transcription. 

 

5. Conclusions 

 

Although muscle or adipose tissue have been considered as the principal organs of glucose disposal, 

immediate handling of hyperglycemia in β-cells or liver is also important because high levels of 

glucose are toxic to various tissues. Thus, studies on the regulation of glucose sensors in the liver and 

β-cells are important in understanding T2DM and preventing the long-term complications resulting 

from hyperglycemia. Recent advances in the analytical technologies of genomics and proteomics make 

it possible to unveil the existence of transcription factors and their physical interactions with DNA or 

other coregulators.  

Deeper understanding of the role of transcription factors involved in the gene regulation of the 

glucose sensors in the liver and β-cells may provide important clues in the prevention of the 

occurrence of hyperglycemia-related complications and development of novel therapeutic drugs 

combating T2DM, a world-wide epidemic. 
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