29 research outputs found

    Liver stiffness and perfusion changes for hepatic sinusoidal obstruction syndrome in rabbit model

    Get PDF
    BACKGROUND: Hepatic sinusoidal obstruction syndrome (SOS) is caused by damage to hepatic sinusoidal endothelial cells that results in fibrous obliteration of intrahepatic venules and necrosis of hepatocytes. Currently the diagnosis is primarily based on nonspecific clinical features and invasive liver biopsy. Therefore, noninvasive imaging methods are required for the early diagnosis and severity assessment of hepatic SOS. AIM: To determine the effectiveness of supersonic shear wave imaging (SSI) and dual energy computed tomography (DECT) for diagnosing hepatic SOS using a rabbit model. METHODS: Among nine New Zealand white rabbits (3-4 kg, male), three in control group ingested normal saline for 20 d and six in the SOS group ingested 6-thioguanine (5 mg/kg/d) for 20 d. Liver stiffness was measured using SSI on days 0, 3, 10, and 20. On the same days, liver perfusion was evaluated from virtual monochromatic images of 55 keV and iodine map using DECT. Morphologic changes in the liver were assessed using CT. Final pathology scores were compared between the two groups. Liver stiffness and perfusion parameters were compared according to the groups, days, and pathology scores. RESULTS: Final pathology scores were significantly higher in the SOS than the control group (median 22 vs 2, P = 0.024). No gross morphologic changes were seen in livers. Liver stiffness, Hounsfield Unit values, and iodine concentrations were higher in the SOS compared to the control group on days 10 and 20 (all, P ≤ 0.007). Compared to day 0, liver stiffness and perfusion parameters were higher on day 20 in the SOS group (all, P ≤ 0.001). Correlation coefficients for liver stiffness (r = 0.635), Hounsfield Unit values (r = 0.587), and iodine concentration (r = 0.611) with final pathology scores were positive without significance (all, P > 0.05). CONCLUSION: Liver stiffness and perfusion parameters were significantly increased in the livers of a rabbit SOS model. SSI and DECT might aid in early diagnosis of hepatic SOS.ope

    Image Quality and Lesion Detectability of Lower-Dose Abdominopelvic CT Obtained Using Deep Learning Image Reconstruction

    Get PDF
    Objective: To evaluate the image quality and lesion detectability of lower-dose CT (LDCT) of the abdomen and pelvis obtained using a deep learning image reconstruction (DLIR) algorithm compared with those of standard-dose CT (SDCT) images. Materials and methods: This retrospective study included 123 patients (mean age ± standard deviation, 63 ± 11 years; male:female, 70:53) who underwent contrast-enhanced abdominopelvic LDCT between May and August 2020 and had prior SDCT obtained using the same CT scanner within a year. LDCT images were reconstructed with hybrid iterative reconstruction (h-IR) and DLIR at medium and high strengths (DLIR-M and DLIR-H), while SDCT images were reconstructed with h-IR. For quantitative image quality analysis, image noise, signal-to-noise ratio, and contrast-to-noise ratio were measured in the liver, muscle, and aorta. Among the three different LDCT reconstruction algorithms, the one showing the smallest difference in quantitative parameters from those of SDCT images was selected for qualitative image quality analysis and lesion detectability evaluation. For qualitative analysis, overall image quality, image noise, image sharpness, image texture, and lesion conspicuity were graded using a 5-point scale by two radiologists. Observer performance in focal liver lesion detection was evaluated by comparing the jackknife free-response receiver operating characteristic figures-of-merit (FOM). Results: LDCT (35.1% dose reduction compared with SDCT) images obtained using DLIR-M showed similar quantitative measures to those of SDCT with h-IR images. All qualitative parameters of LDCT with DLIR-M images but image texture were similar to or significantly better than those of SDCT with h-IR images. The lesion detectability on LDCT with DLIR-M images was not significantly different from that of SDCT with h-IR images (reader-averaged FOM, 0.887 vs. 0.874, respectively; p = 0.581). Conclusion: Overall image quality and detectability of focal liver lesions is preserved in contrast-enhanced abdominopelvic LDCT obtained with DLIR-M relative to those in SDCT with h-IR.ope

    Pathologic Complete Response Prediction after Neoadjuvant Chemoradiation Therapy for Rectal Cancer Using Radiomics and Deep Embedding Network of MRI

    Get PDF
    Assessment of magnetic resonance imaging (MRI) after neoadjuvant chemoradiation therapy (nCRT) is essential in rectal cancer staging and treatment planning. However, when predicting the pathologic complete response (pCR) after nCRT for rectal cancer, existing works either rely on simple quantitative evaluation based on radiomics features or partially analyze multi-parametric MRI. We propose an effective pCR prediction method based on novel multi-parametric MRI embedding. We first seek to extract volumetric features of tumors that can be found only by analyzing multiple MRI sequences jointly. Specifically, we encapsulate multiple MRI sequences into multi-sequence fusion images (MSFI) and generate MSFI embedding. We merge radiomics features, which capture important characteristics of tumors, with MSFI embedding to generate multi-parametric MRI embedding and then use it to predict pCR using a random forest classifier. Our extensive experiments demonstrate that using all given MRI sequences is the most effective regardless of the dimension reduction method. The proposed method outperformed any variants with different combinations of feature vectors and dimension reduction methods or different classification models. Comparative experiments demonstrate that it outperformed four competing baselines in terms of the AUC and F1-score. We use MRI sequences from 912 patients with rectal cancer, a much larger sample than in any existing work.ope

    인공지능 기반 임상의학 결정 지원 시스템 의료기기의 성능 및 안전성 검증을 위한 간 종양 표준 데이터셋 구축

    Get PDF
    Purpose To construct a standard dataset of contrast-enhanced CT images of liver tumors to test the performance and safety of artificial intelligence (AI)-based algorithms for clinical decision support systems (CDSSs). Materials and Methods A consensus group of medical experts in gastrointestinal radiology from four national tertiary institutions discussed the conditions to be included in a standard dataset. Seventy-five cases of hepatocellular carcinoma, 75 cases of metastasis, and 30–50 cases of benign lesions were retrieved from each institution, and the final dataset consisted of 300 cases of hepatocellular carcinoma, 300 cases of metastasis, and 183 cases of benign lesions. Only pathologically confirmed cases of hepatocellular carcinomas and metastases were enrolled. The medical experts retrieved the medical records of the patients and manually labeled the CT images. The CT images were saved as Digital Imaging and Communications in Medicine (DICOM) files. Results The medical experts in gastrointestinal radiology constructed the standard dataset of contrast-enhanced CT images for 783 cases of liver tumors. The performance and safety of the AI algorithm can be evaluated by calculating the sensitivity and specificity for detecting and characterizing the lesions. Conclusion The constructed standard dataset can be utilized for evaluating the machine-learningbased AI algorithm for CDSS.ope

    Performance of deep learning-based algorithm for detection of ileocolic intussusception on abdominal radiographs of young children

    Get PDF
    The purpose of this study was to develop and test the performance of a deep learning-based algorithm to detect ileocolic intussusception using abdominal radiographs of young children. For the training set, children (≤5 years old) who underwent abdominal radiograph and ultrasonography (US) for suspicion of intussusception from March 2005 to December 2017 were retrospectively included and divided into control and intussusception groups according to the US results. A YOLOv3-based algorithm was developed to recognize the rectangular area of the right abdomen and to diagnose intussusception. For the validation set, children (≤5 years old) who underwent both radiograph and US from January to August 2018 with the suspicion of intussusception were included. Diagnostic performances of an algorithm and radiologists were compared. Total 681 children including 242 children in intussusception group were included in the training set and 75 children including 25 children in intussusception group were included in the validation set. The sensitivity of the algorithm was higher compared with that of the radiologists (0.76 vs. 0.46, p = 0.013), while specificity was not different between the algorithm and the radiologists (0.96 vs. 0.92, p = 0.32). Deep learning-based algorithm can aid screening of intussusception using abdominal radiography in young children.ope

    Diagnostic Performance of Deep Learning-Based Lesion Detection Algorithm in CT for Detecting Hepatic Metastasis from Colorectal Cancer

    Get PDF
    Objective: To compare the performance of the deep learning-based lesion detection algorithm (DLLD) in detecting liver metastasis with that of radiologists. Materials and methods: This clinical retrospective study used 4386-slice computed tomography (CT) images and labels from a training cohort (502 patients with colorectal cancer [CRC] from November 2005 to December 2010) to train the DLLD for detecting liver metastasis, and used CT images of a validation cohort (40 patients with 99 liver metastatic lesions and 45 patients without liver metastasis from January 2011 to December 2011) for comparing the performance of the DLLD with that of readers (three abdominal radiologists and three radiology residents). For per-lesion binary classification, the sensitivity and false positives per patient were measured. Results: A total of 85 patients with CRC were included in the validation cohort. In the comparison based on per-lesion binary classification, the sensitivity of DLLD (81.82%, [81/99]) was comparable to that of abdominal radiologists (80.81%, p = 0.80) and radiology residents (79.46%, p = 0.57). However, the false positives per patient with DLLD (1.330) was higher than that of abdominal radiologists (0.357, p < 0.001) and radiology residents (0.667, p < 0.001). Conclusion: DLLD showed a sensitivity comparable to that of radiologists when detecting liver metastasis in patients initially diagnosed with CRC. However, the false positives of DLLD were higher than those of radiologists. Therefore, DLLD could serve as an assistant tool for detecting liver metastasis instead of a standalone diagnostic tool.ope

    LI-RADS Version 2018 Treatment Response Algorithm: Diagnostic Performance after Transarterial Radioembolization for Hepatocellular Carcinoma

    Get PDF
    Objective: To assess the diagnostic performance of the Liver Imaging Reporting and Data System (LI-RADS) version 2018 treatment response algorithm (TRA) for the evaluation of hepatocellular carcinoma (HCC) treated with transarterial radioembolization. Materials and methods: This retrospective study included patients who underwent transarterial radioembolization for HCC followed by hepatic surgery between January 2011 and December 2019. The resected lesions were determined to have either complete (100%) or incomplete (< 100%) necrosis based on histopathology. Three radiologists independently reviewed the CT or MR images of pre- and post-treatment lesions and assigned categories based on the LI-RADS version 2018 and the TRA, respectively. Diagnostic performances of LI-RADS treatment response (LR-TR) viable and nonviable categories were assessed for each reader, using histopathology from hepatic surgeries as a reference standard. Inter-reader agreements were evaluated using Fleiss κ. Results: A total of 27 patients (mean age ± standard deviation, 55.9 ± 9.1 years; 24 male) with 34 lesions (15 with complete necrosis and 19 with incomplete necrosis on histopathology) were included. To predict complete necrosis, the LR-TR nonviable category had a sensitivity of 73.3-80.0% and a specificity of 78.9-89.5%. For predicting incomplete necrosis, the LR-TR viable category had a sensitivity of 73.7-79.0% and a specificity of 93.3-100%. Five (14.7%) of 34 treated lesions were categorized as LR-TR equivocal by consensus, with two of the five lesions demonstrating incomplete necrosis. Inter-reader agreement for the LR-TR category was 0.81 (95% confidence interval: 0.66-0.96). Conclusion: The LI-RADS version 2018 TRA can be used to predict the histopathologic viability of HCCs treated with transarterial radioembolization.ope

    Contrast-enhanced ultrasound Liver Imaging Reporting and Data System category M: a systematic review and meta-analysis

    Get PDF
    Purpose: A meta-analysis was conducted to determine the proportion of contrast-enhanced ultrasound (CEUS) Liver Imaging Reporting and Data System category M (LR-M) in hepatocellular carcinomas (HCCs) and non-HCC malignancies and to investigate the frequency of individual CEUS LR-M imaging features. Methods: The MEDLINE and Embase databases were searched from January 1, 2016 to July 23, 2020 for studies reporting the proportion of CEUS LR-M in HCC and non-HCC malignancies. The meta-analytic pooled proportions of HCC and non-HCC malignancies in the CEUS LR-M category were calculated. The meta-analytic frequencies of CEUS LR-M imaging features in nonHCC malignancies were also determined. Risk of bias and applicability were evaluated using the Quality Assessment of Diagnostic Accuracy Studies-2 tool. Results: Twelve studies reporting the diagnostic performance of the CEUS LR-M category were identified, as well as seven studies reporting the frequencies of individual CEUS LR-M imaging features. The pooled proportions of HCC and non-HCC malignancies in the CEUS LR-M category were 54% (95% confidence interval [CI], 44% to 65%) and 40% (95% CI, 28% to 53%), respectively. The pooled frequencies of individual CEUS LR-M imaging features in non-HCC malignancies were 30% (95% CI, 17% to 45%) for rim arterial phase hyperenhancement, 79% (95% CI, 66% to 90%) for early (<60 s) washout, and 42% (95% CI, 21% to 64%) for marked washout. Conclusion: In total, 94% of CEUS LR-M lesions were malignancies, with HCCs representing 54% and non-HCC malignancies representing 40%. The frequencies of individual CEUS LR-M imaging features varied; early washout showed the highest frequency for non-HCC malignancies.ope

    Quick assessment with controlled attenuation parameter for hepatic steatosis in children based on MRI-PDFF as the gold standard

    Get PDF
    BACKGROUND: Controlled attenuation parameter (CAP) is a recently introduced, non-invasive and quantitative method to evaluate hepatic steatosis demonstrated in adults, but limited in obesity and not well evaluated in children. The aim of this study was to investigate the diagnostic performance for assessing hepatic steatosis grades using CAP in children based on MR proton density fat fraction (PDFF). METHODS: Children evaluated for non-alcoholic fatty liver disease (NAFLD) who were assessed for PDFF and CAP were enrolled retrospectively. Hepatic steatosis grades 0-3 were classified according to PDFF using cutoff values of 6, 17.5, and 23.3%. Subgroup analyses were performed in non-obese and obese groups using the 95th percentile body mass index (BMI) as a cutoff and BMI30 group when BMI > 30 kg/m2. Pearson's correlations between variables were also analyzed. RESULTS: In a total of 86 children, there were 53 in the obese group including 17 of the BMI30 group. CAP demonstrated 98.7% sensitivity and 80% specificity for diagnosing grades 1-3 vs. grade 0 using a cutoff value of 241 dB/m (area under the curve = 0.941, p < 0.001). The diagnostic performance for higher steatosis grades was suboptimal. CAP correlated with abdominal wall thickness in both obese (r = 0.549, p = 0.001) and non-obese (r = 0.386, p = 0.004) groups and did not correlate with PDFF in BMI30 group. CONCLUSION: In children with NAFLD, CAP showed excellent diagnostic performance for differentiating presence and absence of hepatic steatosis using a cutoff value of 241 dB/m. However, CAP was limited in evaluating grades of steatosis, especially in children with BMI > 30 kg/m2.ope

    A radiomics-based model for predicting prognosis of locally advanced gastric cancer in the preoperative setting

    Get PDF
    This study aims to evaluate the performance of a radiomic signature-based model for predicting recurrence-free survival (RFS) of locally advanced gastric cancer (LAGC) using preoperative contrast-enhanced CT. This retrospective study included a training cohort (349 patients) and an external validation cohort (61 patients) who underwent curative resection for LAGC in 2010 without neoadjuvant therapies. Available preoperative clinical factors, including conventional CT staging and endoscopic data, and 438 radiomic features from the preoperative CT were obtained. To predict RFS, a radiomic model was developed using penalized Cox regression with the least absolute shrinkage and selection operator with ten-fold cross-validation. Internal and external validations were performed using a bootstrapping method. With the final 410 patients (58.2 ± 13.0 years-old; 268 female), the radiomic model consisted of seven selected features. In both of the internal and the external validation, the integrated area under the receiver operating characteristic curve values of both the radiomic model (0.714, P < 0.001 [internal validation]; 0.652, P = 0.010 [external validation]) and the merged model (0.719, P < 0.001; 0.651, P = 0.014) were significantly higher than those of the clinical model (0.616; 0.594). The radiomics-based model on preoperative CT images may improve RFS prediction and high-risk stratification in the preoperative setting of LAGC.ope
    corecore