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Abstract: Assessment of magnetic resonance imaging (MRI) after neoadjuvant chemoradiation ther-
apy (nCRT) is essential in rectal cancer staging and treatment planning. However, when predicting
the pathologic complete response (pCR) after nCRT for rectal cancer, existing works either rely on
simple quantitative evaluation based on radiomics features or partially analyze multi-parametric MRI.
We propose an effective pCR prediction method based on novel multi-parametric MRI embedding.
We first seek to extract volumetric features of tumors that can be found only by analyzing multiple
MRI sequences jointly. Specifically, we encapsulate multiple MRI sequences into multi-sequence
fusion images (MSFI) and generate MSFI embedding. We merge radiomics features, which capture
important characteristics of tumors, with MSFI embedding to generate multi-parametric MRI em-
bedding and then use it to predict pCR using a random forest classifier. Our extensive experiments
demonstrate that using all given MRI sequences is the most effective regardless of the dimension
reduction method. The proposed method outperformed any variants with different combinations of
feature vectors and dimension reduction methods or different classification models. Comparative
experiments demonstrate that it outperformed four competing baselines in terms of the AUC and
F1-score. We use MRI sequences from 912 patients with rectal cancer, a much larger sample than in
any existing work.

Keywords: convolutional neural network (CNN); magnetic resonance imaging (MRI); neoadjuvant
chemoradiation therapy (nCRT); pathologic complete response (pCR); radiomics; rectal cancer

1. Introduction

Rectal cancer is a carcinoma with a high incidence, accounting for 11.4% of the total
cancer incidence, with 25,330 new cases in Korea in 2019, according to the Korea Central
Cancer Registry [1]. Magnetic resonance imaging (MRI) is considered one of the most
effective tools for staging rectal cancer by evaluating the local progression of tumors and
lymph node metastasis.

Recently, for locally advanced rectal cancer, neoadjuvant chemoradiation therapy
(nCRT) has been suggested to perform chemoradiation therapy before surgery [2]. If a
patient is highly likely to have a pathologic complete response (pCR) after nCRT, they can
avoid or postpone surgery while monitoring recurrence. Therefore, if we can predict pCR
after nCRT accurately through MRI assessment, surgery could be avoided in the case of
some patients, thereby greatly improving their quality of life by preserving their organs,
which surgery might otherwise damage [3]. However, treatments, such as nCRT, may
cause fibrosis, desmoplastic reaction, or colloid formation; therefore, MRI analysis becomes
increasingly challenging.
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To predict the pCR of rectal cancer, radiologists have used various MRI sequences,
such as T2-weighted images (T2), diffusion-weighted imaging (DWI) [4,5], and contrast-
enhanced imaging (CE) [6]. While T2 is considered as an essential MRI sequence, radiol-
ogists can achieve higher accuracy by using DWI along with T2 than using T2 alone [7].
This can be improved further by replacing T2 and DTW with T2/Gabor (T2 after applying
the Gabor filter) and DWI/ADC (apparent diffusion coefficient of DWI) [8,9].

To quantitatively evaluate MRI for the pCR prediction of rectal cancer, many prior
studies [8,10-12] have focused on radiomics features that can quantify the texture and
non-texture characteristics of tumors. For example, a random forest classifier on T2/Gabor
radiomics features outperformed qualitative analysis of T2 and DWI by radiologists [8]. By
merging the radiomics features of multi-parametric MRI [10] and additional information,
such as tumor length [11], simple classifiers based on multi-layer perceptron (MLP), and
logistic regression, have shown high pCR prediction accuracy.

Recently, convolutional neural network (CNN) architectures have been widely used
to extract new features of tumors in medical images, such as MRI and CT/PET [13-18].
Using 2D-CNN pre-trained on non-medical images, 2D features of the tumor are extracted
from CE MRI and used for an effective logistic regression classifier [13,14]. To improve
the pCR prediction accuracy, 2D-features from multi-parametric MRI [15] and radiomics
features [16] can be combined. Some approaches have used pre-trained 3D-CNN to extract
3D features of tumor volume [17,18]. However, they neither analyze multi-parametric MRI
nor consider radiomics features; they analyze 3D CT/PET images [18] or the DWI/ADC
MRI sequence [17] only.

In this study, given pre-operative MRI sequences, {T2, DWI/ADC, and CE}, we
predict the pCR of rectal cancer after nCRT by using multi-parametric MRI embedding.
Specifically, we focus on extracting 3D features of tumor volume and radiomics features
and fusing them to generate novel and diverse features of multi-parametric MRI. To this
end, we encapsulate multiple MRI sequences into a multi-sequence fusion image (MSFI)
and extract features directly from it, instead of simply merging the features extracted from
each MRI sequence.

We generate MSFI embedding using a 3D-CNN, which is known to capture non-linear
correlations of volumetric features extracted by 3D convolutional filters. As the number of
3D filters to tune for a deep 3D-CNN is very large, training randomly initialized filters will
be more likely to overfit as the size of training set becomes smaller. For better generalization
ability, we use transfer learning [19] with a 3D-CNN pre-trained on a large collection of
videos.

Finally, we generate multi-parametric MRI embedding by concatenating MSFI embed-
ding and radiomics features and performing dimension reduction for pCR prediction. This
enables us to consider both diverse structural features of the tumor volume present in each
MRI sequence and novel volumetric features that can only be found by analyzing multiple
MRI sequences jointly.

We utilize the annotated MRI sequences of 912 rectal cancer patients, a sample size that
is significantly larger than those used in previous works. We construct our pCR prediction
model and existing models using MRI sequences of 592 patients after enlarging the number
of MRI sequences using image augmentation techniques. For the model evaluation, we use
the MRI sequences of 320 patients.

Our main contributions are as follows.

*  We propose a method for encapsulating multiple MRI sequences into an MSFI and
generating MSFI embedding using 3D-CNN to extract novel volumetric features of
tumors.

*  We introduce multi-parametric MRI embedding that contains diverse discriminative
features of tumors by incorporating MSFI embedding and radiomics.

¢ We show the superiority of the proposed method through extensive experiments
using the pre-operative MRI sequences of 912 rectal cancer patients.
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2. Related Works
2.1. Qualitative Evaluation of Rectal Cancer Using MRI

Various types of MRI sequences, such as T2, DWI, and CE, have been used by radiolo-
gists for the qualitative evaluation of rectal cancer. In particular, radiologists can assess
rectal cancer more accurately by simultaneously examining multiple MRI sequences at the
same time. T2 has been considered as the best MRI sequence for evaluating rectal cancer,
while DWI can help predict pCR after nCRT because it shows rectal cancer in a scar more
clearly [4,5,20]. Recently, it has been shown that by using both T2 and DWI, radiologists
can predict pCR more accurately than using T2 alone, since DWI enables them to interpret
qualitative characteristics of rectal cancer that are invisible in T2 [21]. CE is helpful in
assessing rectal cancer by providing the perfusion properties of tumors [6,22].

2.2. Quantitative Evaluation of Rectal Cancer using Radiomics Features

Radiomics features are quantities that can be automatically extracted from medical
images and used to assist clinical decision-making [23]. Given a sequence of medical
images and tumor masks, 2D/3D radiomics features pertaining to the tumor shape, voxel
intensity histogram, and texture of tumor areas (such as the gray-level co-occurrence matrix
and gray-level size-zone matrix), can be extracted [24]. Since radiomics features effectively
quantify both texture and non-texture characteristics of tumors, many prior studies have
used them for pCR prediction.

Recently, in diagnosing pCR after nCRT, a random forest classifier on T2/Gabor
radiomics features has shown higher performance (AUC = 0.93) than qualitative assessment
of T2 and DWI by radiologists, based on a cohort of 114 rectal cancer patients [8]. Given
the computerized tomography (CT) radiomics features of 222 patients, an MLP classifier
(AUC = 0.72) was shown to outperform a logistic regression classifier (AUC = 0.59) and
support vector machine (SVM) classifier (AUC = 0.62), because it can capture non-linear
correlations between CT radiomics features and the pCR of rectal cancer [25].

Radiomics features obtained from multi-parametric MRI have been used to predict
the pCR of rectal cancer. Multi-parametric MRI provides more comprehensive information
on rectal tumor areas than a particular MRI sequence does. Given the radiomics features
of multi-parametric MRI, {T2, DWI/ADC, and CE}, of 48 patients, a three-layer MLP
classifier (AUC = 0.79) was shown to outperform conventional voxelized heterogeneity
analysis by radiologists (AUC = 0.71) [10]. By fusing T2 and DWI radiomics features
before and after the CRT of 152 patients and additional information, such as tumor length,
one logistic regression classifier showed an AUC of 0.9756 in a validation cohort of 70
patients [11]. Using the radiomics features of T2, DWI, and CE obtained before and after
nCRT of 186 patients, another logistic regression classifier achieved an AUC of 0.948 [12].

2.3. Quantitative Evaluation of Rectal Cancer using Deep Learning

While radiomics features capture the essential characteristics of rectal tumor areas, we
can extract new discriminative features using various CNN architectures. Using features
of CE MRI extracted by 2D-CNN pre-trained on non-medical images, logistic regression
classifiers can effectively predict the pCR of breast cancer (AUC = 0.85 [13] AUC = 0.77 [14]).
With the features of multi-parametric MRI, T2, and CE, extracted by pre-trained 2D-CNN,
an SVM classifier can accurately predict the pCR of breast cancer (AUC = 0.87) [15]. Given
the multi-parametric MRI of DWI/ADC and CE, an MLP classifier has been shown to
achieve higher accuracy and robustness by exploiting both 2D-CNN embedding and
radiomics features of MRI [16].

However, 2D-CNN cannot capture features of tumor volumes, because it analyzes each
slice of MRI sequences separately. 3D-CNN can capture volumetric features by applying
3D filters across consecutive slices of an MRI sequence. Given 3D rectal CT/PET images
of tumors, 3D-CNN has been used to extract volumetric features for pCR prediction [18].
This end-to-end deep learning method shows a 0.64 c-index score, which is higher than
the Cox proportional hazards model (0.62) [26] and random survival forests (0.60) [27],
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based on a cohort of 84 patients. Given DWI/ADC MRI sequences obtained before nCRT, a
logistic regression model on 3D-CNN embedding (AUC = 0.73) was shown to outperform
a logistic regression model on its radiomics features (AUC = 0.64), based on a cohort of 43
rectal cancer patients [17].

Our method differs from these works in three aspects. First, we focus on extracting
the discriminative volumetric features of rectal cancer by applying 3D-CNN to multi-
parametric MRI. Next, we exploit both our novel volumetric features and radiomics features
of multi-parametric MRI to generate multi-parametric MRI embedding for pCR prediction
of rectal cancer. Lastly, our experimental evaluation is based on a large collection of multi-
parametric MRI scans of 912 rectal cancer patients. To the best of our knowledge, very few
studies have used a cohort of more than 200 rectal cancer patients.

3. Method
3.1. Data Preprocessing

In this study, we use pre-operative MRI sequences of 912 patients with rectal cancer
after nCRT. To split the samples into train and test sets, we partition them into two disjoint
cohorts based on surgery date. In this way, we want to predict the prognosis of future
patients by using the data of past patients before a specific point in time. This data
partitioning scheme is frequently used in medical research because it naturally reflects the
actual disease incidence and prevents random selection bias.

The training set consists of MRI sequences of 592 patients, 114 pCR patients, and 478
non-pCR patients, and the test set contains the MRI sequences of 320 patients, of which 78
are pCR, and 242 are non-pCR patients. We excluded the MRI sequences of 13 patients
because it was impossible to evaluate their MRI reliably due to metal artifacts caused by
metal stents for rectal obstruction. The disease stage information is summarized in Table 1.
During the MRI examination, we followed the MRI protocol described in Appendix A.

Table 1. Disease stages of rectal cancer patients (total = 912).

Train (n = 592) Validation (n = 320)
Age (mean =+ SD years) 58.8 +£12.1 59.5+11.8

Male (n (%))/Female (n (%)) 388 (65.5)/204 (34.5) 199 (62.2)/121 (37.8)
pCR (n (%)) 114 (19.3) 78 (24.4)
ypT stage (n (%))
TO 114 (19.3) 78 (24.4)
Tis 6 (1.0) 8 (2.5)
T1 36 (6.1) 14 (4.4)
T2 145 (24.5) 60 (18.8)
T3 285 (48.1) 156 (48.8)
T4 6 (1.0) 4(1.3)
ypN stage (n (%))
NO 409 (69.1) 231 (72.2)
N1 139 (23.5) 76 (23.8)
N2 44 (7.4) 13 (4.1)

A board-certified abdominal radiologist with 6 years of experience registered multi-
parametric MRI sequences. Fully automated co-registration was performed, and then
the radiologist validated the co-registered MRI sequences. Automated co-registration of
rectal MRI is known to be effective because rectum is in the pelvic cavity and, thus, moves
much less during respiration. No manual correction was performed. Then, the radiologist
drew the volume of interest (VOI) to include the whole tumor volume on T2 images semi-
automatically using a 3D Slicer tool [28]. All VOIs were confirmed by a senior abdominal
radiologist with 19 years of experience to ensure the quality of tumor annotations.
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Disagreements on annotations were resolved by consensus-based discussion. The
radiologists were blinded to the clinical and histopathologic data, except for information
on the diagnosis of rectal cancer. During training, we oversampled pCR MRI images in the
training set to alleviate the class imbalance between pCR and non-pCR [29].

Figure 1 shows snapshots of MRI sequences, {T2, DWI/ADC, and CE}, of a pCR
patient (upper) and those of a non-pCR patient (lower). Yellow masks depict rectal tumor
areas segmented and validated by radiologists. As the resolution or the number of slices
may differ across MRI sequences, we executed MRI alignment and z-normalization as
preprocessing steps.

To equalize the resolution of different MRI sequences, images were resampled to an
isovoxel size of 1 mm3 using the B-Spline method [30]. Then, the signal intensities of the
images were converted to values in the range (—3, 3) using z-score normalization. These
values were multiplied by 100 and converted to a value between (—300, 300). Radiomic
features were extracted by assigning a bin size of 5 for grayscale discretization. Due to
the lack of a standardized signal intensity scale of MRI, signal intensity normalization is
recommended before comparing MRI images [31].

Grayscale normalization improves the robustness of radiomics features [32,33]. As
with T2, we applied z-score normalization to the post contrast enhanced MRI during
the preprocessing stage. All processes, including voxel resampling and signal intensity
normalization, were performed using the functions implemented in pyradiomics. As the
width and height of the interpolated MRI slices ranged from 224 to 230 after voxel size
resampling, we cropped larger ones slightly to obtain slices of equal resolution. After data
preprocessing, each MRI sequence has 30 slices of resolution (224 x 224).

T2 Sequence CE Sequence

[

PCR

&:

Mon
-pCR

Figure 1. Three types of MRI images {T2, DWI/ADC, and CE} of a pCR patient (upper) and a
non-pCR one (lower). Yellow masks are rectal tumor areas segmented and validated by radiologists.

3.2. Suggested Method
3.2.1. Representing Multiple MRI Sequences as MSFI Embedding

Figure 2 depicts our pCR prediction process used to transform given multi-parametric
MRI sequences into embedding. To extract features of tumor volumes, we highlight tumor
areas in each MRI image and select the MRI images related to the major tumor volume as
follows. First, we highlight the tumor area in each MRI image by filling the region outside
its tumor mask with zeros. Then, to select contiguous slices capturing tumor volume, we
find the slice with the largest tumor area and pick five and six slices above and below the
slice, respectively, in each MRI sequence.
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If the tumor size exceeded 12 slices, a total of 12 slices were used above and below
the central section with the largest tumor area. The reason is that after nCRT, the viable
portion of the tumor is mainly found in the central region of the tumor, and the border
region of the tumor has a very small volume or is observed as a streak-like fibrosis, making
it difficult to represent the characteristics of the entire tumor volume.

In our study, the number of patients whose tumor size exceeded 12 slices is relatively
small (22/592 in the training set and 17/320 in the test set). Lastly, since the input resolution
of the 3D-CNN used for transfer learning is 112 x 112, we center-cropped each slice around
the tumor area accordingly.

224
30 slices\
[ Data Preprocessing (VOI) Selection ]
| Mapping T2, ADC. CE into RGB Color Channel ]
i h ! - ‘
12
12 slice::.\. . . [
12
(T2, ADC, CE)
[ 3D-CNN Classifier ]
pCR prediction MSFI embedding

Figure 2. The pCR prediction process using the 3D-CNN classifier from which we extract MSFI
embedding, given {T2, DWI/ADC, and CE} MRI sequences.

To alleviate data scarcity and avoid overfitting, we apply data augmentation tech-
niques and transfer learning. We use data augmentation techniques, such as 3D-rotation
and 3D-shift [34] during the training stage to increase the size and variety of the training
set. We exclude some image augmentation techniques, such as adding Gaussian noise and
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applying a median filter, because they often distort the texture of tumor areas, which is an
essential characteristic of tumors for pCR prediction [35].

In addition to extracting the diverse features from each MRI sequence, we aim to
examine novel features that can be found only by considering multiple MRI sequences
jointly. For this, we transform the given three MRI sequences, {T2, DWI/ADC, and CE},
into an MSFI. The MSFI is a sequence of slices containing 3D values (v1, v, v3), where v,
v, and v3 are from T2, DWI/ADC, and CE, respectively. After encapsulating three MRI
sequences into the MSFI, we use it as an input for deep learning to represent it as MSFI
embedding.

To extract the volumetric features of tumors, we use a 3D-CNN model that is known
for its high classification performance on video data. Unlike 2D-CNN, 3D convolutional
filters can identify patterns that appear across multiple image slices. As there are many
3D convolutional filters to tune in a deep 3D-CNN model, we perform transfer learning to
improve generalization ability [36,37], instead of training randomly initialized 3D filters.

For this, we used 3D-ResNet [38] pre-trained on Kinetic [39], a large-scale, high-
quality video dataset that contains 400 classes with at least 400 videos per class and is
considered as a de facto standard for the research on 3D image processing. 3D-ResNet is
known to distinguish 3D instances very effectively by reducing the gradient-vanishing
effect through gradient flow. This means that its pre-trained 3D filters can already extract
useful volumetric features from 3D instances. Therefore, by fine-tuning the pre-trained
filters in 3D-ResNet, we can construct more effective 3D filters for MSFI embedding
extraction. Figure 3 shows the architecture of 3D-ResNet, the 3D-CNN that we use for
MSEFI embedding extraction. We obtain MSFI embedding from the fully connected layer of
the trained 3D-ResNet.

(T2, ADC, CE)

nz2
12 sllces\. I
—

112 kernel x kernel x kernel, the number of filters
kernel x kernel x kernel, the number of filters

[3x7x764]
stride: 1x2x2

3D Convolution Block Convl

o ; Conv2 [3%3x3,64

3D Convolution Block 3%3%3.64 % 3
3x3x3,128

EY i Conv3 g

D Convolution Block [3 X3%3, 1231 x 4

3D Convolution Block Convd [3x3x 3’256] X6

3%x3x3,256

3D Convolution Block Convb [3 X3x3,5121, o

3x3x3,512

Fully Connected Layer

512 Features

PCR prediction — |
MSFI embedding

Figure 3. Architecture of the 3D-CNN classifier for MSFI embedding extraction.
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3.2.2. Extracting Radiomics Features

Given multi-parametric MRI, we seek to extract another set of features that can capture
different aspects of tumor characteristics than MSFI embedding. Radiomics features have
already demonstrated a high correlation with pCR after nCRT for rectal cancer. Thus,
we merge radiomics features with MSFI embedding to further improve pCR prediction
performance. Using the pyradiomics package [40], we extract radiomics features from
tumor areas in multiple MRI sequences, {T2, DWI/ADC, and CE}.

Figure 4 shows 3740 radiomics features that were extracted from multiple MRI se-
quences, {T2, DWI/ADC, and CE}. From each MRI sequence, we extracted 2D /3D ra-
diomics features on the tumor shape, voxel intensity histogram, texture of tumor areas, such
as the gray-level co-occurrence matrix (GLCM), gray-level run-length matrix (GLRLM),
gray-level size-zone matrix (GLSZM), and gray-level dependence matrix (GLDM). In addi-
tion, we applied filters, such as log and wavelet transform, to each MRI sequence to extract
higher-order statistical features on rectal tumor areas [41]. To extract more diverse textual
features from T2, we applied a Gabor filter with four angles, {0°, 45°, 90°, and 135° }.

’ ADC Sequence , | CE Sequence

,'.

+
s 4

I

1]

sy

30 slice;\. —

Radiomics Feature Extractor
v v J
T2 Features(1100) + Gabor(440) DWI/ADC Features(1100) CE Features(1100)

Figure 4. Radiomics feature extraction.

3.2.3. Predicting pCR using Both MSFI Embedding and Radiomics Features

For effective pCR prediction, we seek to use diverse characteristics of tumor areas
by considering both MSFI embedding and radiomics features. Radiomics features are
extracted through mathematical analysis of each MRI sequence and mainly capture shapes,
voxel intensity histograms, and the texture of tumor areas. MSFI embedding is generated
through deep learning of multi-parametric MRI and consists of novel volumetric features
highly related to pCR prediction.

Figure 5 presents an overview of our pCR prediction method. Given three MRI
sequences, {T2, DWI/ADC, and CE}, we extracted 512-dimensional MSFI embedding and
3740 radiomics features, as shown in Figures 2 and 4. Then, we obtained a novel multi-
parametric MRI embedding, a compact and effective representation of multi-parametric
MRI, by combining MSFI embedding and radiomics features and compressing them into
150 features using kernel principal component analysis (PCA) [42].
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Radiomics features

3740 Features

Radiomics
Feature Exiraction

Multi-parametric MRI embedding

MSFI Embadding Dimension Reduction PCR Classifier pCR prediction
Exftraction

150 Features

CE Sequerce | 512 Features

MSFI embedding

Figure 5. The overall pCR prediction method using both radiomics features and MSFI embedding,
given three MRI sequences.

Kernel PCA is a dimension reduction method that modifies linear PCA [43] by replac-
ing the linear kernel with a Gaussian kernel. Thus, non-linear transformation is performed
so that feature vectors can be represented in a linearly separable feature space. We use
this multi-parametric MRI embedding as input to a random forest classifier for pCR pre-
diction [44]. We build our pCR classifier based on the random forest model, because
random forest classifiers on radiomics features have shown high performance in predicting
PCR after nCRT for rectal cancer—sometimes higher than qualitative MRI assessment by
radiologists [8,45].

Note that a deep neural network classifier is likely to overfit when trained with multi-
parametric MRI embeddings, because they are no longer images; thus, data augmentation
or transfer learning cannot be applied.

4. Experiments

We evaluate the pCR prediction performance of the proposed method through the ex-
periments listed as follows. Specifically, we investigate the impact of input MRI sequences,
analyze the pCR prediction performance of the proposed method and compare it with
existing methods.

1. Comparison of five types of input MRI sequences:

@@ {12}
(b)  {DWI/ADC}
(©  {CE}

(d)  {T2, DWI/ADC} and
(e) {T2, DWI/ADC, and CE} (ours).

2. Comparison of the proposed method with its variants that differ in two factors, MRI
feature vector extraction and pCR classification:

e  Three MRI feature vectors: radiomics features, MSFI embedding, and multi-
parametric MRI embedding (ours).
®  Six classification models: logistic regression, xgboost, lightgbm, random forest
(ours), MLP, and ensemble of the five classifiers.
3.  Comparative evaluation of the proposed method with four competing baselines:
(a) SVM classifier on radiomics features [46],
(b) RF classifier on radiomics features [8],

(c) MLP classifier on radiomics features [25], and
(d) 3D-CNN classifier on MRI images [18].
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To evaluate the overall pCR prediction performance, we use AUC (Area Under the
ROC Curve), because it reflects the sensitivity and specificity of a classifier at the same time.

AUC(f) = LtyeDy Dlﬁggﬁ%:i) < f(h)]‘ )

For a classifier f, we estimate its AUC based on the Wilcoxon-Mann-Whitney statis-
tic [47], as shown in Equation (1). Dy and D; are the set of non-pCR patients and the set
of pCR patients, respectively, and 1[f(ty) < f(t1)] is an indicator function. We use an
independent test cohort to measure the AUC of each classifier.

4.1. Experimental Setup

To generate MSFI embedding, we set the hyperparameters of 3D-ResNet as follows.
The batch size was 2, and the number of training epochs was set to 100. We used the Radam
optimizer [48] to alleviate the local minima convergence problem that may occur when an
adaptive learning rate is used. Initial learning rate was 103, and warmup-proportion was
0.1. We used 512 as the dimension of MSFI embedding throughout the experiments.

The hyperparameters of existing pCR classifiers were set as follows. For tree-based
classifiers, such as xgboost, lightgbm, and random forest, the number of decision trees was
set to 1000 to obtain stable pCR prediction results. For a logistic regression classifier, we
selected features with L2 regularization. For an MLP-based classifier, a two-layer MLP was
used with ReLU as an activation function. We trained it using the Adam optimizer [49].
An ensemble classifier performs soft voting by averaging the pCR probabilities predicted
by five classifiers: logistic regression, xgboost, lightgbm, random forest, and MLP.

We examine three different dimension reduction methods in {No dimension reduction,
PCA, and Kernel PCA} and compare the AUC of an ensemble classifier.

4.2. Impact of Input MRI Sequences

To demonstrate the impact of the input MRI sequences on the pCR prediction perfor-
mance, we compare the pCR prediction performance of five types of input MRI sequences in
Table 2: {T2}, {DWI/ADC}, {CE}, {T2, DWI/ADC}, {T2, DWI/ADC, and CE}. Note that
PCR prediction performance is affected not only by the input MRI sequences but also by the
feature vector extraction method and the pCR classification model. For a fair comparison,
we use both radiomics features and MSFI embedding extracted by the same architecture,
3D-ResNet, and apply different dimension reduction methods, as in {no dimension re-
duction, PCA, and Kernel PCA}. We report the AUC of an ensemble classifier because it
corresponds to the average performance of five different pCR classification models.

Table 2. Comparison of pCR prediction performance of five types of input MRI sequences. For a fair
comparison, we extract both MSFI embedding and radiomics features from input MRI sequences,
apply three different dimension reduction methods in {No dimension reduction, PCA, and Kernel
PCA} and report the AUC of an ensemble classifier.

Input MRI Sequences No Dimension Reduction PCA Kernel PCA
{12} 0.765 0.791 0.787
{DWI/ADC} 0.721 0.801 0.791
{CE} 0.716 0.800 0.801
{T2, DWI/ADC} 0.764 0.793 0.800
{T2, DWI/ADC, and CE} 0.811 0.804 0.819

Table 2 shows that the AUC of pCR prediction using three MRI sequences, {T2,
DWI/ADC, and CE}, as the input is higher than that using one of these MRI sequences
separately, regardless of the dimension reduction method. In particular, while T2 is widely
known to be the most effective in evaluating rectal cancer, pCR prediction performance can
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be further improved when DWI/ADC and CE are used simultaneously. When comparing
{T2, DWI/ADC} and {T2, DWI/ADC, and CE}, we observe that pCR prediction using
three input MRI sequences, {T2, DWI/ADC, and CE}, outperforms {T2, DWI/ADC}.

Among the three possible pairs of MRI sequences from {T2, DWI/ADC, and CE}, we
include only {T2, DWI/ADC} in Table 2, because using T2 and DWI together is already
known to be highly effective in evaluating rectal cancer. Radiologists achieve higher pCR
prediction accuracy by using both T2 and DWI than by using T2 alone [21] and simple
classification methods, such as logistic regression and random forest on radiomics features
from T2 and DWI, outperform MRI assessment by radiologists [8].

4.3. Analysis of Our pCR Prediction Model

We evaluated the effectiveness of the proposed pCR prediction method by examining
two major factors: MRI feature vector extraction and pCR classification. Recall that for
effective pCR classification, we suggest using multi-parametric MRI embedding as an input
to a random forest classifier.

In the proposed pCR prediction method, we generate multi-parametric MRI embed-
ding by concatenating MSFI embedding and radiomics features extracted from given MRI
sequences, {T2, DWI/ADC, and CE}, and applying kernel PCA. To check the impact of
multi-parametric MRI embedding, we apply nine different input vectors to a random
forest classifier by combining a feature vector of {radiomics features, MSFI embedding,
concatenation of both} and a dimension reduction method of {No dimension reduction,
PCA, and Kernel PCA}.

Table 3 presents the pCR prediction performance of random forest classifiers using
nine input vectors. We observe, among various input vectors, that with the input vector
obtained by concatenating MSFI embedding and radiomics features and then applying
kernel PCA, that is, our multi-parametric MRI embedding, random forest classifier achieved
the highest AUC of 0.837.

Table 3. Comparison of pCR prediction performance of various combinations of feature vectors and
dimension reduction methods. Three types of feature vectors, {radiomics features, MSFI embedding,
concatenation of both}, and three dimension reduction methods, {No dimension reduction, PCA,
and Kernel PCA}, are considered. The pCR classification model is fixed to a random forest.

Feature Vector No Dimension Reduction PCA Kernel PCA
MSFI embedding 0.776 0.739 0.732
Radiomics features 0.811 0.754 0.819
Concatenation of both 0.796 0.746 0.837

From this, we observe that MSFI embedding extracts novel volumetric features that
cannot be found in the pool of radiomics features. At the same time, radiomics features
explain some essential characteristics of rectal cancer that MSFI embedding cannot repre-
sent. Thus, multi-parametric MRI embedding succeeds in capturing more diverse features
from the given MRI sequences. We also observe that kernel PCA can extract discriminative
features for pCR prediction from MSFI embedding and radiomics features.

Then, we compare the effectiveness of MSFI embedding and radiomics features. In
Table 3, MSFI embedding shows a lower AUC than the radiomics features when used
as the input to the random forest classifier. However, while we use 3D-ResNet only for
MSFI embedding extraction, it should be noted that its pCR classification performance has
already reached 0.807 just as (B4) in Section 4.4. Recall that the random forest classifier on
radiomics features is known to be highly effective in pCR prediction for rectal cancer [8].

Given three MRI sequences, {T2, DWI/ADC, and CE}, we can obtain multi-parametric
MRI embedding by concatenating MSFI embedding and radiomics features and performing
kernel PCA. Through this novel embedding, we aim to show the effectiveness of our
random forest classifier by comparing it with various classification models.
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Table 4 presents the AUC of six pCR classifiers built on multi-parametric MRI embed-
ding: logistic regression, xgboost, lightgbm, random forest, MLP, and an ensemb]e of all
the classifiers. The random forest classifier outperforms all the other classifiers, including
the ensemble, demonstrating an AUC of 0.837.

Table 4. Comparison of pCR prediction performance of various classifiers built on multi-parametric
MRI embedding.

Logistic Xgboost  Lightgbm Random MLP  Ensemble
Regression

Classifier Forest
AUC 0.804 0.783 0.792 0.837 0.798 0.819

4.4. Comparison with Existing pCR Prediction Methods

To demonstrate the superiority of our method in predicting pCR after nCRT for rectal
cancer, we compared it with four competing baselines: (B1) SVM classifier on radiomics
features [46]; (B2) random forest classifier on radiomics features [8]; (B3) MLP classifier on
radiomics features [25]; and (B4) 3D-CNN classifier on MRI images [18].

For a fair comparison, we re-implemented all the baselines to re-train them with our
large training set containing three MRI sequences, {T2, DWI/ADC, and CE}, of 592 rectal
cancer patients. As input to the three baselines, (B1)-(B3), we used 3740 radiomics features
extracted as shown in Figure 4. We also re-implemented the 3D-CNN classifier [18], (B4),
so that it could accept three MRI sequences, instead of CT/PET images, of rectal cancer as
the input.

We compared the proposed method with four baselines by evaluating the overall pCR
prediction performance using four measures: AUC, Fl-score, specificity, and sensitivity.
Specificity and sensitivity correspond to the true negative rate and true positive rate,
respectively, and the F1-score is their harmonic mean.

In Table 5, we observe that the proposed method outperformed all competing baselines
in terms of the AUC and Fl-score. (B2) performed the best among (B1)—~(B3) built on
radiomics features. However, while the sensitivity of the proposed method was slightly
lower, the overall performance of the proposed method was better than that of (B2).
This implies that MSFI embedding successfully represents novel features of tumors that
radiomics features cannot capture. Compared with (B4), all four measures of the proposed
method were higher, which indicates that radiomics features contribute to the improved
performance of the proposed method.

Table 5. Comparison of pCR prediction performance with competing baselines.

PCR Prediction Method AUC F1-Score Specificity Sensitivity
(B1) SVM classifier (input = radiomics features) [46]  0.799 0.53 0.45 0.67
(B2) RF classifier (input = radiomics features) [8] 0.811 0.63 0.56 0.74
(B3) MLP classifier (input = radiomics features) [25] 0.763 0.54 0.49 0.62
(B4) 3D-CNN classifier (input = MRI images) [18]  0.807 0.63 0.59 0.68
Proposed Method 0.837 0.65 0.60 0.72

5. Discussion

This is the first study that fully exploits both radiomics features and a deep embedding
network of multi-parametric MRI to predict pCR after nCRT in patients with locally
advanced rectal cancer. We demonstrated the superiority of the proposed method by
analyzing its pCR prediction performance and comparing it with competing baselines
based on a large cohort of 912 rectal cancer patients.

Before analyzing the pCR prediction performance of our method, we showed that the
average pCR prediction performance was the highest (AUC = 0.819) when using various
features from the entire multi-parametric MRI (Table 2). Given multi-parametric MRI,
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we generated radiomics features and MSFI embedding and merged them through kernel
PCA to obtain multi-parametric MRI embedding. The multi-parametric MRI embedding
exhibited higher pCR prediction performance than radiomics features or MSFI embedding
(Table 3).

This means that some tumor characteristics that are highly relevant to pCR predic-
tion are captured by either radiomics features or MSFI embedding but not both. It also
indicates that MSFI embedding can represent novel volumetric features of tumors in multi-
parametric MRI. Given multi-parametric MRI embedding, we demonstrated that a random
forest classifier was the most effective pCR prediction model (Table 4), as suggested in our
method. Then, we confirmed that our method outperformed four competing baselines in
terms of overall prediction performance (AUC = 0.837 and F1-score = 0.65) for pCR after
nCRT for locally advanced rectal cancer (Table 5).

The 3740 radiomics features and 512 features in MSFI embedding are not equally im-
portant to the pCR prediction. Using kernel PCA, we performed non-linear dimensionality
reduction over the vector of 4252 features to obtain a low-dimensional embedding that
maximizes the variance. In our experiments, we selected 150 as the optimal number of
components through hyperparameter tuning. Instead of tuning the output dimension
manually, advanced feature selection techniques [50] that automatically determine the
optimal number of features can be used. To explore non-linear combinations of features,
we can also consider performing kernel PCA by fixing the variance threshold instead of
specifying the number of components.

Our MRI data is heterogeneous as it was acquired from different patients using MRI
scanners of various vendors, as stated in Appendix A. Due to the lack of a standardized
signal intensity scale, heterogeneous MRI images are not directly comparable [31]. To
deal with such heterogeneity, we used pyradiomics, the most widely used tool for reliable
radiomics feature extraction. During preprocessing, we applied voxel size resampling and
signal intensity normalization implemented in pyradiomics because these two techniques
have been known to improve the robustness of radiomics features [32,33]. We used the
preprocessed MRI data as an input to 3D-CNN for MSFI embedding to improve the
robustness of MSFI embedding. We expect that we can further improve the pCR prediction
performance by applying semi-supervised training techniques for heterogeneous medical
image data [51].

Segmentation variability also affects the pCR prediction performance of the proposed
method. As we performed semi-automatic VOI segmentation using 3D Slicer tool that
requires manual adjustment, inter- and intra-observer variability still needs to be resolved.
The proposed method uses features extracted from segmented VOI of multi-parametric
MRI, and thus the pCR prediction performance will gradually drop as segmentation
variability increases. While there is a lack of reliable and validated fully automatic VOI
segmentation tools for MRI [52], there have been efforts to develop automated VOI seg-
mentation tools based on deep learning [53-55]. By using automatic VOI segmentation, we
can fully automate the proposed method and perform more reliable and consistent pCR
prediction.

This study has clinical significance in that it increases the applicability of a new
treatment method, such as “wait-and-see” without surgery [56,57] by achieving a higher
prediction performance of pCR after nCRT based on a large number of patients. For the past
decade, the two-step process of performing nCRT followed by surgery has been considered
as the standard treatment. pCR is often achieved after nCRT only, although the surgery
was unavoidable even in the case of pCR. This is because we can determine the presence or
absence of pCR only after performing surgery.

Rectal cancer surgery often causes anal function loss and sexual dysfunction. Although
these are not directly related to survival, they severely reduce the quality of life. If we
can predict pCR after nCRT before surgery with higher accuracy than existing methods
as shown in Table 5, this means that more patients can avoid surgery in the case of pCR.
Therefore, it is important to predict pCR more accurately and reliably before surgery.
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As the wait-and-see method is not included in the internationally standardized medi-
cal guidelines, it is currently being conducted only as a clinical study by some professors at
our hospital and is not a routine process. Therefore, it is not mandatory for radiologists to
provide information on the prediction of pCR. More studies on reliable pre-operative pCR
prediction are necessary to establish clinical guidelines for pre-operative pCR prediction,
and this study will contribute to it. The inability to compare the results of this study with
clinical practice is a limitation of this study, and further research is needed.

6. Conclusions

Given pre-operative multiple MRI sequences, {T2, DWI/ADC, and CE}, of rectal
cancer after nCRT, we proposed an effective pCR prediction method by building a random
forest classifier through novel multi-parametric MRI embedding. We obtained multi-
parametric MRI embedding by MSFI embedding and incorporating it with radiomics
features. We extracted MSFI embedding using 3D-ResNet to capture novel volumetric
features of tumors by considering multiple MRI sequences jointly.

Through extensive experiments, we demonstrated the superiority of the proposed
method by demonstrating the effectiveness of (1) multiple input MRI sequences, (2) multi-
parametric MRI embedding, and (3) the random forest pCR classifier. Then, we compared
the proposed method with four competing baselines and showed that our method achieved
the highest overall pCR prediction performance. Our experimental results are robust in
that we used a large dataset of 912 patients” MRI sequences, which is much larger than that
of any existing work.
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Appendix A. MRI Protocol

MRI examinations [58] were performed with a 1.5-T scanner (Achieva, Philips Health-
care) or a 3.0-T MR scanner (Magnetom Tim Tio, Siemens Healthineers, Germany; or Ingenia,
Philips Medical Systems, the Netherlands). For bowel preparation, 20 mg of scopolamine
butylbromide (Buscopan; Boehringer Ingelheim) was injected intramuscularly, and sonogra-
phy transmission gel (50-100 mL) was administered in the rectal lumen for the mass at the
lower or middle rectum before MRI scanning.

The MRI sequences included high-resolution T2-weighted images using a respiratory-
triggered fast spin echo (axial, sagittal, and oblique axial and coronal orientations), axial
T1-weighted images, axial diffusion-weighted images using single-shot echo-planar imaging
(the highest b-values 1000 s/mm?), as well as gadolinium contrast enhanced T1 weighted
images using a three-dimensional gradient-echo sequence. The oblique T2-weighted image
sequence was obtained orthogonal or parallel to the long axis of the tumor. An intravenous
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bolus of gadobutrol (Gadovist; Bayer AG, Berlin, German: 0.1 mL/kg of body weight) or
gadopentetate dimeglumine (Magnevist; Bayer Healthcare, Berlin, Germany: 0.2 mL/kg of
body weight) was injected at a rate of 2.0 mL/s. The details on MRI sequences are summarized
in Table A1.

The effectiveness of T2 and ADC in staging/restaging rectal cancer has been widely
accepted. Regarding DCE, however, a consensus meeting of 14 abdominal imaging experts
from the European Society of Gastrointestinal and Abdominal Radiology (ESGAR) recom-
mended that, although some promising data are available, it should currently be considered
as a research tool and not be adopted routinely [59]. Therefore, we acquired contrast enhanced
T1 weighted gradient echo images but not DCE.

Table A1. The MRI parameters.

15T 30T
Fast Spin- Diffusion- 3D T1- Fast Spin- Diffusion- 3D T1-
Echo T2- Weighted Weighted Echo T2- Weighted Weighted
Weighted Image Gradient Weighted Image Gradient
Image (T2) (DWI) Echo (CE) Image (T2) (DWD) Echo (CE)
Plane Axial, Sagittal, Axial Axial Axial, Sagittal, Axial Axial
Oblique axial, Oblique axial,
Oblique coro- Oblique coro-
nal nal
Repetition time(ms) 27404200 6900-9100 3.51 3800-5500 9500-12,000 3.51
Echo time(ms) 80 64-90 1.44 80-120 62-95 1.44
Flip angle(degrees) 137 90 90-150 90
B factor(s/mm?) 0, 300, 1000 0, 300, 1000
Field of view(mm) 180 or 240 220 240 180 or 240 220 240
Matrix without inter- 304 128 or 150 240 320448 126 or 153 240
polation
Slice thickness (mm) 3 3 3 3 3 3
Slice gap (mm) 0 0 0 0
Echo train length 16 17 or 35
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