35 research outputs found

    ๊ท ์ผํ•œ ํฌ๊ธฐ์˜ ๋ฏธ์„ธ์ฒ ๋ถ„๊ธฐ๋ฐ˜ ๋‚˜๋…ธ์ž…์ž์˜ T1 ์ž๊ธฐ๊ณต๋ช…์˜์ƒ์กฐ์˜์ œ๋กœ์„œ์˜ ํŠน์„ฑ์— ๊ด€ํ•œ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์˜๊ณผ๋Œ€ํ•™ ์˜ํ•™๊ณผ,2020. 2. ์ดํ™œ.์—ฐ๊ตฌ๋ฐฐ๊ฒฝ ๋ฐ ๋ชฉ์ : ์ž๊ธฐ๊ณต๋ช…์˜์ƒ์กฐ์˜์ œ๋Š” ์ž๊ธฐ์žฅ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์— ๋”ฐ๋ผ ์ƒ์ž์„ฑ, ์ดˆ์ƒ์ž์„ฑ ์ œ์ œ๋กœ ๊ตฌ๋ถ„์ด ๋˜๋ฉฐ, ํ˜„์žฌ ๊ฐ€์žฅ ๋„๋ฆฌ ์‚ฌ์šฉ๋˜๋Š” ์กฐ์˜์ œ๋Š” ๊ฐ€๋Œ๋ฆฌ๋‹ˆ์›€์„ ์ด์šฉํ•œ ์ƒ์ž์„ฑ ์กฐ์˜์ œ์ด๋‹ค. ๊ฐ€๋Œ๋ฆฌ๋‹ˆ์›€์€ ์œ ๋ฆฌ์ด์˜จ์˜ ํ˜•ํƒœ์—์„œ ๋…์„ฑ์ด ๋งค์šฐ ๋†’์•„์„œ ๊ฐ€๋Œ๋ฆฌ๋‹ˆ์›€-ํ‚ฌ๋ ˆ์ดํŠธ์˜ ํ˜•ํƒœ๋กœ ์‚ฌ์šฉ์ด ๋˜๊ณ  ์žˆ๋‹ค. ๊ฐ€๋Œ๋ฆฌ๋‹ˆ์›€ ์กฐ์˜์ œ์˜ ์ฒด๋‚ด๋ฐ˜๊ฐ๊ธฐ๋Š” ์ •์ƒ์ธ์—์„œ ์•ฝ 90๋ถ„์ด์ง€๋งŒ ๋งŒ์„ฑ์‹ ๋ถ€์ „ ํ™˜์ž์—์„œ๋Š” 30-120์‹œ๊ฐ„๊นŒ์ง€ ์—ฐ์žฅ๋˜์–ด์žˆ์–ด, ์ฒด๋‚ด ์—ฌ๋Ÿฌ ์กฐ์ง์—์„œ ์žฅ๊ธฐ๊ฐ„ ์ฒด๋ฅ˜ํ•˜๋ฉด์„œ ๊ฐ€๋Œ๋ฆฌ๋‹ˆ์›€ ์œ ๋ฆฌ์ด์˜จ์ด ๋ฐฐ์ถœ๋˜์–ด ์ „์‹ ์„ฌ์œ ํ™”๋ฅผ ์ผ์œผํ‚ฌ ์ˆ˜ ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฐฐ๊ฒฝ์—์„œ, ๊ฐ€๋Œ๋ฆฌ๋‹ˆ์›€ ๊ธฐ๋ฐ˜์˜ ์ž๊ธฐ๊ณต๋ช…์˜์ƒ์กฐ์˜์ œ๋Š” ์‹ ์›์„ฑ ์ „์‹ ์„ฌ์œ ํ™”์˜ ์›์ธ ๋ฌผ์งˆ๋กœ ๊ฐ„์ฃผ๋˜์–ด ์™”๋‹ค. ์ตœ๊ทผ ๊ฑฐ๋Œ€๊ณ ๋ฆฌ๋ฅผ ๊ฐ€์ง„ ๊ฐ€๋Œ๋ฆฌ๋‹ˆ์›€ ๊ธฐ๋ฐ˜์˜ ์ž๊ธฐ๊ณต๋ช…์˜์ƒ์กฐ์˜์ œ๋ฅผ ์‚ฌ์šฉํ•˜๊ฒŒ ๋จ์— ๋”ฐ๋ผ ์‹ ์›์„ฑ ์ „์‹ ์„ฌ์œ ํ™”์˜ ๋ฐœ์ƒ๋นˆ๋„๊ฐ€ ์ƒ๋‹นํžˆ ๊ฐ์†Œํ•˜์˜€์ง€๋งŒ, ๊ณ ์œ„ํ—˜ ํ™˜์ž์—์„œ์˜ ์‚ฌ์šฉ ์ž์ œ ๋ฐ ๊ณผ๋‹คํ•œ ์šฉ๋Ÿ‰์˜ ํˆฌ์—ฌ๋ฅผ ์ œํ•œํ•œ ๊ฒƒ๋„ ์ฃผ์š”ํ•œ ์š”์ธ์ด๋ผ๊ณ  ํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ฐ€๋Œ๋ฆฌ๋‹ˆ์›€ ๊ธฐ๋ฐ˜์˜ ์ž๊ธฐ๊ณต๋ช…์˜์ƒ์กฐ์˜์ œ์™€๋Š” ๋‹ฌ๋ฆฌ ์ดˆ์ƒ์ž์„ฑ ์ œ์ œ๋Š” ๋‹ค์–‘ํ•œ ํฌ๊ธฐ์˜ ์‚ฐํ™”์ฒ ์ž…์ž๋ฅผ ์ด์šฉํ•˜๋Š”๋ฐ, ๋งŒ์„ฑ์‹ ๋ถ€์ „ ํ™˜์ž์—์„œ ๊ฒฝ์ •๋งฅํˆฌ์—ฌ์— ๋Œ€ํ•œ ์•ˆ์ „์„ฑ์ด ํ™•๋ฆฝ๋˜์–ด์žˆ์œผ๋ฉฐ, ์ด ์ค‘์—์„œ๋„ ์ตœ๊ทผ 50 nm์ดํ•˜์˜ ํฌ๊ธฐ๋ฅผ ๊ฐ€์ง€๋Š” ์ œ์ œ๊ฐ€ ๊ฐœ๋ฐœ๋˜์–ด ํ˜ˆ์•ก์ €๋ฅ˜ ์ž๊ธฐ๊ณต๋ช…์˜์ƒ์กฐ์˜์ œ๋กœ์„œ์˜ ์ด์šฉ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๊ฐ€ ์ง„ํ–‰๋˜๊ณ  ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์˜ ๋ชฉ์ ์€ ์ƒˆ๋กญ๊ฒŒ ํ•ฉ์„ฑ๋œ 3 โ€“ 4 nm ํฌ๊ธฐ์˜ ์ฒ ๋ถ„ํ•ต์„ ๊ฐ€์ง„ ๊ท ์ผํ•œ ๋ฏธ์„ธ์ฒ ๋ถ„๊ธฐ๋ฐ˜ ๋‚˜๋…ธ์ž…์ž์˜ ์ž๊ธฐ๊ณต๋ช…ํŠน์„ฑ ๋ฐ ์ž๊ธฐ๊ณต๋ช…ํ˜ˆ๊ด€์กฐ์˜์ˆ  ์กฐ์˜์ œ๋กœ์„œ์˜ ์ ํ•ฉ์„ฑ์„ ๋ชจํ˜•์‹คํ—˜๊ณผ ๋™๋ฌผ์‹คํ—˜์„ ํ†ตํ•˜์—ฌ ํ‰๊ฐ€ํ•˜๋Š” ๋ฐ ์žˆ๋‹ค. ๋ฐฉ๋ฒ•: 7์ข…์˜ ์ฒ ๋ถ„๊ธฐ๋ฐ˜ ๋‚˜๋…ธ์ž…์ž (KEG1 โ€“ 7)๋ฅผ ์ด์šฉํ•˜์—ฌ 1.5T, 3T, ๋ฐ 4.7T ์ž๊ธฐ๊ณต๋ช…์˜์ƒ์žฅ์น˜์—์„œ ๋ชจํ˜• ๋ฐ ๋™๋ฌผ์‹คํ—˜์„ ์‹œํ–‰ํ•˜์˜€๋‹ค. ๊ฐ ๋‚˜๋…ธ์ž…์ž๋‹น ์ˆœ์ฐจ์ ์œผ๋กœ ํฌ์„๋œ ์‹œ๋ฃŒ๋ฅผ ์ œ์ž‘ํ•œ ํ›„, inversion-recovery turbo spin-echo (IR-TSE), multiple echo-spin echo (ME-SE), multislice multiecho (MSME) ์‹œํ€€์Šค๋ฅผ ์ด์šฉํ•˜์—ฌ ์ž๊ธฐ๊ณต๋ช…ํŠน์„ฑ์„ ๋ถ„์„ํ•˜์˜€๋‹ค. ๊ฒฝ์‚ฌ์—์ฝ” ์‹œํ€€์Šค๋ฅผ ์ด์šฉํ•˜์—ฌ ๋ชจํ˜•์‹คํ—˜์—์„œ ๋‚ฎ์€ relaxivity ratio (r2/r1)๋ฅผ ๋ณด์ธ 2์ข…์˜ ์„ ํƒ๋œ ์ฒ ๋ถ„๊ธฐ๋ฐ˜ ๋‚˜๋…ธ์ž…์ž (KEG1, KEG5)์˜ ๋‹ค์–‘ํ•œ ์ˆ™์ž„๊ฐ ๋ฐ ๋†๋„์—์„œ์˜ ์ž๊ธฐ๊ณต๋ช…์‹ ํ˜ธ๊ฐ•๋„ ๋ณ€ํ™”๋ฅผ ํ‰๊ฐ€ํ•˜์˜€๋‹ค. ๋ชจํ˜•์‹คํ—˜์—์„œ ๋‚ฎ์€ relaxivity ratio (r2/r1)๋ฅผ ๋ณด์ธ 3์ข…์˜ ์„ ํƒ๋œ ์ฒ ๋ถ„๊ธฐ๋ฐ˜ ๋‚˜๋…ธ์ž…์ž (KEG1, KEG3, KEG5)๋ฅผ ์ด์šฉํ•˜์—ฌ, ์ด 8๋งˆ๋ฆฌ์˜ ๋ชธ๋ฌด๊ฒŒ 3kg์˜ ๊ฐ€ํ† ๋ฅผ ๋Œ€์ƒ์œผ๋กœ ์ฒด๋‚ด ์•ฝ๋™ํ•™์  ํŠน์„ฑ ํ‰๊ฐ€ ๋ฐ ์ฒด๋‚ด๊ต์ฐจ์‹œํ—˜์„ ์‹œํ–‰ํ•˜์˜€๋‹ค. ์•ฝ๋™ํ•™์  ํŠน์„ฑ ํ‰๊ฐ€๋Š” 1์ข…์˜ ์ฒ ๋ถ„๊ธฐ๋ฐ˜ ๋‚˜๋…ธ์ž…์ž (KEG5)๋ฅผ ์ด์šฉํ•˜์˜€๊ณ , ๊ฐ€ํ† ์— ํˆฌ์—ฌํ•œ ํ›„, ์‹œ๊ฐ„๊ฒฝ๊ณผ์— ๋”ฐ๋ฅธ ํ˜ˆ๊ด€์˜ ์กฐ์˜์ •๋„, ์ฒด๋‚ด ์žฅ๊ธฐ์˜ ์กฐ์˜์ฆ๊ฐ• ์ •๋„, ์ฒด์™ธ๋ฐฐ์ถœ ๋“ฑ์„ ํ‰๊ฐ€ํ•˜์˜€๋‹ค. ์ฒด๋‚ด๊ต์ฐจ์‹œํ—˜์€ 2์ข…์˜ ์ฒ ๋ถ„๊ธฐ๋ฐ˜ ๋‚˜๋…ธ์ž…์ž (KEG1, KEG3)์™€ ๋„ํƒ€๋ ˜์˜ ์›์•ก (KEG1-S, KEG3-S โ€“ 0.093 mmol/kg; DOT-S โ€“ 0.1 mmol/kg) ๋ฐ 1/2 ํฌ์„๋œ ์‹œ๋ฃŒ (KEG1-H, KEG3-H โ€“ 0.047 mmol/kg; DOT-H โ€“ 0.05 mmol/kg)๋ฅผ ์ œ์ž‘ํ•˜์—ฌ ๊ฐ€ํ† ์— ๊ต์ฐจํˆฌ์—ฌํ•œ ํ›„, ์‹œ๊ฐ„๊ฒฝ๊ณผ์— ๋”ฐ๋ฅธ ํ˜ˆ๊ด€์˜ ์กฐ์˜์ฆ๊ฐ• ์ •๋„๋ฅผ ์ธก์ •ํ•˜๊ณ , ์กฐ์˜์ œ ๊ฐ„์˜ ์ฐจ์ด๋ฅผ linear-mixed effects model์„ ์ด์šฉํ•˜์—ฌ ๋ถ„์„ํ•˜์˜€๋‹ค. ๋ชจํ˜•์‹คํ—˜ ๋ฐ ๋™๋ฌผ์‹คํ—˜์—์„œ ์‹œํŒ์ค‘์ธ ์ž๊ธฐ๊ณต๋ช… ์˜์ƒ ์กฐ์˜์ œ์™€ ๋น„๊ต๋ฅผ ์œ„ํ•˜์—ฌ ๋„ํƒ€๋ ˜ (Gd-DOTA)์„ ๋Œ€์กฐ๊ตฐ์œผ๋กœ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ๊ฒฐ๊ณผ: 7์ข…์˜ ์ฒ ๋ถ„๊ธฐ๋ฐ˜ ๋‚˜๋…ธ์ž…์ž๋“ค์˜ relaxivity ratio (r2/r1)๊ฐ€ 1.5T (KEG1, 2.95; KEG2, 6.00; KEG3, 2.44; KEG4, 2.51; KEG5, 1.85; KEG6, 4.37; KEG7, 3.32)์™€ 3T (KEG1, 3.01; KEG2, 5.72; KEG3, 2.68; KEG4, 3.40; KEG5, 3.17; KEG6, 3.76; KEG7, 4.78)์—์„œ ๋ชจ๋‘ 6์ดํ•˜๋กœ ์ธก์ •๋˜์–ด ์ž๊ธฐ๊ณต๋ช…ํ˜ˆ๊ด€์กฐ์˜์ˆ ์— ์ด์šฉ์ด ๊ฐ€๋Šฅํ•˜์˜€๋‹ค. Relaxivity ratio๋Š” ์ž๊ธฐ์žฅ์˜ ์„ธ๊ธฐ๊ฐ€ ์ฆ๊ฐ€ํ• ์ˆ˜๋ก ์ฆ๊ฐ€ํ•˜๋Š” ๊ฒฝํ–ฅ์„ ๋ณด์˜€๋‹ค. ๊ฒฝ์‚ฌ์—์ฝ” ์‹œํ€€์Šค์—์„œ, ์ฒ ๋ถ„๊ธฐ๋ฐ˜ ๋‚˜๋…ธ์ž…์ž์˜ ๋†๋„๊ฐ€ ๊ฐ€์žฅ ๋‚ฎ์„ ๋•Œ์˜ ์ตœ๊ณ  ์‹ ํ˜ธ๊ฐ•๋„๋Š” 1.5T์˜ ๊ฒฝ์šฐ์— 10ยฐ์—์„œ 20ยฐ ์‚ฌ์ด์˜ ์ˆ™์ž„๊ฐ, 3T์˜ ๊ฒฝ์šฐ์— 10ยฐ์—์„œ 15ยฐ ์‚ฌ์ด์˜ ์ˆ™์ž„๊ฐ์—์„œ ๊ฐ๊ฐ ๊ด€์ฐฐ๋˜์—ˆ๋‹ค. ์ฒ ๋ถ„๊ธฐ๋ฐ˜ ๋‚˜๋…ธ์ž…์ž์˜ ๋†๋„๊ฐ€ ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ, ๋” ํฐ ์ˆ™์ž„๊ฐ์—์„œ ์ตœ๊ณ  ์‹ ํ˜ธ๊ฐ•๋„๋ฅผ ๋ณด์ด๋Š” ๊ฒฝํ–ฅ์ด ์žˆ์—ˆ๋‹ค. ์•ฝ๋™ํ•™์  ํŠน์„ฑ ํ‰๊ฐ€์‹œ์— KEG5๋Š” ์ดˆํšŒํ†ต๊ณผ ์˜์ƒ์—์„œ ์ตœ๊ณ  ์ž๊ธฐ๊ณต๋ช…์‹ ํ˜ธ๋ฅผ ๋ณด์ธ ํ›„, 90๋ถ„ ์ง€์—ฐ ์˜์ƒ๊นŒ์ง€ ์ง€์†์ ์ธ ํ˜ˆ๊ด€์˜ ์กฐ์˜์ฆ๊ฐ•์„ ๋ณด์˜€๋‹ค. KEG5 ํˆฌ์—ฌ ํ›„ ์ดˆํšŒํ†ต๊ณผ ์˜์ƒ์—์„œ ์ฒด๋‚ด ์žฅ๊ธฐ๋“ค์€ ๋„ํƒ€๋ ˜๊ณผ ๋น„์Šทํ•œ ์ •๋„์˜ ์กฐ์˜์ฆ๊ฐ•์„ ๋ณด์˜€๋‹ค. 1์ฃผ์ผ ์ง€์—ฐ ์˜์ƒ์—์„œ KEG5๋Š” ๊ฑฐ์˜ ๋ชจ๋‘ ์ฒด์™ธ๋กœ ๋ฐฐ์ถœ๋˜์—ˆ๋‹ค. ์ฒด๋‚ด ๊ต์ฐจ์‹คํ—˜์—์„œ 1/2 ํฌ์„๋œ ์ฒ ๋ถ„๊ธฐ๋ฐ˜ ๋‚˜๋…ธ์ž…์ž๋Š” ํฌ์„์ด ๋˜์ง€ ์•Š์€ ์ฒ ๋ถ„๊ธฐ๋ฐ˜ ๋‚˜๋…ธ์ž…์ž์™€ ๋น„๊ตํ•˜์—ฌ ์œ ์˜ํ•˜๊ฒŒ ๋‚ฎ์€ ์กฐ์˜์ฆ๊ฐ•์‹ ํ˜ธ๋ฅผ ๋ณด์˜€๋‹ค (๋Œ€๋™๋งฅ๊ถ, KEG1-S ๋Œ€ KEG1-H โ€“ difference 70.167, p<0.001 ๋ฐ KEG3-S ๋Œ€ KEG3-H โ€“ difference 118.167, p<0.001; ํ•˜ํ–‰ํ‰๋ถ€๋Œ€๋™๋งฅ, KEG1-S ๋Œ€ KEG1-H โ€“ difference 134.667, p<0.001 ๋ฐ KEG3-S ๋Œ€ KEG3-H โ€“ difference 131.333, p<0.001). ์ดˆํšŒํ†ต๊ณผ ์˜์ƒ์—์„œ ์ตœ๊ณ ์‹ ํ˜ธ๊ฐ•๋„๋ฅผ ์ธก์ •ํ•˜์˜€์„ ๋•Œ, KEG3-S์™€ DOT-S ๊ฐ„์˜ ์œ ์˜ํ•œ ์ฐจ์ด๋Š” ๋ณด์ด์ง€ ์•Š์•˜๊ณ  (๋Œ€๋™๋งฅ๊ถ, difference -8.167, p=1.000; ํ•˜ํ–‰ํ‰๋ถ€๋Œ€๋™๋งฅ, difference -3.667, p=1.000), KEG3-S์™€ DOT-S๋Š” KEG1-S ๋ณด๋‹ค ๋†’์€ ์‹ ํ˜ธ๊ฐ•๋„๋ฅผ ๋ณด์˜€๋‹ค (๋Œ€๋™๋งฅ๊ถ ๋ฐ ํ•˜ํ–‰ํ‰๋ถ€๋Œ€๋™๋งฅ, p<0.05). 10๋ถ„ ์ง€์—ฐ ์˜์ƒ์—์„œ KEG3-S์™€ KEG1-S ๋ชจ๋‘ DOT-S๋ณด๋‹ค ์œ ์˜ํ•˜๊ฒŒ ๋†’์€ ์‹ ํ˜ธ๊ฐ•๋„๋ฅผ ๋ณด์˜€๋‹ค (๋Œ€๋™๋งฅ๊ถ, KEG3-S ๋Œ€ DOT-S โ€“ difference 150.667, p<0.001 ๋ฐ KEG1-S ๋Œ€ DOT-S โ€“ difference 71.667, p<0.001; ํ•˜ํ–‰ํ‰๋ถ€๋Œ€๋™๋งฅ, KEG3-S ๋Œ€ DOT-S โ€“ difference 202.667, p<0.001 ๋ฐ KEG1-S ๋Œ€ DOT-S โ€“ difference 127.333, p<0.001). ๊ฒฐ๋ก : 1.5T์™€ 3T ์ž๊ธฐ๊ณต๋ช…์˜์ƒ์žฅ์น˜์—์„œ ์‹œํ–‰ํ•œ ๋ชจํ˜•์‹คํ—˜์—์„œ ์ƒˆ๋กญ๊ฒŒ ํ•ฉ์„ฑ๋œ 3 nm ์ดํ•˜์˜ ์ฒ ๋ถ„๊ธฐ๋ฐ˜ ๋‚˜๋…ธ์ž…์ž๋Š” ๋ชจ๋‘ 6์ดํ•˜์˜ relaxivity ratio (r2/r1)๋ฅผ ๋ณด์—ฌ ์šฐ์ˆ˜ํ•œ T1 ๋‹จ์ถ• ํšจ๊ณผ๋ฅผ ๋ณด์˜€๋‹ค. 3T ์ž๊ธฐ๊ณต๋ช…์˜์ƒ์žฅ์น˜์—์„œ ์‹œํ–‰ํ•œ ๋™๋ฌผ์‹คํ—˜์—์„œ 3 nm์˜ ์ฒ ๋ถ„ํ•ต๊ณผ 10 nm์˜ ์ „์ฒด ํฌ๊ธฐ๋ฅผ ๊ฐ€์ง„ ์ฒ ๋ถ„๊ธฐ๋ฐ˜ ๋‚˜๋…ธ์ž…์ž (KEG3)๋Š” ์‹œํŒ์ค‘์ธ T1 ์ž๊ธฐ๊ณต๋ช…์˜์ƒ ์กฐ์˜์ œ (๋„ํƒ€๋ ˜)์™€ ๋น„๊ตํ•˜์—ฌ ์ดˆํšŒํ†ต๊ณผ ์˜์ƒ์—์„œ ์œ ์‚ฌํ•œ ์กฐ์˜์ฆ๊ฐ• ํšจ๊ณผ ๋ฐ ์ง€์—ฐ์˜์ƒ์—์„œ ๋” ์šฐ์ˆ˜ํ•œ ์กฐ์˜์ฆ๊ฐ• ํšจ๊ณผ๋ฅผ ๋ณด์˜€๋‹ค.Background and purpose: The magnetic resonance (MR) contrast agents are generally categorized into the paramagnetic and superparamagnetic agents according to their effects on the magnetic field. Contrast-enhanced magnetic resonance angiography (MRA) is usually performed using gadolinium-based paramagnetic agents. However, owing to the potential toxicity of gadolinium free ion, it must be bound to ligands for its use as contrast agent. Half-life of gadolinium-based contrast agents (GBCAs) is about 90 minutes in patients with normal renal function, but it is prolonged from 30 to 120 hours in patients with chronic renal failure. During this time, dissociated gadolinium ion can compete with calcium ion and cause nephrogenic systemic fibrosis (NSF). Therefore, GBCAs have been considered as the causative agent in NSF. Recently, with the use of macrocyclic GBCA, the incidence of NSF has considerably decreased. However, it was also attributed to the avoidance of GBCA in high risk patients and excessive dose administration. In contrast of GBCAs, iron oxide nanoparticles have no risk of NSF despite of its long half-life in the blood. Recently, small-sized iron nanoparticles with less than 50 nm crystalline iron oxide core were introduced in the contrast-enhanced MRA with the property of its T1 shortening effect. The purpose of this study was to evaluate the MR characteristics and the applicability of the new uniform and extremely small-sized iron oxide nanoparticles (ESIONs) with 3 โ€“ 4 nm iron core in the contrast-enhanced MRA through the phantom and animal experiments. Methods: Using the seven ESIONs (KEG1 โ€“ 7), phantom and animal study were performed with 1.5T, 3T, and 4.7T scanners. With the phantom prepared with wide range dilutions of ESIONs, MR imaging was performed to evaluate the MR characteristics of the ESIONs using inversion-recovery turbo spin-echo (IR-TSE), multiple echo-spin echo (ME-SE), and multislice multiecho (MSME) sequences. In gradient echo sequences, MR imaging was performed with the ESIONs selected by the phantom studies (KEG1, 5) to evaluate the signal intensity of ESIONs in variable flip angles and concentrations. With the ESIONs selected by the phantom studies (KEG1, 3, 5), in vivo kinetics evaluation and in vivo cross-over studies were performed in eight rabbits using three-dimensional fast low angle shot (3D FLASH) sequence. In vivo kinetics evaluation was performed with KEG5, and the contrast enhancement over time, organ enhancement, and elimination from the body were evaluated. The cross-over study was performed with two kinds of ESIONs (KEG1, 3) and Gd-DOTA (Dotaremยฎ) with half-dilution (KEG1-H and KEG3-H: 0.047 mmol/kg; DOT-H: 0.05 mmol/kg) and without dilution (KEG1-S and KEG3-S: 0.093 mmol/kg; DOT-S: 0.1 mmol/kg). The between-group differences of contrast enhancement were assessed by using linear-mixed effects model. Commercially available contrast media (Dotaremยฎ) was used in phantom and animal studies as a control group. Results: All ESIONs were applicable for MRA with the relaxivity ratios (r2/r1) 6 or less than 6 at 1.5T (KEG1, 2.95; KEG2, 6.00; KEG3, 2.44; KEG4, 2.51; KEG5, 1.85; KEG6, 4.37; KEG7, 3.32) and 3T (KEG1, 3.01; KEG2, 5.72; KEG3, 2.68; KEG4, 3.40; KEG5, 3.17; KEG6, 3.76; KEG7, 4.78). The relaxivity ratio (r2/r1) increased with increasing magnetic field strengths. In gradient echo sequence, the peak signal intensities of the ESIONs in lowest concentration were observed in flip angles between 10ยฐ and 20ยฐ at 1.5T, and 10ยฐ and 15ยฐ at 3T, respectively. The peak signal intensities were observed in higher flip angles with an increase of concentration of ESIONs at 1.5T and 3T. In the in vivo kinetics study, KEG5 showed peak signal intensity at the first-pass images and persistent vascular enhancement until 90 minute delayed images. KEG5 showed similar organ enhancement compared to Dotaremยฎ at all regions in the first-pass images. On the one week follow up images, KEG5 was nearly washed out from the vascular structures and the organs. In the in vivo cross-over study, all half-diluted ESIONs showed significantly lower signal intensities than their non-diluted ones at all regions in immediate post-contrast images (KEG1-S vs. KEG1-H โ€“ difference 70.167, p<0.001 and KEG3-S vs. KEG3-H โ€“ difference 118.167, p<0.001 at aortic arch; KEG1-S vs. KEG1-H โ€“ difference 134.667, p<0.001 and KEG3-S vs. KEG3-H โ€“ difference 131.333, p<0.001 at descending thoracic aorta). In terms of peak signal intensities on the first-pass images, there was no statistical difference between KEG3-S and DOT-S (difference -8.167, p=1.000 at aortic arch; difference -3.667, p=1.000 at descending thoracic aorta), but KEG3-S and DOT-S showed significantly higher peak signal intensities than KEG1-S at all regions (p<0.05 at aortic arch and descending thoracic aorta). On the post-contrast 10 minute images, KEG3-S and KEG1-S showed significantly higher signal intensities than DOT-S at all regions (KEG3-S vs. DOT-S โ€“ difference 150.667, p<0.001 and KEG1-S vs. DOT-S โ€“ difference 71.667, p<0.001 at aortic arch; KEG3-S vs. DOT-S โ€“ difference 202.667, p<0.001 and KEG1-S vs. DOT-S โ€“ difference 127.333, p<0.001 at descending thoracic aorta). Conclusions: On the phantom study, the ESIONs with 3 โ€“ 4 nm iron oxide cores showed good T1 shortening effect with the relaxivity ratios (r2/r1) 6 or less than 6 at 1.5T and 3T. On in vivo experiment, the ESION with 3 nm iron core and 10 nm overall size (KEG3) showed comparable performance on the first-pass imaging and superior performance on delayed imaging to the commercially available T1 MR contrast agent (Dotaremยฎ) at 3T.Introduction 1 Materials and methods 3 Results 11 Discussion 35 References 42 ๊ตญ๋ฌธ์ดˆ๋ก 50Docto

    ์Šคํ…ํŠธ ์ˆœ์‘๋„์˜ ๋ฌผ๋ฆฌ์  ํ•ด์„์— ๋Œ€ํ•œ ์—ฐ๊ตฌ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) --์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์˜ํ•™๊ณผ ๋ฐฉ์‚ฌ์„ ๊ณผํ•™,2008.2.Maste
    corecore