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Abstract 

Investigation of the characteristics of new uniform and 

extremely small-sized iron-based nanoparticle as a T1 

contrast agent in magnetic resonance imaging 

Young Ho So 

College of medicine, radiology 

The Graduate School  

Seoul National University 

 

Background and purpose: The magnetic resonance (MR) contrast agents 

are generally categorized into the paramagnetic and superparamagnetic agents 

according to their effects on the magnetic field. Contrast-enhanced magnetic 

resonance angiography (MRA) is usually performed using gadolinium-based 

paramagnetic agents. However, owing to the potential toxicity of gadolinium free 

ion, it must be bound to ligands for its use as contrast agent. Half-life of 

gadolinium-based contrast agents (GBCAs) is about 90 minutes in patients with 

normal renal function, but it is prolonged from 30 to 120 hours in patients with 

chronic renal failure. During this time, dissociated gadolinium ion can compete 

with calcium ion and cause nephrogenic systemic fibrosis (NSF). Therefore, 

GBCAs have been considered as the causative agent in NSF. Recently, with the use 
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of macrocyclic GBCA, the incidence of NSF has considerably decreased. However, 

it was also attributed to the avoidance of GBCA in high risk patients and excessive 

dose administration. In contrast of GBCAs, iron oxide nanoparticles have no risk of 

NSF despite of its long half-life in the blood. Recently, small-sized iron 

nanoparticles with less than 50 nm crystalline iron oxide core were introduced in 

the contrast-enhanced MRA with the property of its T1 shortening effect. The 

purpose of this study was to evaluate the MR characteristics and the applicability 

of the new uniform and extremely small-sized iron oxide nanoparticles (ESIONs) 

with 3 – 4 nm iron core in the contrast-enhanced MRA through the phantom and 

animal experiments. 

Methods: Using the seven ESIONs (KEG1 – 7), phantom and animal study 

were performed with 1.5T, 3T, and 4.7T scanners. With the phantom prepared with 

wide range dilutions of ESIONs, MR imaging was performed to evaluate the MR 

characteristics of the ESIONs using inversion-recovery turbo spin-echo (IR-TSE), 

multiple echo-spin echo (ME-SE), and multislice multiecho (MSME) sequences. In 

gradient echo sequences, MR imaging was performed with the ESIONs selected by 

the phantom studies (KEG1, 5) to evaluate the signal intensity of ESIONs in 

variable flip angles and concentrations. With the ESIONs selected by the phantom 

studies (KEG1, 3, 5), in vivo kinetics evaluation and in vivo cross-over studies 

were performed in eight rabbits using three-dimensional fast low angle shot (3D 

FLASH) sequence. In vivo kinetics evaluation was performed with KEG5, and the 

contrast enhancement over time, organ enhancement, and elimination from the 
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body were evaluated. The cross-over study was performed with two kinds of 

ESIONs (KEG1, 3) and Gd-DOTA (Dotarem
®
) with half-dilution (KEG1-H and 

KEG3-H: 0.047 mmol/kg; DOT-H: 0.05 mmol/kg) and without dilution (KEG1-S 

and KEG3-S: 0.093 mmol/kg; DOT-S: 0.1 mmol/kg). The between-group 

differences of contrast enhancement were assessed by using linear-mixed effects 

model. Commercially available contrast media (Dotarem
®
) was used in phantom 

and animal studies as a control group.  

Results: All ESIONs were applicable for MRA with the relaxivity ratios (r2/r1) 6 

or less than 6 at 1.5T (KEG1, 2.95; KEG2, 6.00; KEG3, 2.44; KEG4, 2.51; KEG5, 

1.85; KEG6, 4.37; KEG7, 3.32) and 3T (KEG1, 3.01; KEG2, 5.72; KEG3, 2.68; 

KEG4, 3.40; KEG5, 3.17; KEG6, 3.76; KEG7, 4.78). The relaxivity ratio (r2/r1) 

increased with increasing magnetic field strengths. In gradient echo sequence, the 

peak signal intensities of the ESIONs in lowest concentration were observed in flip 

angles between 10° and 20° at 1.5T, and 10° and 15° at 3T, respectively. The peak 

signal intensities were observed in higher flip angles with an increase of 

concentration of ESIONs at 1.5T and 3T. In the in vivo kinetics study, KEG5 

showed peak signal intensity at the first-pass images and persistent vascular 

enhancement until 90 minute delayed images. KEG5 showed similar organ 

enhancement compared to Dotarem
®
 at all regions in the first-pass images. On the 

one week follow up images, KEG5 was nearly washed out from the vascular 

structures and the organs. In the in vivo cross-over study, all half-diluted ESIONs 

showed significantly lower signal intensities than their non-diluted ones at all 
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regions in immediate post-contrast images (KEG1-S vs. KEG1-H – difference 

70.167, p<0.001 and KEG3-S vs. KEG3-H – difference 118.167, p<0.001 at aortic 

arch; KEG1-S vs. KEG1-H – difference 134.667, p<0.001 and KEG3-S vs. KEG3-

H – difference 131.333, p<0.001 at descending thoracic aorta). In terms of peak 

signal intensities on the first-pass images, there was no statistical difference 

between KEG3-S and DOT-S (difference -8.167, p=1.000 at aortic arch; difference 

-3.667, p=1.000 at descending thoracic aorta), but KEG3-S and DOT-S showed 

significantly higher peak signal intensities than KEG1-S at all regions (p<0.05 at 

aortic arch and descending thoracic aorta). On the post-contrast 10 minute images, 

KEG3-S and KEG1-S showed significantly higher signal intensities than DOT-S at 

all regions (KEG3-S vs. DOT-S – difference 150.667, p<0.001 and KEG1-S vs. 

DOT-S – difference 71.667, p<0.001 at aortic arch; KEG3-S vs. DOT-S – 

difference 202.667, p<0.001 and KEG1-S vs. DOT-S – difference 127.333, 

p<0.001 at descending thoracic aorta). 

Conclusions: On the phantom study, the ESIONs with 3 – 4 nm iron oxide 

cores showed good T1 shortening effect with the relaxivity ratios (r2/r1) 6 or less 

than 6 at 1.5T and 3T. On in vivo experiment, the ESION with 3 nm iron core and 

10 nm overall size (KEG3) showed comparable performance on the first-pass 

imaging and superior performance on delayed imaging to the commercially 

available T1 MR contrast agent (Dotarem
®
) at 3T. 

 

Keywords: iron oxide nanoparticle, blood pool contrast agent, MR angiography, 
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Introduction 

 Since the recent introduction of 3T magnetic resonance (MR) scanners and the 

application of 3D gradient echo sequence, contrast-enhanced magnetic resonance 

angiography (CE-MRA) has become an accurate technique for the evaluation of 

most vascular structures (1-3). CE-MRA is usually performed using gadolinium-

based blood pool agents and spatial resolution of MR images can be improved due 

to T1 shortening effect (4, 5). However, owing to the potential toxicity of 

gadolinium ion, it must be bound to ligands for its use as a contrast agent. The half-

life of gadolinium-based contrast agents (GBCA) is about 90 minutes in patients 

with normal renal function, but it is prolonged from 30 to 120 hours in patients 

with chronic renal failure. During this time, dissociated gadolinium ion can 

compete with calcium ion and cause nephrogenic systemic fibrosis (NSF). 

Therefore, several reports and cases indicated that GBCAs are causative agents of 

NSF in patients with severe renal impairment or receiving dialysis and, according 

to the studies, the most of reported NSF has occurred in the patients who received 

older linear GBCA (6-8). Recently, with the use of macrocyclic GBCA, the 

incidence of NSF has considerably decreased. However, it was also attributed to 

the avoidance of GBCA in high risk patients and excessive dose administration (9-

11). 

 Recently, ultrasmall superparamagnetic iron oxides (USPIOs), which have less 

than 50 nm crystalline iron oxide core and dextran coating, were introduced in the 
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CE-MRA. USPIOs increase the magnetic susceptibility of the medium and they 

cause a phase gradient with spin dephasing leading to decreased signal in T2-

weighted imaging. USPIOs also have T1 shortening effect by the reduction in the 

volume magnetic anisotropy and spin disorders on the surface of the nanoparticles 

(12). Besides, dextran coating of USPIOs protects against endocytosis of 

macrophage, and permitting a long plasma half-life (13, 14). With these properties, 

the possibility as an alternative blood pool MR contrast agent of USPIO has been 

emerged. With the recent advances in synthetic methods, the size reduction of 

magnetic nanoparticles to 3 – 4 nm has become possible with more stability in 

magneto-crystalline phase and the surface state, resulting in the maximized T1 

shortening effect of magnetic nanoparticles. 

 The purpose of this study was to evaluate the MR characteristics and the 

applicability of the new uniform and extremely small-sized iron oxide 

nanoparticles (ESIONs) with 3 – 4 nm iron core in the contrast-enhanced MRA 

through the phantom and animal experiments. 
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Materials and Methods 

This study was approved by the Institutional Animal Care and Use Committee 

(IACUC) at Seoul National University Hospital. 

 

Characteristics of ESIONs 

 Seven different kinds of ESIONs (KEG1 – 7, Hanwha Chemical Corp. Seoul, 

Korea) with 3 – 4 nm iron oxide nanoparticle cores were used in this study. 

Structurally, the ESIONs are capped with polyethylene glycol-derivatized 

phosphine oxide (PO-PEG), called ‘surface ligand’ that makes the ESIONs have 

high colloidal stability and biocompatibility in an aqueous medium. ESIONs were 

synthesized by thermal decomposition of iron-oleate complex in the presence of 

oleic acid and oleyl alcohol in diphenyl ether (14). After synthesis of ESIONs, 

ligands exchange with PO-PEG was performed to avoid aggregation and to have 

hydrophilic property because ESIONs were synthesized nonhydrolytically and 

typically coated with hydrophobic ligands. After ligands exchange, ESIONs were 

dispersed in the distilled water. With surface ligand, ESIONs finally have 5 – 14 

nm of overall hydrodynamic diameter. The core size of ESIONs was determined by 

200 kV Field-Emission Transmission Electron Microscope (FE-TEM, JEOL-2100F; 

JEOL Ltd., Tokyo, Japan). The hydrodynamic diameter of ESIONs was determined 

by dynamic light scattering (DLS, Zetasizer Nano ZS; Malvern Instrument Ltd., 

Malvern, England). The core size, the overall size, and the concentration of 
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ESIONs were listed in table 1. 

 

MR relaxivities of ESIONs 

The sample series of each ESION were prepared in 1.5ml cylindrical tubes by 

serial dilution with normal saline, using dilution factors of 1:1, 1:2, 1:4, 1:8, 1:16, 

1:32, 1:64, and 1:128, respectively. The undiluted maximum concentrations of 

ESIONs were as follows: KEG1 19.73 mmol/L, KEG2 56.32 mmol/L, KEG3 66.37 

mmol/L, KEG4 82.87 mmol/L, KEG5 40.36 mmol/L, KEG6 18.30 mmol/L, KEG7 

12.74 mmol/L, respectively. These sample series were lined up according to the 

descending orders of a concentration in the plastic plate with multiple wells. To 

compare with the MR relaxation property of the commercially available contrast 

media, Dotarem
®
 (Gd-DOTA, Guerbet, Roissy CdG, France) was used as a control 

and the sample series were prepared with same manner (Fig. 1). To define the 

relaxivities in various magnetic fields, MR imaging was performed with a 1.5T 

(Signa, GE Heathcare, Milwaukee, WI, USA), a 3T (Tim Trio, Siemens, Erlangen, 

Germany), and a 4.7T (BioSpec 47/40, Bruker, Germany) MR scanners. MR room 

temperature was about 22°C. 

MR relaxivities (r1, r2) are defined as the slope of the linear regression generated 

from a plot of the measured relaxation rate (1/T1, 1/T2) versus the concentration of 

the contrast media. For the determination of MR relaxivities of the ESIONs, T1 and 

T2 relaxation data of each sample were obtained through various T1- and T2-

weighted MR images, initially. With these data, T1 and T2 mapping were 
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performed and the T1 and T2 relaxation curves were estimated by curve-fitting the 

experimental signal intensity using the basic equation (1) or (2), and these 

equations were fitted monoexponentially by using Matlab (version 7.1). Based on 

the each relaxation curves, the relaxation times (T1 and T2) were obtained. 

SI (TI) = S0 (1 - 2e
-TI/T1

)                               (1) 

SI (TE) = S0 (e
-TE/T2

)                                  (2) 

where SI (TI) or SI (TE) indicate the signal intensity as a function of TI or TE, 

respectively, and S0 corresponds to the steady-state signal intensity.  

Various T1-weighted images for T1 relaxation curves were acquired with an 

inversion-recovery turbo spin-echo (IR-TSE) pulse sequence at several inversion 

times (TI) at 1.5T and 3T, and with a multislice multiecho (MS-ME) sequence at 

4.7T. At 1.5T, following parameters were used: repetition time (TR) = 4400 

millisecond, the echo time (TE) = 7.62 millisecond, echo train lengths (ETL) = 2, 

slice thickness = 2 mm, inversion times (TI) = 50, 60, 70, 80, 90, 100, 150, 200, 

250, 300, 350, 400, 500, 600, 800, 1000, 1200, 1500, 2000, 2500, and 3000 

millisecond, matrix for phantom measurement = 256 x 256. At 3T, following 

parameters were used: TR = 4000 millisecond, TE = 14 millisecond, ETL = 2, slice 

thickness = 5 mm, TI = 25, 50, 75, 100, 150, 200, 250, 300, 350, 400, 500, 600, 

800, 1000, 1500, 2000, 2500, 3000, and 3500 millisecond, matrix for phantom 

measurement = 228 x 384. At 4.7T, following parameters were used: TR = 70 - 

8000 millisecond (8 point), TE = 7.76 millisecond, ETL = 1, slice thickness = 1 

mm, matrix for phantom measurement = 128 x 128. 
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Various T2-weighted images for T2 relaxation curves were acquired with a 

multiple echo-spin echo (ME-SE) pulse sequence with multiple echo times at 1.5T 

and 3T, and with a MS-ME sequence at 4.7T. At 1.5T, following parameters were 

used: TR = 5000 millisecond, TE = 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 70, 75, 80, 

100, 110, 105, 140, 165, and 220 millisecond, ETL = 1, slice thickness = 1 mm, 

matrix for phantom measurement = 256 x 256. At 3T, following parameters were 

used: TR = 5000 millisecond, TE = 16, 20, 32, 40, 48, 50, 60, 64, 80, 100, 150, and 

200 millisecond, ETL = 1, slice thickness = 2 mm, matrix for phantom 

measurement = 160 x 256. At 4.7T, following parameters were used: TR = 10000 

millisecond, TE = 7.5 - 1920 millisecond (256 point), ETL = 1, slice thickness = 1 

mm, matrix for phantom measurement = 128 x 128. 

After obtainment of relaxation times, r1 and r2 were calculated by linear fitting 

with use of the equation (3). 

1

Ti (measured)
 = 

1

Ti (solution)
 + ri · [concentration of contrast material]     (3) 

where Ti (measured) indicates the longitudinal (T1) or transverse (T2) relaxation 

times of a solution containing contrast material and Ti (solution) indicates the 

relaxation times of the solvent without contrast material. 

The mean signal intensities of the samples were measured by using a 

measurement tool equipped in PACS system (Maroview 5.4, Infinitt, Seoul, Korea). 

The mean signal intensities were measured under the assumption that the 

background signal was constant. The region of interest (ROI) of each sample was 

located in the middle of the image slice having largest diameter.  
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In vitro MR imaging of ESIONs in gradient echo sequences 

In the gradient echo sequences, MR imaging was performed with two selected 

ESIONs showing good T1 shortening effect (KEG1, KEG5) to evaluate the signal 

intensity with variable flip angles and concentrations. Each ESION and Dotarem
®  

was prepared in 5 ml cylindrical tubes by variable dilution with normal saline. The 

undiluted maximum concentration of ESIONs and Dotarem
®
 were as follows: 

KEG1 17.94 mmol/L, KEG5 13.45 mmol/L, and Dotarem
®  

19.08 mmol/L, 

respectively. The serially diluted samples were listed in table 2. MRA imaging 

sequence was performed with fast spoiled gradient recalled (FSPGR) at 1.5T and 

fast low angle shot (FLASH) at 3T MR scanners. In FSPGR sequence, following 

parameters were used: TR = 5.26 millisecond, TE = 1.89 millisecond, FA = 5°, 10°, 

15°, 20°, 25°, 30°, 35°, 40°, 45°, 50°, 60°, slice thickness = 5 mm, NEX = 1, matrix 

= 256 x 192. In FLASH sequence, following parameters were used: TR = 4.05 

millisecond, TE = 1.54 millisecond, FA = 5°, 10°, 15°, 20°, 25°, 30°, 35°, 40°, 50°, 

60°, 70°, 80°, 90°, slice thickness = 5 mm, NEX = 1, matrix = 269 x 448.  

The signal intensities of the samples were measured by using a measurement tool 

equipped in PACS system (Maroview 5.4, Infinitt, Seoul, Korea). The changes of 

contrast enhancement were evaluated with the various flip angles in each 

concentration. The signal intensities were measured under the assumption that the 

background signal was constant. 
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In vivo kinetics of ESIONs 

 To evaluate in vivo kinetics of ESIONs, MRA was performed with a selected 

ESION showing good T1 shortening effect (KEG5). To compare with the 

commercially available MR contrast media, Dotarem
®
 was used as a control.  

Two forty-week-old New Zealand White rabbits (weight: 3kg) were prepared for 

MRA. Complete anesthesia was achieved after intramuscular injection of ketamine 

hydrochloride (ketamine 100mg/kg IM). The marginal ear vein was catheterized 

for delivery of contrast materials using 24-gauge peripheral intravenous 

angiocatheter. Animal was placed supine position in a standard head coil and the 

abdomen centered in the magnet (3T, Tim Trio, Siemens). The doses of KEG5 and 

Dotarem
®
 were 0.093 mmol/kg and 0.1 mmol/kg, respectively. After pre-contrast 

images were obtained, contrast material was infused as a bolus with a constant rate 

during 10 seconds with hands. MRA was performed under care bolus technique at 

left ventricle after contrast material administration. The sequence used for MRA 

was 3D FLASH and the following parameters were used: TR = 2.8 millisecond, TE 

= 1.0 millisecond, FA = 20°, TE = 1.0 millisecond, slice thickness = 1 mm, NEX = 

1, FOV = 140x280.  

The vascular enhancement over time, the organ enhancement, and the clearance of 

the ESION were evaluated. MR images were obtained at pre- and immediate post-

contrast injection, post-contrast 3, 5, 10, 20, 40, 60, 90 minute, and one week later. 

The mean signal intensities of immediate post-contrast image were measured at left 

ventricle, aortic arch, carotid artery, descending thoracic aorta, ascending aorta, 
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right iliac artery, left iliac artery, right kidney cortex and medulla, liver, psoas 

muscle, and bladder. The mean signal intensities of post 3, 5, 10, 20, 40, 60, and 90 

minute were measured at left ventricle and descending thoracic aorta. The mean 

signal intensities of target regions were measured by using a measurement tool 

equipped in PACS system (Maroview 5.4, Infinitt, Seoul, Korea). The signal 

intensities were measured under the assumption that the background signal was 

constant. 

 

In vivo cross-over experiment 

To evaluate the diagnostic performance of the ESIONs in CE-MRA, cross-over 

experiment using two 3 nm-sized ESIONs with different surface ligands (KEG1, 

KEG3) and Dotarem
®  

was performed in rabbits. Contrast agents were prepared 

with a clinical dose and a half-diluted clinical dose: 0.093 mmol/kg KEG1 and 

KEG3 (KEG1-S and KEG3-S), 0.047 mmol/kg KEG1 and KEG3 (KEG1-H and 

KEG3-H), and 0.1 mmol/kg Dotarem
®
 (DOT-S) and 0.05 mmol/kg Dotarem

®
 

(DOT-H).  

MRA was performed in six 40-week-old New Zealand White rabbits (weight: 

3kg). Animal preparation and MRA protocols were same as previous in vivo study. 

MRA was performed with cross-over design, i.e., three contrast materials with two 

different doses were applied each rabbit by turns in 6 rabbits. 

MR images were obtained at pre- and immediate post-contrast injection, post-

contrast 1, 5, and 10 minute. The mean signal intensities were measured at aortic 
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arch and descending thoracic aorta. The mean signal intensities of target regions 

were measured by using a measurement tool equipped in PACS system (Maroview 

5.4, Infinitt, Seoul, Korea). The signal intensities were measured under the 

assumption that the background signal was constant. The differences of contrast 

enhancement between six contrast agents were evaluated. 

 Statistical analysis for cross-over experiment was performed to assess between-

group differences by using linear-mixed effects model. Differences with adjusted p-

values less than 0.05 were considered significant (accounting for a Bonferroni 

correction). Statistical analysis was performed with R version 3.4.5 (http://r-

project.org). 
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Results  

MR relaxivities of ESIONs 

For the determination of MR relaxivities of the ESIONs, multiple T1- and T2-

weighted MR images were obtained with IR-TSE and ME-SE sequences (Fig. 2). 

Relaxation curves (Fig. 3) were obtained based on various T1- and T2- weighted 

images. T1 and T2 values of serially diluted samples obtained from the relaxation 

curves were listed in table 3 and 4. MR relaxivities (r1, r2) were calculated by the 

linear regression generated from a plot of the measured relaxation rate (1/T1, 1/T2) 

versus the concentration of the contrast media (Fig. 4). The calculated relaxivity (r1, 

r2) and relaxivity ratio (r2/r1) at 1.5T, 3T, and 4.7T were listed in table 5. The 

highest relaxivities r1 of the ESIONs were found at 1.5T (KEG1, 5.79 mM
-1

s
-1

; 

KEG2, 2.95 mM
-1

s
-1

; KEG3, 7.60 mM
-1

s
-1

; KEG4, 4.86 mM
-1

s
-1

; KEG5, 8.40 mM
-

1
s

-1
; KEG6: 6.73 mM

-1
s

-1
; KEG7, 6.20 mM

-1
s

-1
). The relaxivity r1 decreased with 

increasing magnetic field strengths. Relaxivity r2 of ESIONs showed no significant 

changes from 1.5T to 3T, but increased at 4.7T. The lowest relaxivity ratios (r2/r1) 

of ESIONs were found at 1.5T (KEG1, 2.95; KEG2, 6.00; KEG3, 2.44; KEG4, 

2.51; KEG5, 1.85; KEG6, 4.37; KEG7, 3.32). The relaxivity ratios increased with 

increasing magnetic field strengths. In case of Dotarem
®
, the change of relaxivity 

r1 and relaxivity ratio (r2/r1) showed similar pattern compare to the ESIONs. At 

1.5T and 3T, all ESIONs showed relaxivity ratio (r2/r1) 6 or less than 6, which were 

satisfactory values for showing good T1 shortening effect (KEG1, 2.95 at 1.5T and 
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3.01 at 3T; KEG2, 6.00 at 1.5T and 5.72 at 3T; KEG3, 2.44 at 1.5T and 2.68 at 3T; 

KEG4, 2.51 at 1.5T and 3.40 at 3T; KEG5, 1.85 at 1.5T and 3.17 at 3T; KEG6, 

4.37 at 1.5T and 3.76 at 3T, KEG7, 3.32 at 1.5T and 4.78 at 3T) (Fig. 5).  

 

In vitro MR imaging of ESIONs in gradient echo sequences 

 The signal intensities of ESIONs and Dotarem
®
 in relation to the variable flip 

angles were illustrated in figure 6. At 1.5T, the peak signal intensities of KEG1 and 

KEG5 with the lowest concentration (1.79 mmol/L and 0.54 mmol/L) were 

observed in 20° and 10° of flip angles, respectively, and the peak signal intensities 

of the ESIONs were observed in higher flip angle with the increase of the 

concentration until 50° of flip angle. At 3T, the peak signal intensities of KEG1 and 

KEG5 with the lowest concentration (1.79 mmol/L and 0.54 mmol/L) were 

observed in 15° and 10° of flip angles, respectively, and the peak signal intensities 

of the ESIONs were observed in higher flip angle with the increase of the 

concentration until 50° and 40°, respectively. In case of the same concentration of 

ESIONs, the peak signal intensities were observed in lower flip angles at 3T than at 

1.5T. The ranges of the flip angles showing peak signal intensity of ESIONs were 

between 10° and 50° at both 1.5T and 3T. The changes of peak signal intensity of 

Dotarem
®  

showed similar patterns compare to the ESIONs at 1.5T and 3T. 

 

In vivo kinetics of ESIONs 
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On the subjective image quality evaluation of the immediate post-contrast images, 

KEG5 showed excellent contrast of the vascular lumen with main aortic branches 

being well visualized such that the entire course and luminal status can be fully 

evaluated with confidence. When the vascular enhancement patterns over time 

were evaluated, KEG5 showed persistent vascular enhancement from the 

immediate post-contrast phase to the 90 minute delayed phase. Dotarem
®
 showed 

vascular enhancement just on the immediate post-contrast phase and nearly washed 

out from the vascular structures on the five minute images (Fig. 7). The mean 

signal intensity changes over time at aortic arch and descending thoracic aorta were 

illustrated in figure 8.  

In terms of organ enhancement, KEG5 showed similar enhancement compare to 

Dotarem
®
 at all regions in the immediate post-contrast images (Fig. 9).  

On the one week follow up images, KEG5 was nearly washed out from the 

vascular structures and the organs (Fig. 7). 

 

In vivo cross-over experiment 

The MR images and the signal intensities obtained from in vivo cross-over 

experiment at aortic arch and descending thoracic aorta are shown in figure 10 and 

table 6. The signal intensity changes over time were illustrated in figure 11.  

All ESIONs and Dotarem
®
 showed peak signal intensity on the immediate post-

contrast images. The signal intensities of Dotarem
®
 showed abrupt decrease on the 

post-contrast 1 minute images, whereas the signal intensities of all ESIONs showed 
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slight decrease on the post-contrast 1 minute images. The signal intensities of all 

ESIONs were reached a plateau at post-contrast 1 minute, and the plateau was 

maintained until post 10 minute.  

All half-diluted contrast materials showed significantly lower signal intensities 

than their non-diluted ones at all regions in immediate post-contrast images (DOT-

S vs. DOT-H – difference 107.833, p<0.001 and KEG1-S vs. KEG1-H – difference 

70.167, p<0.001 and KEG3-S vs. KEG3-H – difference 118.167, p<0.001 at aortic 

arch; DOT-S vs. DOT-H – difference 141.833, p<0.001 and KEG1-S vs. KEG1-H – 

difference 134.667, p<0.001 and KEG3-S vs. KEG3-H – difference 131.333, 

p<0.001 at descending thoracic aorta). On the post-contrast 10 minute images, half-

diluted ESIONs showed significantly lower signal intensities than their non-diluted 

ones (KEG1-S vs. KEG1-H – difference 57.000, p=0.008 and KEG3-S vs. KEG3-

H – difference 106.667, p<0.001 at aortic arch; KEG1-S vs. KEG1-H – difference 

99.000, p<0.001 and KEG3-S vs. KEG3-H – difference 133.000, p<0.001 at 

descending thoracic aorta), but there was no statistical difference of the signal 

intensities between half-diluted Gd-DOTA and non-diluted Gd-DOTA (DOT-S vs. 

DOT-H – difference 3.833, p=1.000 at aortic arch; difference -0.833, p=1.000 at 

descending thoracic aorta).  

In terms of peak signal intensities on the immediate post-contrast images, there 

was no statistical difference between KEG3-S and DOT-S (difference -8.167, 

p=1.000 at aortic arch; difference -3.667, p=1.000 at descending thoracic aorta), 

but KEG3-S and DOT-S showed significantly higher peak signal intensities than 
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KEG1-S in all regions (KEG3-S vs. KEG1-S – difference 85.500,  p<0.001 and 

KEG1-S vs. DOT-S – difference -93.667, p<0.001 at aortic arch; KEG3-S vs. 

KEG1-S – difference 71.167, p=0.011 and KEG1-S vs. DOT-S – difference -74.833, 

p=0.006 at descending thoracic aorta). On the post-contrast 10 minute images, 

KEG3-S and KEG1-S showed significantly higher signal intensities than DOT-S at 

all regions (KEG3-S vs DOT-S – difference 150.667, p<0.001 and KEG1-S vs. 

DOT-S – difference 71.667, p<0.001 at aortic arch; KEG3-S vs DOT-S – difference 

202.667, p<0.001 and KEG1-S vs. DOT-S – difference 127.333, p<0.001 at 

descending thoracic aorta) (Table 7, 8).   
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Table 1. The iron core size, overall size, and maximum concentration of ESIONs. 

 
core size (nm) 

overall size (mean) 

(nm) 

maximum concentration 

(mmol/L) 

KEG1 3 5 19.73 

KEG2 4 6 56.32 

KEG3 3 10 66.37 

KEG4 4 12 82.87 

KEG5 3 13 40.36 

KEG6 3 5 18.30 

KEG7 3 14 12.74 

Gd-DOTA NA NA 133.55 

 
ESIONs – extremely small-sized iron oxide nanoparticles 

NA – not avaliable 

 

 

 

 

 

 

 

 

 

 

 

  



17 

 

Table 2. The concentrations of ESIONs used in in vitro MR imaging with gradient echo 

sequences. 

 KEG1 (mmol/L) KEG5 (mmol/L) Dotarem (mmol/L) 

Concentration 

17.94 13.45 19.08 

14.35 10.76 15.26 

10.76 8.07 11.45 

7.17 5.38 7.63 

5.38 2.69 3.82 

3.59 1.08 1.53 

1.79 0.81 1.14 

 0.54 0.76 

 
ESIONs – extremely small-sized iron oxide nanoparticles 

MR – magnetic resonance  
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Table 3. T1 and T2 values of a series of diluted ESIONs at 1.5T.  

 
Dilution 

factor 

Contrast materials 

KEG1 KEG2 KEG3 KEG4 KEG5 KEG6 KEG7 Dotarem 

T1 

[ms] 

1:1 NA NA NA NA NA NA NA NA 

1:2 17.97 NA NA NA NA 18.15 26.15 NA 

1:4 33.99 24.64 NA NA NA 31.98 50.10 NA 

1:8 67.00 47.49 NA 19.50 23.13 58.98 87.65 NA 

1:16 114.59 90.22 30.75 38.61 44.52 115.35 177.13 NA 

1:32 216.56 178.75 58.51 71.82 82.91 221.07 322.42 30.08 

1:64 403.11 342.43 105.68 135.16 153.64 402.59 574.47 58.05 

1:128 717.37 585.85 218.36 260.57 302.88 511.44 947.82 111.8 

T2 

[ms] 

1:1 NA NA NA NA NA NA NA NA 

1:2 13.26 NA NA NA NA NA 17.16 NA 

1:4 16.08 18.99 NA NA NA 18.72 29.76 NA 

1:8 46.59 20.03 15.62 NA NA 31.02 54.65 17.00 

1:16 83.43 32.50 24.03 19.60 23.55 64.99 102.22 26.97 

1:32 156.18 63.66 51.04 29.59 39.93 141.62 192.07 52.36 

1:64 373.00 136.90 73.82 55.03 69.29 NA 342.21 100.64 

1:128 NA NA NA 98.61 133.47 NA NA NA 

 
ESIONs – extremely small-sized iron oxide nanoparticles 

ms – millisecond 

NA – not available 
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Table 4. T1 and T2 values of a series of diluted ESIONs at 3T.  

 
Dilution 

factor 

Contrast materials 

KEG1 KEG2 KEG3 KEG4 KEG5 KEG6 KEG7 Dotarem 

T1 

[ms] 

1:1 NA NA NA NA NA NA NA NA 

1:2 22.94 NA NA NA NA NA 37.89 NA 

1:4 37.46 NA NA NA NA 37.33 68.70 NA 

1:8 82.65 59.14 21.52 27.05 31.16 82.94 141.0 7.99 

1:16 154.7 119.9 37.45 52.38 60.43 161.0 266.0 17.06 

1:32 293.7 240.0 79.65 101.7 115.0 302.5 483.2 32.48 

1:64 528.2 453.4 151.3 192.7 205.1 539.1 799.9 61.61 

1:128 897.4 750.0 289.3 357.2 390.9 892.1 1095 116.9 

T2 

[ms] 

1:1 NA NA NA NA NA NA NA NA 

1:2 9.76 NA NA NA NA NA 16.77 NA 

1:4 14.17 NA NA NA NA 11.89 17.02 NA 

1:8 25.47 13.38 9.54 10.47 11.68 20.26 29.29 7.197 

1:16 50.34 20.81 13.52 15.64 20.26 39.99 58.00 13.73 

1:32 99.56 40.49 24.32 27.84 39.62 82.71 109.75 27.55 

1:64 200.33 81.60 45.92 54.84 71.93 169.36 211.91 56.16 

1:128 401.45 160.36 88.20 104.91 142.66 301.66 406.11 110.20 

 
ESIONs – extremely small-sized iron oxide nanoparticles 

ms - millisecond 

NA – not available 
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Table 5. Relaxivities and relaxivity ratios of ESIONs and Dotarem. 

  1.5T    3T    4.7T  

 r1
* r2

* r2/r1  r1
* r2

* r2/r1  r1
* r2

* r2/r1 

KEG1 5.79 17.10 2.95  5.30 15.93 3.01  3.66 20.17 5.51 

KEG2 2.95 17.72 6.00  2.38 13.61 5.72  1.41 18.03 12.79 

KEG3 7.60 18.54 2.44  6.41 17.17 2.68  3.65 23.89 6.55 

KEG4 4.86 12.19 2.51  3.52 11.98 3.40  2.29 16.67 7.28 

KEG5 8.40 15.57 1.85  6.01 19.07 3.17  4.42 22.77 5.15 

KEG6 6.73 29.43 4.37  5.77 21.68 3.76  3.64 29.99 8.24 

KEG7 6.20 20.55 3.32  4.44 21.18 4.78  3.20 30.39 9.50 

Gd-DOTA 7.74 8.64 1.12  7.07 8.71 1.23  2.75 3.46 1.26 

 
* Values in mM-1s-1 and obtained at 22°C 

ESIONs – extremely small-sized iron oxide nanoparticles 
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Table 6. The signal intensities obtained from in vivo cross-over experiment at aortic arch 

and descending thoracic aorta.  

  pre immediate 
Post 1 
minute 

Post 5 
minute 

Post 10 
minute 

Aortic arch 

DOT-H 59.2.5±13.6 179.8±63.4 73.2±4.8 65.8±8.52 62.3±9.71 

DOT-S 31.2±6.5 346±56.7 107±9.6 78.2±4.9 65.7±7.3 

KEG1-H 29.7±15.2 141±36.5 104±21.1 95±19.6 88.5±19.2 

KEG1-S 34.5±9.8 258±24.7 193±24.1 173±23.5 155±24.8 

KEG3-H 28.7±11.4 212±35.7 147±27.0 137±23.1 136±25.1 

KEG3-S 32.8±8.0 340±68.8 251±39.1 256±38.0 249±34.5 

Descending 

thoracic 

aorta 

DOT-H 85.5±3.3 245±69.4 105±9.1 97.2±6.1 91.3±5.4 

DOT-S 66.5±21.5 387±54.6 128±16.5 95.5±8.2 90.5±7.8 

KEG1-H 71±17.6 177±26.6 141±33.1 125±30.4 119±30.7 

KEG1-S 65.7±19.5 336±42.2 252±50.3 229±47.0 218±45.6 

KEG3-H 74.8±12.5 252±46.6 180±16.2 167±22.2 160±21.7 

KEG3-S 65±17.4 405±56.1 332±40.2 310±34.4 302±41.9 

 
DOT-H – 0.05 mmol/kg Gd-DOTA, DOT-S – 0.1 mmol/kg Gd-DOTA, KEG1-H – 0.047 mmol/kg KEG1, KEG1-S – 0.093 

mmol/kg KEG1, KEG3-H – 0.047 mmol/kg KEG3, KEG3-S – 0.093 mmol/kg KEG3 
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Table 7. Between-group differences of the signal intensities on the immediate post-

contrast images in cross-over experiment. 

Region 
F-

statistic 
p-

value 
Comparison 

Estimate 
(difference) 

F-statistic p-value 
adjusted 
p-value 

Aortic arch 33.493 <0.001 

DOT-S vs. DOT-H 107.833 45.012 <0.001 <0.001 

KEG1-H vs. DOT-H -56.000 12.139 0.001 0.010 

KEG1-S vs. DOT-H 14.167 0.777 0.380 1.000 

KEG3-H vs. DOT-H -18.500 1.325 0.252 1.000 

KEG3-S vs. DOT-H 99.667 38.452 <0.001 <0.001 

KEG1-H vs. DOT-S -163.833 103.902 <0.001 <0.001 

KEG1-S vs. DOT-S -93.667 33.962 <0.001 <0.001 

KEG3-H vs. DOT-S -126.333 61.781 <0.001 <0.001 

KEG3-S vs. DOT-S -8.167 0.258 0.612 1.000 

KEG1-S vs. KEG1-H 70.167 19.058 <0.001 <0.001 

KEG3-H vs. KEG1-H 37.500 5.444 0.021 0.315 

KEG3-S vs. KEG1-H 155.667 93.802 <0.001 <0.001 

KEG3-H vs. KEG1-S -32.667 4.131 0.044 0.659 

KEG3-S vs. KEG1-S 85.500 28.298 <0.001 <0.001 

KEG3-S vs. KEG3-H 118.167 54.052 <0.001 <0.001 

Descending 
thoracic 

aorta 
32.737 <0.001 

DOT-S vs. DOT-H 141.833 47.484 <0.001 <0.001 

KEG1-H vs. DOT-H -67.667 10.808 0.001 0.019 

KEG1-S vs. DOT-H 67.000 10.596 0.001 0.021 

KEG3-H vs. DOT-H 6.833 0.110 0.740 1.000 

KEG3-S vs. DOT-H 138.167 45.061 <0.001 <0.001 

KEG1-H vs. DOT-S -209.500 103.600 <0.001 <0.001 

KEG1-S vs. DOT-S -74.833 13.218 <0.001 0.006 

KEG3-H vs. DOT-S -135.000 43.019 <0.001 <0.001 

KEG3-S vs. DOT-S -3.667 0.032 0.859 1.000 

KEG1-S vs. KEG1-H 134.667 42.807 <0.001 <0.001 

KEG3-H vs. KEG1-H 74.500 13.101 <0.001 0.006 

KEG3-S vs. KEG1-H 205.833 100.005 <0.001 <0.001 

KEG3-H vs. KEG1-S -60.167 8.545 0.004 0.060 

KEG3-S vs. KEG1-S 71.167 11.955 0.001 0.011 

KEG3-S vs. KEG3-H 131.333 40.714 <0.001 <0.001 

 
DOT-H – 0.05 mmol/kg Gd-DOTA, DOT-S – 0.1 mmol/kg Gd-DOTA, KEG1-H – 0.047 mmol/kg KEG1, KEG1-S – 0.093 

mmol/kg KEG1, KEG3-H – 0.047 mmol/kg KEG3, KEG3-S – 0.093 mmol/kg KEG3  
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Table 8. Between-group differences of the signal intensities on the post-contrast 10 

minute images in cross-over experiment.  

Region 
F-

statistic 
p-

value 
Comparison 

Estimate 
(difference) 

F-statistic p-value 
adjusted 
p-value 

Aortic arch 26.63 <0.001 

DOT-S vs. DOT-H 3.833 0.057 0.812 1.000 

KEG1-H vs. DOT-H 18.500 1.325 0.252 1.000 

KEG1-S vs. DOT-H 75.500 22.066 <0.001 <0.001 

KEG3-H vs. DOT-H 47.833 8.857 0.003 0.051 

KEG3-S vs. DOT-H 154.500 92.401 <0.001 <0.001 

KEG1-H vs. DOT-S 14.667 0.833 0.363 1.000 

KEG1-S vs. DOT-S 71.667 19.882 <0.001 <0.001 

KEG3-H vs. DOT-S 44.000 7.494 0.007 0.104 

KEG3-S vs. DOT-S 150.667 87.873 <0.001 <0.001 

KEG1-S vs. KEG1-H 57.000 12.577 0.001 0.008 

KEG3-H vs. KEG1-H 29.333 3.331 0.070 1.000 

KEG3-S vs. KEG1-H 136.000 71.598 <0.001 <0.001 

KEG3-H vs. KEG1-S -27.667 2.963 0.087 1.000 

KEG3-S vs. KEG1-S 79.000 24.159 <0.001 <0.001 

KEG3-S vs. KEG3-H 106.667 44.043 <0.001 <0.001 

Descending 
thoracic 

aorta 
30.492 <0.001 

DOT-S vs. DOT-H -0.833 0.002 0.968 1.000 

KEG1-H vs. DOT-H 27.500 1.785 0.184 1.000 

KEG1-S vs. DOT-H 126.500 37.772 <0.001 <0.001 

KEG3-H vs. DOT-H 68.833 11.184 0.001 0.016 

KEG3-S vs. DOT-H 201.833 96.156 <0.001 <0.001 

KEG1-H vs. DOT-S 28.333 1.895 0.171 1.000 

KEG1-S vs. DOT-S 127.333 38.271 <0.001 <0.001 

KEG3-H vs. DOT-S 69.667 11.456 0.001 0.014 

KEG3-S vs. DOT-S 202.667 96.952 <0.001 <0.001 

KEG1-S vs. KEG1-H 99.000 23.135 <0.001 <0.001 

KEG3-H vs. KEG1-H 41.333 4.033 0.046 0.697 

KEG3-S vs. KEG1-H 174.333 71.738 <0.001 <0.001 

KEG3-H vs. KEG1-S -57.667 7.849 0.006 0.087 

KEG3-S vs. KEG1-S 75.333 13.396 <0.001 0.005 

KEG3-S vs. KEG3-H 133.000 41.754 <0.001 <0.001 

 
DOT-H – 0.05 mmol/kg Gd-DOTA, DOT-S – 0.1 mmol/kg Gd-DOTA, KEG1-H – 0.047 mmol/kg KEG1, KEG1-S – 0.093 

mmol/kg KEG1, KEG3-H – 0.047 mmol/kg KEG3, KEG3-S – 0.093 mmol/kg KEG3  
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Fig. 1. A series of diluted ESIONs and Dotarem lined up according to the descending 

orders of a concentration in 1.5ml cylindrical tubes.  

The dilution factors were 1:1, 1:2, 1:4, 1:8, 1:16, 1:32, 1:64, and 1:128, respectively. The 

undiluted maximum concentrations of ESIONs and Dotarem were as follows: KEG1 19.73 

mmol/L, KEG2 56.32 mmol/L, KEG3 66.37 mmol/L, KEG4 82.87 mmol/L, KEG5 40.36 

mmol/L, KEG6 18.30 mmol/L, KEG7 12.74 mmol/L, and Dotarem 133.55 mmol/L, 

respectively. 

 

                1.5T                                  3T 
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Fig. 2. The sample images of the T1 and T2-weighted images of the phantom at 1.5T and 

3T scanners.  

IR-TSE sequence was used for the T1-weighted images and parameters were as follows; TR 

= 4400 millisecond, TE = 7.62 millisecond, ETL = 2, slice thickness = 2 mm, TI = 600 

millisecond, matrix = 256 x 256 at 1.5T, and TR = 4000 millisecond, TE = 14 millisecond, ETL 

= 2, slice thickness = 5 mm, TI = 100 millisecond, matrix for phantom measurement = 228 x 

384 at 3T, respectively. ME-SE sequence was used for the T2-weighted images and the 

parameters were as follows; TR = 5000 millisecond, TE = 20 millisecond, ETL = 1, slice 

thickness = 1 mm, matrix = 256 x 256 at 1.5T, and TR = 5000 millisecond, TE = 32 

millisecond, ETL = 1, slice thickness = 2 mm, matrix = 160 x 256 at 3T, respectively. 

   

T1 weighted image at 1.5T (TI = 600 millisecond)      T2 weighted image at 1.5T (TE = 20 millisecond)  

  

T1 weighted image at 3T (TI = 100 millisecond)        T2 weighted image at 3T (TE =32 millisecond)  
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Fig. 3. Relaxation curves of ESIONs (KEG1, 3, 5) and Dotarem obtained at 1.5T and 3T 

(dilution ratio = 1:32).  

T1 and T2 relaxation curves were estimated by curve-fitting the experimental signal 

intensity as a function of TI and TE, respectively (equation (1) and (2) in text), and these 

equations were fitted monoexponentially by using Matlab (version 7.1). Based on the each 

relaxation curves, the relaxation times (T1 and T2) were obtained. The data were obtained 

at 22°C (MR room temperature). 
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Fig. 4. The examples of the calculation of r1 relaxivity of KEG1, 3, 5, and Dotarem at 1.5T 

and 3T. 

MR Relaxivity (r1) is defined as the slope of the linear regression generated from a plot of 

the measured relaxation rates Δ(1/T1) versus the concentration of contrast media. 
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Fig. 5. Comparison of relaxivity ratios (r2/r1) of ESIONs and Dotarem.  

Relaxivity ratio (r2/r1) of ESIONs increased with increasing magnetic field strengths. At 1.5T 

and 3T, relaxivity ratios (r2/r1) of ESIONs were 6 or less than 6, which were required value 

for showing good T1 shortening effect. 
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Fig. 6. The signal intensities of ESIONs and Dotarem in relation to the variable flip angles.  

The peak signal intensities were observed in higher flip angles with the increase of 

concentration. The changes of peak signal intensity of Dotarem
 
showed similar patterns 

compare to the ESIONs. 
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Fig. 7. The in vivo post-contrast 3D FLASH MR images of the KEG5 and Dotarem over 

time.  

KEG5 showed excellent contrast of the vascular lumen with main aortic branches and 

persistent vascular enhancement from the immediate post-contrast phase to the 90 

minute delayed phase. Dotarem showed vascular enhancement just on the immediate 

post-contrast phase and nearly washed out from the vascular structures on 5 minute 

images. 

 

KEG5 

 

                                  Dotarem 
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Fig. 8. Comparison of the vascular enhancement over time between KEG5 and Dotarem.  

KEG5 showed persistent high signal intensities after peak signal intensity until 90 minute 

image, but Dotarem showed abruptly decreased signal intensities after peak signal 

intensity.  
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Fig. 9. Comparison of the organ and vascular enhancement between KEG5 and Dotarem 

on the immediate post-contrast images.  

KEG5 showed similar enhancement compare to Dotarem at all measured regions in 

immediate post-contrast images. 
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Fig. 10. The MR images obtained from in vivo cross-over experiment.  

On the immediate post-contrast images, KEG1-S, KEG3-S, and DOT-S showed peak signal 

intensity. On the statistical analysis, there was no significant difference of signal intensities 

between KEG3-S and DOT-S (p=1.000), but KEG1-S showed significantly lower peak signal 

intensity than KEG3-S and DOT-S (p<0.05). KEG1-S and KEG3-S showed persistent delayed 

enhancement, whereas DOT-S showed rapid washout after immediate post-contrast 

images.   

 

DOT-S – 0.1 mmol/kg Gd-DOTA, KEG1-S – 0.093 mmol/kg KEG1, KEG3-S – 0.093 mmol/kg KEG3  
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Fig. 11. Signal intensity changes at aortic arch and descending thoracic aorta in cross-

over animal experiment.  

All ESIONs showed slightly decreased signal intensities and maintained plateau after peak 

signal intensity until post-contrast 10 minute images, whereas Dotarem showed abruptly 

decreased signal intensities after peak signal intensity. On the statistical analysis, all half-

diluted contrast material showed significantly lower signal intensities than their non-

diluted ones on immediate and delayed phase images (p<0.05). KEG3-S showed similar 

peak signal intensity compare to DOT-S on first-pass imaging (p=1.000) and higher signal 

intensity on delayed imaging (p<0.001).  

 

 

DOT-H – 0.05 mmol/kg Gd-DOTA, DOT-S – 0.1 mmol/kg Gd-DOTA, KEG1-H – 0.047 mmol/kg KEG1, KEG1-S – 0.093 

mmol/kg KEG1, KEG3-H – 0.047 mmol/kg KEG3, KEG3-S – 0.093 mmol/kg KEG3  
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Discussion 

 CE-MRA is well established safe and effective tool for the diagnosis of the 

various vascular diseases because it does not use radiation and shows better images 

for the calcified segment compared with the CT angiography (15-18). Typically, it 

is performed using GBCA to maximize the contrast of the vascular structure from 

the surrounding soft tissue through the T1 shortening effect. However, GBCAs 

have several limitations including short temporal window for data acquisition and 

potential toxicity causing NSF in patients with ESRD due to the free gadolinium 

ion. For these reasons, the needs for the new alternative MR contrast material have 

been emerged. 

 The MR contrast agents are generally categorized according to their effects on 

longitudinal (T1) and transversal (T2) relaxations, and their ability is referred to as 

relaxivity (r1, r2). In the MR images, fast T1 relaxation cause bright signal intensity 

and fast T2 relaxation cause dark signal intensity. It is reported that the parameter 

r2/r1 gives indication as to whether the contrast agents become positive or negative 

agents. According to the previous study, brightening is observed in the T1-weighted 

images when the r2/r1 value below about two (19). Therefore, for becoming the 

ideal T1 contrast agent, high longitudinal relaxivity (r1) or low r2/r1 value is needed.  

 The common iron oxide nanoparticles are not appropriate for the T1 MR contrast 

agents because the high r2 of iron nanoparticles derived from innate high magnetic 

moment prevents them from being utilized as T1 contrast agents. However, in the 
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nanoscale regime, surface spin-canting effects of nanoparticles have a significant 

effect on their magnetic moment and MR contrast enhancement (20). As the size of 

nanoparticle decreases, the surface effect becomes more pronounced and is 

reflected in the reduced net magnetic moment. Therefore, the small size iron oxide 

nanoparticles can enhance the T1 effect by their large surface area and suppress the 

T2 effect by their small magnetic moment. For these reasons, small size iron oxide 

nanoparticles are the potential candidate for T1 contrast agents. 

 In our study, we used ESIONs with 3 – 4 nm iron oxide core and, theoretically, 

these were expected to have T1 shortening effect owing to its nanoscale size which 

cause the reduced net magnetic moment. Our experiment showed the ESIONs had 

good physical characteristics as a T1 contrast agent with high r1 value and low r2/r1 

ratio. Our experimental ESIONs were synthesized by controlled thermal 

decomposition of iron-oleate complex, and this synthetic technique could be lead to 

the uniformity in the size of the ESIONs, which is critical for the fine control of the 

MR relaxivity (21).  

 In the phantom study, the relaxivity ratios (r2/r1) of the ESIONs increased with 

increasing magnetic field strengths owing to decreasing relaxivity r1 values. 

Theoretically, it may be expected that T1 contrast effect of ESONs is lower at 4.7T 

than at 1.5T. According to the previous studies for the effect of magnetic field 

strength on the relaxivity, decreasing relaxivity r1 value with increasing magnetic 

field strength is common in GBCA (22), and our experiments with ESIONs and 

Dotarem
®
 showed same results with previous studies. However, MR signal 
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depends on several MR-related factors and concentration of contrast material, the 

further studies should be performed in the clinical setting. 

 The most common technique of CE-MRA is gradient echo imaging because of 

rapid image acquisition. In the GRE sequence, the optimal flip angle is determined 

with reference to the Ernst angle equation to maximized contrast enhancement and 

usually ranged between 15° and 25°. In our in vitro MR imaging with GRE 

sequence, MR imaging was performed with wide range dilutions of ESIONs in 

variable flip angles. The results showed that the peak signal intensities were 

observed in higher flip angles with an increase of concentration of ESIONs at both 

of 1.5T and 3T, and this was similar to the Dotarem
®
. With this result, it could be 

predicted that the ESIONs have similar contrast enhancement effect in the current 

clinical protocol for CE-MRA. However, in case of clinical application, other MR 

parameters should be considered for the determination of the optimal flip angle.    

In the in vivo kinetics study and the cross-over experiment, the ESIONs showed 

compatible vascular enhancement compared to GBCA on the first-pass MRA and 

the similar organ enhancement pattern after immediate post-contrast images on the 

objective and subjective evaluation. With this results, the clinical application of 

ESIONs as a blood pool contrast agent is regarded as reasonable and feasible. In 

addition, ESIONs showed persistent intravascular enhancement more than 90 

minutes, which made it possible to perform delayed imaging for the vascular 

structures. Originally, ESIONs are hydrophobic and the PEG ligand was introduced 

via the ligand exchange reaction to make the ESIONs dispersible in aqueous media 
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for various biomedical applications (23). With this, the half-life of ESIONs in the 

blood could also be increased by avoiding uptake by the reticuloendothelial (RES) 

system (24) and, as a result, ESIONs could be used for repeated imaging and high 

resolution imaging that needs long scan time.  

With the property of persistent delayed enhancement, the clinical indications of 

ESIONs might be different from GBCA. For example, in terms of the use of 

ESIONs in acute myocardial infarction (AMI), there are some limitations unlike 

GBCA. In the cardiac MRI used GBCA, the healthy myocardium shows rapid 

washout of GBCA whereas areas of infarcted myocardium exhibit delayed 

enhancement 10-15 minutes after the injection (25). As the ESIONs shows 

persistent enhancement of the blood pool area more than 90 minutes, it might be 

difficult to differentiate infarcted myocardium from adjacent ventricular chamber 

in delayed phase. However, recent experimental study showed the feasibility for 

potential use of ESIONs as a blood pool agent in coronary MR angiography with 

equivalent quality on first pass images and better delayed images compare with 

GBCA (26). In addition, USPIOs can be used as a T2 negative agent on T2*- and 

T2-weighted images owing to its T2 shortening effect, and has potential 

applications in macrophage and lymph node imaging in various pathology (27-30). 

Originally, some USPIOs were developed as an intravenous iron-replace therapy 

for anemic patients with chronic kidney disease (31). For example, ferumoxytol 

(Feraheme
TM

) was FDA-approved superparamagnetic iron oxide nanoparticle-

based MR contrast agent that is also employed in the treatment of iron deficiency 
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anemia. In our study, the single dose of ESIONs in MRA for animal was 0.093 

mmol/kg (5.2 mgFe/kg) and, if it is administered in adult with 70 kg body weight, 

total dose would be 364 mg. Compared with commercially used intravenous iron 

preparation, the single dose of ESIONs is less than the maximum dose of 

commercially used one per week (i.e. Feroba
®
 7 mgFe/kg per week). Therefore, 

our experimental ESIONs can be used not only as a MR contrast agent but also as 

an intravenous preparation for patients with iron deficiency anemia. 

 In terms of adverse effects of contrast materials, GBCA can cause NSF because of 

the toxic free gadolinium ion in patients with renal dysfunction (32). Half-life of 

GBCA is about 90 minutes in patients with normal renal function, but it is 

prolonged from 30 to 120 hours in patients with chronic renal failure. During this 

time, dissociated free gadolinium ion can compete with calcium ion and cause NSF. 

On the contrary, ESIONs have no risk of NSF despite of its long half-life in the 

blood. According to the recent guidelines based on the several studies, the risk of 

NSF in the use of macrocyclic GBCAs is quite low even in the patients with acute 

or chronic kidney disease and macrocyclic GBCA can be administered when 

GBCA is necessary and there is no alternative test (33-38). However, they also 

recommend that the informed consent should be obtained for the chance of 

developing NSF and dialysis should be scheduled within 2-3 hours after GBCA 

administration in these at-risk patients (39). In addition, some researchers discussed 

that the incidence of NSF is decreased recently by virtue of regulatory action and 

practice changes in the use of GBCA (40). From this point of view, there are 
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possibility of clinical application of ESIONs as an alternative contrast agent in the 

patients with acute kidney injury or chronic kidney disease with estimated 

glomerular filtration rate (eGFR) less than 30 ml/min/1.73m
2
 or those on dialysis 

as well as a primary contrast agent in the studies that need long scan time or high 

resolution images.  

Despite of some advantages of ESIONs over GBCA, there have been safety 

concerns about the potential toxicity of the iron oxide nanoparticles (41, 42). The 

most intracellular and in vivo nanotoxicities from iron oxide nanoparticles are 

caused by oxidative stress from the excessive production of reactive oxygen 

species (ROS) (43). However, ferritin and transferrin receptors regulate the 

homeostasis of iron and, eventually, the iron is incorporated in hemoglobin. 

According to a study, cytotoxic effect was not observed when Fe3O4 and MnFe2O4 

nanoparticles are tested up to the concentration of 200 µgmL
-1

 (20, 44). In addition, 

as the interactions between nanoparticles and biological organisms take place at the 

surface of iron oxide nanoparticles, proper surface coating can stabilize iron oxide 

nanoparticles and toxic reaction. For example of coating material, PEG is Food and 

Drug Administration (FDA) approved surface coating polymer that generally does 

not induce any toxicity. ESIONs used in our study have PEG ligand as a surface 

coating polymer and there was no acute adverse reaction and ESIONs related death 

of the experimental animals. Another concern is accumulation of iron in the liver 

and this can cause alteration of the signal intensity of contrast MR images after 

administration. According to the previous study, although there was no adverse 
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reaction to iron based MR contrast agents, MR relaxation rates were influenced 

from 3 to 11 month compared with baseline values (42). But, in our animal study, 

there was no significant signal alteration in the liver on one week follow up images. 

However, for the clinical application of the ESIONs in human, further studies for 

the safety issues and long term effects are required.  

 In conclusion, on the phantom study, the ESIONs with 3 – 4 nm iron oxide cores 

showed good T1 shortening effect with the relaxivity ratios (r2/r1) 6 or less than 6 

at 1.5T and 3T. On in vivo experiment, the ESION with 3 nm iron core and 10 nm 

overall size (KEG3) showed comparable performance on the first-pass imaging and 

superior performance on delayed imaging to the commercially available T1 MR 

contrast agent (Dotarem
®
) at 3T. 
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국문초록 

연구배경 및 목적: 자기공명영상조영제는 자기장에 미치는 영향에 

따라 상자성, 초상자성 제제로 구분이 되며, 현재 가장 널리 사용되는 

조영제는 가돌리니움을 이용한 상자성 조영제이다. 가돌리니움은 유리이

온의 형태에서 독성이 매우 높아서 가돌리니움-킬레이트의 형태로 사용

이 되고 있다. 가돌리니움 조영제의 체내반감기는 정상인에서 약 90분이

지만 만성신부전 환자에서는 30-120시간까지 연장되어있어, 체내 여러 

조직에서 장기간 체류하면서 가돌리니움 유리이온이 배출되어 전신섬유

화를 일으킬 수 있다. 이러한 배경에서, 가돌리니움 기반의 자기공명영

상조영제는 신원성 전신섬유화의 원인 물질로 간주되어 왔다. 최근 거대

고리를 가진 가돌리니움 기반의 자기공명영상조영제를 사용하게 됨에 따

라 신원성 전신섬유화의 발생빈도가 상당히 감소하였지만, 고위험 환자

에서의 사용 자제 및 과다한 용량의 투여를 제한한 것도 주요한 요인이

라고 할 수 있다. 가돌리니움 기반의 자기공명영상조영제와는 달리 초상

자성 제제는 다양한 크기의 산화철입자를 이용하는데, 만성신부전 환자

에서 경정맥투여에 대한 안전성이 확립되어있으며, 이 중에서도 최근 50 

nm이하의 크기를 가지는 제제가 개발되어 혈액저류 자기공명영상조영제

로서의 이용에 대한 연구가 진행되고 있다. 본 연구의 목적은 새롭게 합

성된 3 – 4 nm 크기의 철분핵을 가진 균일한 미세철분기반 나노입자의 
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자기공명특성 및 자기공명혈관조영술 조영제로서의 적합성을 모형실험과 

동물실험을 통하여 평가하는 데 있다.  

방법: 7종의 철분기반 나노입자 (KEG1 – 7)를 이용하여 1.5T, 3T, 및 

4.7T 자기공명영상장치에서 모형 및 동물실험을 시행하였다. 각 나노입

자당 순차적으로 희석된 시료를 제작한 후, inversion-recovery turbo 

spin-echo (IR-TSE), multiple echo-spin echo (ME-SE), multislice 

multiecho (MSME) 시퀀스를 이용하여 자기공명특성을 분석하였다. 경

사에코 시퀀스를 이용하여 모형실험에서 낮은 relaxivity ratio (r2/r1)를 

보인 2종의 선택된 철분기반 나노입자 (KEG1, KEG5)의 다양한 숙임각 

및 농도에서의 자기공명신호강도 변화를 평가하였다. 모형실험에서 낮은 

relaxivity ratio (r2/r1)를 보인 3종의 선택된 철분기반 나노입자 (KEG1, 

KEG3, KEG5)를 이용하여, 총 8마리의 몸무게 3kg의 가토를 대상으로 

체내 약동학적 특성 평가 및 체내교차시험을 시행하였다. 약동학적 특성 

평가는 1종의 철분기반 나노입자 (KEG5)를 이용하였고, 가토에 투여한 

후, 시간경과에 따른 혈관의 조영정도, 체내 장기의 조영증강 정도, 체외

배출 등을 평가하였다. 체내교차시험은 2종의 철분기반 나노입자 

(KEG1, KEG3)와 도타렘의 원액 (KEG1-S, KEG3-S – 0.093 mmol/kg; 

DOT-S – 0.1 mmol/kg) 및 1/2 희석된 시료 (KEG1-H, KEG3-H – 

0.047 mmol/kg; DOT-H – 0.05 mmol/kg)를 제작하여 가토에 교차투여
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한 후, 시간경과에 따른 혈관의 조영증강 정도를 측정하고, 조영제 간의 

차이를 linear-mixed effects model을 이용하여 분석하였다. 모형실험 

및 동물실험에서 시판중인 자기공명 영상 조영제와 비교를 위하여 도타

렘 (Gd-DOTA)을 대조군으로 사용하였다. 

결과: 7종의 철분기반 나노입자들의 relaxivity ratio (r2/r1)가 1.5T 

(KEG1, 2.95; KEG2, 6.00; KEG3, 2.44; KEG4, 2.51; KEG5, 1.85; 

KEG6, 4.37; KEG7, 3.32)와 3T (KEG1, 3.01; KEG2, 5.72; KEG3, 2.68; 

KEG4, 3.40; KEG5, 3.17; KEG6, 3.76; KEG7, 4.78)에서 모두 6이하로 

측정되어 자기공명혈관조영술에 이용이 가능하였다. Relaxivity ratio는 

자기장의 세기가 증가할수록 증가하는 경향을 보였다. 경사에코 시퀀스

에서, 철분기반 나노입자의 농도가 가장 낮을 때의 최고 신호강도는 

1.5T의 경우에 10°에서 20° 사이의 숙임각, 3T의 경우에 10°에서 15° 

사이의 숙임각에서 각각 관찰되었다. 철분기반 나노입자의 농도가 증가

함에 따라, 더 큰 숙임각에서 최고 신호강도를 보이는 경향이 있었다. 

약동학적 특성 평가시에 KEG5는 초회통과 영상에서 최고 자기공명신호

를 보인 후, 90분 지연 영상까지 지속적인 혈관의 조영증강을 보였다. 

KEG5 투여 후 초회통과 영상에서 체내 장기들은 도타렘과 비슷한 정도

의 조영증강을 보였다. 1주일 지연 영상에서 KEG5는 거의 모두 체외로 

배출되었다. 체내 교차실험에서 1/2 희석된 철분기반 나노입자는 희석이 
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되지 않은 철분기반 나노입자와 비교하여 유의하게 낮은 조영증강신호를 

보였다 (대동맥궁, KEG1-S 대 KEG1-H – difference 70.167, p<0.001 

및 KEG3-S 대 KEG3-H – difference 118.167, p<0.001; 하행흉부대동

맥, KEG1-S 대 KEG1-H – difference 134.667, p<0.001 및 KEG3-S 

대 KEG3-H – difference 131.333, p<0.001). 초회통과 영상에서 최고

신호강도를 측정하였을 때, KEG3-S와 DOT-S 간의 유의한 차이는 보

이지 않았고 (대동맥궁, difference -8.167, p=1.000; 하행흉부대동맥, 

difference -3.667, p=1.000), KEG3-S와 DOT-S는 KEG1-S 보다 높은 

신호강도를 보였다 (대동맥궁 및 하행흉부대동맥, p<0.05). 10분 지연 영

상에서 KEG3-S와 KEG1-S 모두 DOT-S보다 유의하게 높은 신호강도

를 보였다 (대동맥궁, KEG3-S 대 DOT-S – difference 150.667, 

p<0.001 및 KEG1-S 대 DOT-S – difference 71.667, p<0.001; 하행흉

부대동맥, KEG3-S 대 DOT-S – difference 202.667, p<0.001 및 

KEG1-S 대 DOT-S – difference 127.333, p<0.001). 

결론: 1.5T와 3T 자기공명영상장치에서 시행한 모형실험에서 새롭게 

합성된 3 nm 이하의 철분기반 나노입자는 모두 6이하의 relaxivity 

ratio (r2/r1)를 보여 우수한 T1 단축 효과를 보였다. 3T 자기공명영상장

치에서 시행한 동물실험에서 3 nm의 철분핵과 10 nm의 전체 크기를 가

진 철분기반 나노입자 (KEG3)는 시판중인 T1 자기공명영상 조영제 (도
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타렘)와 비교하여 초회통과 영상에서 유사한 조영증강 효과 및 지연영상

에서 더 우수한 조영증강 효과를 보였다.  

 

주요어: 산화철나노입자, 혈액저류조영제, 자기공명혈관조영술, 조영증강 

학  번: 2010-30524 
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