50 research outputs found

    A Multiscale View of Active Galactic Nuclei Jets: from the Formation and Acceleration to High Energy Outbursts

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์ž์—ฐ๊ณผํ•™๋Œ€ํ•™ ์ฒœ๋ฌธํ•™๊ณผ,2019. 8. Sascha Trippe.Active Galactic Nuclei (AGNs) often produce highly collimated relativistic jets, one of the most energetic phenomena in the Universe. In this thesis, we probe the mechanism of launching, propagation, and energy dissipation of AGN jets by using various methodologies. We study the jet of a nearby radio galaxy M87 with very long baseline interferometry observations and find that the jet is collimated by the pressure of non-relativistic winds launched from hot accretion flows and accelerated to relativistic speeds by strong magnetic fields in the jet. We investigate the frequency dependence of Faraday rotation of many AGN jets and reveal that recollimation shocks in the jets may play an important role in dissipation of the jet kinetic energy. We examine the association of strong ฮณ-ray flares occurred in 2015 in the jet of PKS 1510โ€“089 and its peculiar kinematic behavior and find that the flares may originate from compression of the jet knots by a standing shock in the core. We study the long-term radio variability of many radio-loud AGNs by employing temporal Fourier transform of the light curves and reveal that the radio variability can be controlled by the accretion processes. We constrain the properties of the radio-emitting source known as Sagittarius A*, which is potentially powered by jets, by a very long baseline interferometry observation during the passage of the gas cloud G2 through the vicinity of the supermassive black hole.Abstract List of Figures List of Tables 1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Jets in Active Galactic Nuclei . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Phenomenology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.2 How are AGN jets produced? . . . . . . . . . . . . . . . . . . . 10 1.1.3 Accretion flows and winds . . . . . . . . . . . . . . . . . . . . . . 19 1.1.4 Recollimation shocks and energy dissipation . . . . . . . . . . . . 27 1.1.5 M87: the best target for AGN jet astrophysics . . . . . . . . . . 37 1.2 The gas cloud G2 passing through the vicinity of Sagittarius A* . . . . 42 1.3 Very Long Baseline Interferometry . . . . . . . . . . . . . . . . . . . . . 44 1.4 Power spectrum of light curve . . . . . . . . . . . . . . . . . . . . . . . . 49 1.5 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 2. Faraday Rotation in the Jet of M87 inside the Bondi Radius: Indication of Winds from Hot Accretion Flows Confining the Relativistic Jet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 2.2 Archival data and data reduction . . . . . . . . . . . . . . . . . . . . . . 60 2.3 Analysis and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 2.3.1 RM maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 2.3.2 Radial RM profile . . . . . . . . . . . . . . . . . . . . . . . . . . 66 2.3.3 Contribution of RM sources outside the Bondi radius . . . . . . 69 2.3.4 Variability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 2.3.5 The Faraday screen . . . . . . . . . . . . . . . . . . . . . . . . . 71 2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 2.4.1 Jet sheath vs hot accretion flows . . . . . . . . . . . . . . . . . . 81 2.4.2 Winds and the Faraday screen . . . . . . . . . . . . . . . . . . . 84 2.4.3 Jet collimation by winds . . . . . . . . . . . . . . . . . . . . . . . 85 2.4.4 Mis-alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 2.4.5 Mass accretion rate . . . . . . . . . . . . . . . . . . . . . . . . . . 88 2.4.6 RM at HST-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 2.4.7 EHT observations . . . . . . . . . . . . . . . . . . . . . . . . . . 92 2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 3 Intensive Monitoring of the M87 Jet with KaVA: Jet Kinematics based on Observations in 2016 at 22 and 43 GHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 3.2 Observations and Data Reduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 3.3 Summary of Previous Studies of the M87 Jet Kinematics . . . . . . . . . 104 3.4 Jet Kinematics on Scales of . 20 mas Based on KaVA Observations . . 108 3.4.1 Modelfit with Circular Gaussian Components . . . . . . . . . . . 108 3.4.2 Modelfit with Point Sources and Grouping . . . . . . . . . . . . . 112 3.4.3 Wise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 3.4.4 Jet Apparent Speeds and Comparison with Other Studies . . . . 119 3.5 Jet Kinematics on Scales of โ‰ˆ 340 โˆ’ 410 mas Based on VLBA Archive Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 3.6.1 Slow Jet Acceleration . . . . . . . . . . . . . . . . . . . . . . . . 128 3.6.2 Multiple Streamlines and Velocity Stratification . . . . . . . . . . 132 3.6.3 Current Limitations and Future Prospects . . . . . . . . . . . . . 133 3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 4 Revealing the Nature of Blazar Radio Cores through Multi-Frequency Polarization Observations with the Korean VLBI Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 4.2 Observations and Data Reduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 4.3 results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 4.3.1 RM at radio wavelengths . . . . . . . . . . . . . . . . . . . . . . 147 4.3.2 Optical EVPAs from the Steward observatory . . . . . . . . . . . 163 4.3.3 fractional polarization . . . . . . . . . . . . . . . . . . . . . . . . 168 4.4 discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 4.4.1 RM distributions at different frequencies . . . . . . . . . . . . . . 170 4.4.2 Change of core opacities from optically thick to thin . . . . . . . 173 4.4.3 The Faraday screen. . . . . . . . . . . . . . . . . . . . . . . . . 174 4.4.4 RM sign change. . . . . . . . . . . . . . . . . . . . . . . . . . . 175 4.4.5 Optical subclasses . . . . . . . . . . . . . . . . . . . . . . . . . . 177 4.4.6 Intrinsic polarization orientation . . . . . . . . . . . . . . . . . . 178 4.4.7 Multiple recollimation shocks in the cores . . . . . . . . . . . . . 179 4.5Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 5 Ejection of Double knots from the radio core of PKS 1510โ€“089 during the strong ฮณ-ray flares in 2015. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 5.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 5.2 Multi-wavelength Light Curves . . . . . . . . . . . . . . . . . . . . . . . 190 5.2.1 iMOGABA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 5.2.2 SMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 5.2.3 Radio Spectral Index . . . . . . . . . . . . . . . . . . . . . . . . . 192 5.2.4 Optical Photometric Data . . . . . . . . . . . . . . . . . . . . . . 193 5.2.5 Fermi-LAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 5.3 Jet kinematics and linear polarization analysis . . . . . . . . . . . . . . 194 5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 5.4.1 Comparison of the ฮณ-ray flares in 2015 with previous flares . . . 200 5.4.2 Double-knot Jet Structure . . . . . . . . . . . . . . . . . . . . . . 201 5.4.3 Acceleration motions and Spine-sheath Scenario . . . . . . . . . 204 5.4.4 Origin of the 2015 ฮณ-ray flare . . . . . . . . . . . . . . . . . . . . 207 5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 6 Radio Variability and Random Walk Noise Properties of Four Blazars. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 6.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 6.2 Target Selection and Flux Data . . . . . . . . . . . . . . . . . . . . . . . 214 6.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 6.3.1 Lightcurves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 6.3.2 Spectral indices. . . . . . . . . . . . . . . . . . . . . . . . . . . 215 6.3.3 Time offsets among spectral bands . . . . . . . . . . . . . . . . . 217 6.3.4 Periodograms. . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 6.3.5 Simulated lightcurves and significance levels. . . . . . . . . . . 222 6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 6.4.1 3C 279 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 6.4.2 3C 345 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 6.4.3 3C 446 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 6.4.4 BL Lac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 6.5.1 Spectral indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 6.5.2 Spectral time delays . . . . . . . . . . . . . . . . . . . . . . . . . 227 6.5.3 Power spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228 6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 7 The long-term centimeter variability of active galactic nuclei: A new relation between variability timescale and accretion rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 7.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 7.2 Sample and Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 7.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240 7.3.1 Lightcurves and Power Spectra . . . . . . . . . . . . . . . . . . . 240 7.3.2 Fractal Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . 243 7.3.3 Fitting Lightcurves Piecewise with Gaussian Peaks . . . . . . . . 248 7.3.4 Derivatives of Lightcurves . . . . . . . . . . . . . . . . . . . . . . 250 7.3.5 Black Hole Masses and Accretion Rates . . . . . . . . . . . . . . 250 7.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254 7.4.1 General Features of Power Spectra . . . . . . . . . . . . . . . . . 254 7.4.2 Distributions of Fractal Dimension . . . . . . . . . . . . . . . . . 256 7.4.3 ฮฒ as an Indicator of Variability Timescale . . . . . . . . . . . . . 257 7.4.4 Relation between ฮฒ and the Accretion Rate . . . . . . . . . . . . 262 7.4.5 Broken Power-law Periodograms . . . . . . . . . . . . . . . . . . 274 7.4.6 Comparison with Other Studies . . . . . . . . . . . . . . . . . . . 282 7.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286 8 No asymmetric outflows from Sagittarius A* during the pericenter passage of the gas cloud G2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294 8.2 Observations and data analysis . . . . . . . . . . . . . . . . . . . . . . . 296 8.3 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299 Bibliography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305 Appendix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338 A Appendices for Chapter 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339 A.1 Errors in linear polarization quantities . . . . . . . . . . . . . . . . . . . 339 A.2 Significance level of RM . . . . . . . . . . . . . . . . . . . . . . . . . . . 343 A.3 RM maps for all observations . . . . . . . . . . . . . . . . . . . . . . . . 346 A.4 Radial RM profiles for the northern and southern jet edges . . . . . . . 348 B Appendices for Chapter 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349 B.1 WISE Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349 C Appendices for Chapter 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353 C.1 D-Term calibration and evolution. . . . . . . . . . . . . . . . . . . . . 353 C.2 Reliability check of KVN polarimetry. . . . . . . . . . . . . . . . . . . 358 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363 ์š” ์•ฝ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369Docto

    DNA ์†์ƒ์‹œ ์œ ๋„๋˜๋Š” DBC1์˜ ์ˆ˜๋ชจํ™”๊ฐ€ p53์— ์˜ํ•ด ๋งค๊ฐœ๋˜๋Š” ์„ธํฌ์‚ฌ๋ฉธ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์— ๊ด€ํ•œ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ƒ๋ช…๊ณผํ•™๋ถ€, 2016. 8. ์ •์ง„ํ•˜.SIRT1, a mammalian ortholog of yeast silent interaction regulator 2 (Sir2), is a NAD+-dependent histone III deacetylase. SIRT1 regulates various cellular processes, such as apoptosis, stress response, tumorigenesis, and metabolism. Tumor suppressor p53 is a main target for SIRT1. Under normal conditions, p53 is deacetylated by SIRT1, inactivated, and degraded by MDM2, the major ubiquitin E3 ligase. Under stress conditions (e.g., exposure to UV or etoposide), however, p53 is acetylated by p300/CBP, dissociated from MDM2 for stabilization, and activated, resulting in p53-mediated induction of cell cycle arrest or apoptosis. Small ubiquitin-related modifier (SUMO) is an ubiquitin-like protein that is conjugated to a variety of cellular proteins. Like ubiquitin, SUMO is conjugated to target proteins by a three enzyme cascade system consisting of SUMO-activating E1 enzyme (SAE1/SAE2), SUMO-conjugating E2 enzyme (Ubc9), and SUMO E3 ligases (PIASs). Conjugated SUMO can be removed by a family of Sentrin-specific proteases (SENPs). This reversible sumoylation process regulates diverse cellular processes, including transcription, nuclear transport, stability, and signal transduction. Deleted in breast cancer 1 (DBC1) is a tumor suppressor that plays crucial roles in the control of diverse cellular processes, including stress response and energy metabolism. DBC1 is a major inhibitor of SIRT1. Under DNA damage conditions, DBC1 binds to SIRT1 and this tight binding displaces p53 from SIRT1, allowing acetylation and transactivation of p53 for expression of its downstream targets, such as p21, BAX, and PUMA. However, how the function of DBC1 is regulated remained unknown. Phosphorylation of DBC1 regulates DBC1-SIRT1 interaction and SIRT1 deacetylase activity. Under stress conditions, ATM/ATR kinases are activated and phosphorylates DBC1 at Thr454. This phosphorylation causes tight binding between DBC1 and SIRT1, leading to dissociation of p53 from SIRT1 for subsequent acetylation and transactivation of p53. In this study, I demonstrated that DBC1 is a target for SUMO modification and that Lys591 serves as the major SUMO acceptor site. Treatment with DNA-damaging agents, such as etoposide and doxorubicin, induced sumoylation of endogenous DBC1. In addition, DBC1 was modified by SUMO2 and SUMO3, but not by SUMO1. Remarkably, this sumoylation of DBC1 promoted its interaction with SIRT1, leading to p53 acetylation. PIAS3 was found to act as a DBC1-specific SUMO E3 ligase and SENP1 was to serve as DBC1-specific desumoylation enzyme. Interestingly, PIAS3 and SENP1 interacted to the same N-terminal region of DBC1 and therefore competed with each other for binding to DBC1. Etoposide treatment reduced the interaction of DBC1 with SENP1, but promoted that with PIAS3, resulting in an increase in DBC1 sumoylation. Remarkably, the switching from SENP1 to PIAS3 for DBC1 binding was achieved by ATM/ATR-mediated phosphorylation of DBC1. These results demonstrate that PIAS3 and SENP1 antagonistically regulate SUMO modification of DBC1. Consistently, SENP1 knockdown promoted etoposide-induced apoptosis, whereas knockdown of PIAS3 or SUMO2/3 and overexpression of sumoylation-deficient DBC1 mutant inhibited it. Collectively, the present findings indicate that SUMO modification of DBC1 by SUMO2/3 plays a crucial role in p53-mediated apoptosis under DNA damage conditions.BACKGROUND 1 1. p53 pathway 1 2. SIRT1 4 3. Small Ubiquitin-like Modifier (SUMO) 5 4. DBC1 10 5. Purpose of thesis work 13 INTRODUCTION 16 MATERIALS AND METHODS 20 1. Plasmids and shRNAs 20 2. Cell culture and transfection 20 3. Assays for SUMO modification 21 4. Immunoprecipitation 22 5. SIRT1 activity assay 23 6. Determination of NAD+/NADH ratio 23 7. Purification of SUMO3, sumoylated DBC1 and SIRT1 24 8. Luciferase assay 25 9. TUNEL assay 26 RESULTS 27 DBC1 is a target for sumoylation 27 DNA damage induces sumoylation of DBC1 and its interaction with SIRT1 28 DBC1 sumoylation blocks interaction of SIRT1 with p53 31 PIAS3 and SENP1 counteract on SUMO modification of DBC1 32 DBC1 phosphorylation promotes its sumoylation 35 DBC1 sumoylation is required for p53 transactivation 36 DBC1 sumoylation is required for p53-mediated apoptosis 37 DISCUSSION 117 REFERENCES 124 ABSTRACT IN KOREAN 135Docto

    A Study on Art for Personal Recovery and its Expression

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๋ฏธ์ˆ ๋Œ€ํ•™ ์„œ์–‘ํ™”๊ณผ, 2018. 2. ์œค๋™์ฒœ.๊ตญ๋ฌธ ์ดˆ๋ก ๋ณธ ๋…ผ๋ฌธ์€ ๋ณธ์ธ์˜ ํšŒํ™”๋ฅผ ํŠธ๋ผ์šฐ๋งˆ์— ๋Œ€ํ•œ ์น˜์œ ์˜ ๊ณผ์ •์œผ๋กœ ์ดํ•ดํ•˜๊ณ , ์ •์‹ ๋ถ„์„ํ•™์„ ํ† ๋Œ€๋กœ ์ž‘๊ฐ€์˜ ์‹ฌ๋ฆฌ์™€ ์ž‘์—… ์‚ฌ์ด์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๋ณ€์ฆ๋ฒ•์  ๊ด€๊ณ„๋ฅผ ์—ฐ๊ตฌํ•จ์œผ๋กœ์จ ์ดํ›„์˜ ์ž‘์—…์„ ๋ชจ์ƒ‰ํ•˜๊ณ ์ž ํ•˜๋Š”๋ฐ ์˜์˜๊ฐ€ ์žˆ๋‹ค. ๋‚˜์—๊ฒŒ ์˜ˆ์ˆ ์ด๋ž€ ์‚ฌํšŒ์  ์ด๋…์„ ํ‘œํ˜„ํ•˜๋Š” ๊ฒƒ ์ด์ „์— ๊ฐœ์ธ์˜ ์ž์•„๋ฅผ ํ‘œํ˜„ํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ์ด๋Ÿฌํ•œ ๊ด€์ ์€ 26์„ธ์˜ ๊ฑด์ถ•ํ•™๋„ ์‹œ์ ˆ์— ํ‘œํ˜„์ฃผ์˜ ์ž‘๊ฐ€์ธ ๋ญ‰ํฌ์˜ ์ž‘ํ’ˆ ์Šฌ๋ผ์ด๋“œ๋ฅผ ์ ‘ํ•จ์œผ๋กœ์จ ์‹œ์ž‘๋˜์—ˆ๋‹ค. ๊ทธ์˜ ๊ทธ๋ฆผ์œผ๋กœ๋ถ€ํ„ฐ ๋Š๋‚€ ๊ฒƒ์€ ์ฃฝ์Œ์˜ ์œ„ํ˜‘์œผ๋กœ๋ถ€ํ„ฐ ๋ฒ—์–ด๋‚˜๋ ค๋Š” ๋ชธ๋ถ€๋ฆผ๊ณผ ์ฒด๋… ๊ฐ™์€ ์ƒ๋ฐ˜๋œ ์‹ฌ์ƒ์˜ ํ˜ผ๋ˆ์ด์—ˆ๋‹ค. ์ด ์‹ฌ์ƒ๋“ค๊ณผ์˜ ๊ณต๋ช…์€ ๋‚ด๋ฉด์˜ ํŠธ๋ผ์šฐ๋งˆ์— ๋Œ€ํ•œ ์ธ์‹๊ณผ ์น˜์œ ๋กœ์„œ์˜ ๋ฏธ์ˆ ์— ๋Œ€ํ•œ ์‹ค๋งˆ๋ฆฌ๋ฅผ ์ œ์‹œํ•˜์˜€๋‹ค. ๋‚˜์˜ ํŠธ๋ผ์šฐ๋งˆ๋Š” ์œ ๋…„๊ธฐ๋ถ€ํ„ฐ ์ˆ˜๋…„๊ฐ„ ๊ฐ€์กฑ์‚ฌ(ๅฎถๆ—ๅฒ)์—์„œ ๋ฐœ์ƒํ•œ ์‚ฌ๊ฑด๋“ค๋กœ๋ถ€ํ„ฐ ๊ธฐ์ธํ•œ๋‹ค. ๊ทธ๋กœ๋ถ€ํ„ฐ ํŒŒ์ƒ๋œ ๊ทน๋„์˜ ๋ถˆ์•ˆ๊ณผ ํ—ˆ๋ฌด์— ๋Œ€์‘ํ•˜๋ ค๋Š” ์˜์ง€์—์„œ ์ž‘์—…์ด ์‹œ์ž‘๋œ ๊ฒƒ์ด๋‹ค. ๊ทธ๋Ÿฌ๋ฏ€๋กœ ๋ฏธ์ˆ ์„ ํ†ตํ•œ ์ž๊ธฐ ์น˜์œ ๋Š” ์ž‘์—…์˜ ๋™๊ธฐ์ด์ž ๋ชฉ์ ์œผ๋กœ์„œ ์˜์˜๋ฅผ ๊ฐ–๋Š”๋‹ค. ํŠธ๋ผ์šฐ๋งˆ์™€ ์˜ˆ์ˆ ์˜ ๊ด€๊ณ„์„ฑ์— ๊ด€ํ•œ ์—ฐ๊ตฌ๋Š” ํ”„๋กœ์ดํŠธ์˜ ์ •์‹ ๋ถ„์„ํ•™์— ๊ทผ๊ฑฐํ•˜์˜€์œผ๋ฉฐ, ์น˜์œ ์˜ ๋ฐฉ๋ฒ•๋ก ์— ๋Œ€ํ•ด์„œ๋Š” ์ฃผ๋””์Šค ํ—ˆ๋จผ์˜ ์ž„์ƒ์  ์ด๋ก ์— ๋ฐ”ํƒ•์„ ๋‘์—ˆ๋‹ค. 2005๋…„์— ์‹œ์ž‘ํ•œ ๋ผ์ง€ ์—ฐ์ž‘์€ ๋…ธ๋™์ง‘์•ฝ์ ์ธ ๋ฌ˜์‚ฌ์™€ ์ ๋ฌ˜์˜ ๋ฐฉ์‹์„ ํ†ตํ•ด ์™„์„ฑ๋œ ์ž‘์—…์œผ๋กœ์„œ ํŠธ๋ผ์šฐ๋งˆ๋กœ ์ธํ•œ ๋ฐœ์ž‘๊ณผ ์ •์‹ ์  ํ˜ผ๋ˆ์— ๋Œ€์‘ํ•˜๊ธฐ ์œ„ํ•œ ์–ต์ œ์  ์ˆ˜๋‹จ์ด ๋˜์—ˆ๋‹ค. ์ด์— ๋Œ€ํ•ด ๋‚˜์˜ ๋ผ์ง€ ๋˜๊ธฐ๋ผ๋Š” ํšŒํ™”์˜ ์ฃผ์ œ์™€ ์ ๋ฌ˜๋ฒ•์˜ ํ˜•์‹์„ ๋ฌด์˜์‹์  ์–ต์••์ด ์ž‘์šฉํ•œ ๊ฒฐ๊ณผ๋กœ์„œ ์„ค๋ช…ํ•˜์˜€๋‹ค. 2012๋…„ ์ดํ›„ ์‹œ์ž‘ํ•œ ๊ธฐ์–ต ๊ทธ๋ฆฌ๊ธฐ๋Š” ์น˜์œ ์˜ ๋ฐฉ๋ฒ•๋ก ์„ ์˜์‹์ ์œผ๋กœ ๊ณ„ํšํ•œ ์ž‘์—…์ด์—ˆ๋‹ค. ์ด ์‹œ๊ธฐ์˜ ํ˜„์žฌ์™€ ๊ณผ๊ฑฐ๊ธฐ์–ต์˜ ์ค‘์ฒฉ๋˜๋Š” ์‹ฌ์ƒ ๊ทธ๋ฆฌ๊ธฐ๋Š” ์ด์•ผ๊ธฐ๊ธฐํ•˜๊ธฐ์™€ ์™ธ์ƒ๊ธฐ์–ต์˜ ์ „ํ™˜์ด๋ผ๋Š” ์ •์‹ ๋ถ„์„ํ•™์  ์น˜์œ ์˜ ๋ฐฉ๋ฒ•๋ก ์„ ๋Œ€์ฒดํ•˜๋Š” ๊ฒƒ์ด์—ˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์ด๋Ÿฌํ•œ ๊ณผ์ • ์†์—์„œ ํ”ผ์–ด๋‚˜๋Š” ์ฃผ๊ด€์ ์ธ ๊ฐ์ •๊ณผ ์‹ฌ๋ฆฌ์ƒํƒœ๋ฅผ ๋“œ๋Ÿฌ๋‚ธ ํšŒํ™”์˜ ํ˜•์‹์€ ํ‘œํ˜„์ฃผ์˜์˜ ์„ฑ๊ฒฉ์„ ๋ ๊ฒŒ ๋˜์—ˆ๋‹ค. ํ˜„์žฌ์™€ ๊ณผ๊ฑฐ์˜ ์ค‘์ฒฉ๋œ ์‹ฌ์ƒ์„ ํšŒํ™”๋กœ ํ‘œํ˜„ํ•˜๊ณ  ๋ถ„์„ํ•จ์œผ๋กœ์จ ํŠธ๋ผ์šฐ๋งˆ๋กœ ์ธํ•ด ๋‹จ์ ˆ๋˜์—ˆ๋˜ ์‚ถ์˜ ์ด์•ผ๊ธฐ๋ฅผ ํ†ตํ•ฉ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋‹ค. ์ด๊ฒƒ์€ ๊ณผ๊ฑฐ์˜ ์‚ฌ๊ฑด๊ณผ ์ž์‹  ํ˜น์€ ๋” ๋‚˜์•„๊ฐ€ ์ž์•„์™€ ์‚ฌํšŒ์— ๋Œ€ํ•œ ์ธ์‹์˜ ํ™•์žฅ๊ณผ ๊ฒฐํ•๋œ ์š”์ธ๋“ค์˜ ๋ณต๊ตฌ๋ฅผ ์˜๋ฏธํ•œ๋‹ค. ์น˜์œ ์˜ ๊ณผ์ •์œผ๋กœ์„œ์˜ ๊ทธ๋ฆผ์€ ํŠธ๋ผ์šฐ๋งˆ์˜ ์น˜์œ ์— ์ผ์กฐํ•˜์˜€์ง€๋งŒ, ํ•œํŽธ์œผ๋กœ๋Š” ๋‚˜์— ๊ด€ํ•œ ์ฒ ํ•™์  ๋‹ต๋ณ€์„ ์–ป๋Š” ๊ณผ์ •์ด๊ธฐ๋„ ํ–ˆ๋‹ค. ํ˜„์žฌ ๋‚˜๋Š” ํŠธ๋ผ์šฐ๋งˆ ์น˜์œ  ์ด์ „์˜ ์–ผ๊ตด์„ ์ง€์›Œ๋‚ธ ํ›„ ์žฌ๊ตฌ์ถ•ํ•œ ํšŒํ™”๋กœ์„œ์˜ ์ž์•„์ƒ์— ๋Œ€ํ•œ ํšŒ์˜๋กœ ์ธํ•ด ๋‹ค์‹œ๊ธˆ ๊ทธ ํ•ด์ฒด๋ฅผ ์›ํ•˜๊ณ  ์žˆ๋‹ค. ์ด๋ ‡๋“ฏ ์ž์‹ ์˜ ์‚ฌ์œ ์™€ ํšŒํ™”์— ์žˆ์–ด์„œ ํ•ด์ฒด์™€ ๊ตฌ์ถ•์˜ ์‚ฌ์ด๋ฅผ ์˜ค๊ฐ€๋Š” ์™ธ์ƒ์˜ ๋ณ€์ฆ๋ฒ•์€ ๊ณ„์†ํ•ด์„œ ์žฌํ˜„๋˜๋ฆฌ๋ผ๊ณ  ๋ณธ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ๋ณธ ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด, ์น˜์œ ๋กœ์„œ์˜ ๋ฏธ์ˆ ์„ ํ†ตํ•œ ์ฒ ํ•™์  ์‚ฌ์œ ๋Š” ๋น„์–ธ์–ด์ ์ธ ์‹ฌ๋ฆฌ๋“ค๊ณผ ์–ฝํ˜€ ๋ณธ์ธ์˜ ํšŒํ™”์  ํ‘œํ˜„์˜ ํ™•์žฅ์— ํฌ๊ฒŒ ๊ธฐ์—ฌํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฐ€๋Šฅ์„ฑ์„ ๋ณผ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์•ž์œผ๋กœ์˜ ์ž‘์—…์— ์ฃผ๊ฒŒ ๋  ์ƒˆ๋กœ์šด ๋ณ€ํ™”๋ฅผ ๊ธฐ๋Œ€ํ•œ๋‹ค.I. ์„œ๋ก  1 II. ์น˜์œ ๋กœ์„œ์˜ ๋ฏธ์ˆ ๊ณผ ํŠธ๋ผ์šฐ๋งˆ ์ด๋ก  5 1. ์น˜์œ ๋กœ์„œ์˜ ๋ฏธ์ˆ  5 2. ๋ฌด์˜์‹์  ์–ต์••๊ณผ ๋ฐ˜๋ณต๊ฐ•๋ฐ• : ํ”„๋กœ์ดํŠธ 7 3. ์™ธ์ƒ๊ธฐ์–ต์˜ ์ „ํ™˜๊ณผ ํšŒ๋ณต : ์ฃผ๋””์Šค ํ—ˆ๋จผ 12 III. ํŠธ๋ผ์šฐ๋งˆ ์ด๋ก ์„ ๋ฐ”ํƒ•์œผ๋กœ ํ•œ ๋ณธ์ธ์˜ ์ž‘์—… ๋ถ„์„ 16 1. ์œ ๋…„๊ธฐ ํŠธ๋ผ์šฐ๋งˆ์— ๋Œ€ํ•œ ์งง์€ ๋…๋ฐฑ 16 2. ์–ต์••(Repression)์˜ ์‹œ๊ธฐ(2005-2010) 17 1) ๋ผ์ง€์™€ ์บ”์˜ ์ด์ค‘์  ์˜๋ฏธ 17 ใ„ฑ. ํ‘œ๋ฐฉํ•œ ์˜๋ฏธ : ๋Œ€์ค‘ 17 ใ„ด. ๋‚ด์  ์˜๋ฏธ : ์–ต์•• 23 2) ๋ฐ˜๋ณต๊ฐ•๋ฐ•์— ์˜ํ•œ ์ ๋ฌ˜ 29 3. ์™ธ์ƒ๊ธฐ์–ต ์ „ํ™˜์˜ ์‹œ๊ธฐ(2012-2016) 32 1) ํ˜„์žฌ์™€ ๊ณผ๊ฑฐ์˜ ์ค‘์ฒฉ 32 2) ์ ˆ๋ง๊ณผ ํฌ๋ง์˜ ์—ญ์„ค 46 3) ๊ฐ์ • ํ‘œ์ถœ๊ณผ ์–ต์ œ์˜ ํ˜ผ์žฌ(ๆททๅœจ) : ํ‘œํ˜„์ฃผ์˜ ํšŒํ™” 53 IV. ๊ฒฐ๋ก  ์™ธ์ƒ์˜ ๋ณ€์ฆ๋ฒ• 60 ๊ทธ๋ฆผ๋ชฉ๋ก 65 ์ฐธ๊ณ ๋ฌธํ—Œ ๋ชฉ๋ก 67 Abstract 69Maste

    Controller Indirect Learning Algorithm Using Experimental Implantation Technique

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› ๊ณต๊ณผ๋Œ€ํ•™ ์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2017. 8. ์ด์ œํฌ.๋ฌผ๋ฆฌ ๊ธฐ๋ฐ˜ ์• ๋‹ˆ๋งค์ด์…˜์ด๋ž€ ๊ฐ€์ƒ์˜ ์บ๋ฆญํ„ฐ๋“ค์ด ๋ฌผ๋ฆฌ ๋ฒ•์น™์˜ ์ง€๋ฐฐ ํ•˜์—์„œ ์›€์ง์ด๋„๋ก ํ•˜๋Š” ๊ฒƒ์œผ๋กœ, ์›€์ง์ž„์— ํ˜„์‹ค์„ฑ์„ ๋ถ€์—ฌํ•จ์œผ๋กœ์จ ๋ณด๋Š” ์‚ฌ๋žŒ๋“ค๋กœ ํ•˜์—ฌ๊ธˆ ์ž์—ฐ์Šค๋Ÿฌ์šด ๋Š๋‚Œ์ด ๋“ค๊ฒŒ ํ•ด์ฃผ๋Š” ๊ธฐ๋ฒ•์ด๋‹ค. ํ˜„์žฌ ๊ฐ€์ƒ ์บ๋ฆญํ„ฐ์˜ ๋™์ž‘์„ ์ƒ์„ฑํ•˜๊ธฐ ์œ„ํ•ด ๊ฐ€์žฅ ๋ณดํŽธ์ ์œผ๋กœ ์ด์šฉ๋˜๊ณ  ์žˆ๋Š” ๋ฐฉ๋ฒ•์€ ๋ชจ์…˜ ์บก์ณ ๊ธฐ๋ฒ•์ธ๋ฐ, ์ด ๋ฐฉ๋ฒ•์€ ํ˜„์‹ค์˜ ์‚ฌ๋žŒ์ด๋‚˜ ๋™๋ฌผ์ด ๋ฐฐ์šฐ๊ฐ€ ๋˜์–ด ์ง์ ‘ ์ดฌ์˜ํ•œ๋‹ค๋Š” ์ ์—์„œ ํ•„์—ฐ์ ์œผ๋กœ ๋ช‡ ๊ฐ€์ง€ ๋ฌผ๋ฆฌ์  ํ•œ๊ณ„๋ฅผ ๊ฐ–๋Š”๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ๋‘ ๊ฐ€์ง€ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•œ๋‹ค. ๋จผ์ € ์ฒซ ๋ฒˆ์งธ๋Š” ์›ํ•˜๋Š” ๋ฌผ๋ฆฌ ํ™˜๊ฒฝ๊ณผ ๊ฐ€์ƒ ์บ๋ฆญํ„ฐ๊ฐ€ ์žˆ์„ ๋•Œ, ์–ป๊ณ ์ž ํ•˜๋Š” ๋™์ž‘์˜ ์ข…๋ฅ˜์— ๋”ฐ๋ผ ์บ๋ฆญํ„ฐ์˜ ์›€์ง์ž„์— ๋Œ€ํ•œ ๋ณด์ƒ(reward) ์‹œ์Šคํ…œ๋งŒ ์ •ํ•ด์ฃผ๋ฉด ๊ฐ•ํ™”ํ•™์Šต์„ ํ†ตํ•ด ์ฃผ์–ด์ง„ ์กฐ๊ฑด์— ๋งž๋Š” ๋™์ž‘์„ ์ž๋™์œผ๋กœ ์ƒ์„ฑํ•  ์ˆ˜ ์žˆ๋Š” ์ œ์–ด๊ธฐ๋ฅผ ํ•™์Šต์‹œํ‚ค๋Š” ๋ฐฉ๋ฒ•์ด๋‹ค. ๋‘ ๋ฒˆ์งธ ์ œ์•ˆ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์ฒซ ๋ฒˆ์งธ์— ์ด์–ด์ง€๋Š” ๋‚ด์šฉ์œผ๋กœ, ์ฃผ์–ด์ง„ ํ™˜๊ฒฝ์—์„œ ์ž˜ ํ•™์Šต๋œ ๋™์ž‘ ์ œ์–ด๊ธฐ๋ฅผ ๊ฐ–๊ณ  ์žˆ์„ ๋•Œ, ํ˜•ํƒœ ๋ฐ ๊ตฌ์กฐ๋Š” ๋™์ผํ•˜์ง€๋งŒ ๋‹ค๋ฅธ ๋ฐฉ์‹์œผ๋กœ ํ™˜๊ฒฝ์„ ์ธ์‹ํ•˜๋Š” ๊ฐ€์ƒ ์บ๋ฆญํ„ฐ์˜ ์ œ์–ด๊ธฐ๋ฅผ ๋น ๋ฅด๊ฒŒ ํ•™์Šต์‹œํ‚ด์œผ๋กœ์จ ํ™˜๊ฒฝ ์ธ์‹ ์„ผ์„œ๋ฅผ ์ผ๋ฐ˜ํ™”ํ•˜๋Š” ๋ฐฉ๋ฒ•์ด๋‹ค. ์‹คํ—˜์œผ๋กœ๋Š” ์žฅ์• ๋ฌผ์„ ํ”ผํ•ด ๋ชฉํ‘œ๋ฌผ๋กœ ๋น„ํ–‰ํ•˜๋Š” ๊ฐ€์ƒ ์บ๋ฆญํ„ฐ๋ฅผ ์ด์šฉํ•˜์—ฌ ์ด๋ฏธ ํ•™์Šต๋œ ์ œ์–ด๊ธฐ์˜ ๊ฒฝํ—˜์„ ํ†ตํ•ด ๊ฐ„์ ‘์ ์œผ๋กœ ํ•™์Šต๋œ ์ œ์–ด๊ธฐ์˜ ์„ฑ๋Šฅ์„ ๊ฒ€์ฆํ•˜์˜€๋‹ค.์ œ 1์žฅ ์„œ๋ก  1 ์ œ 2์žฅ ๊ด€๋ จ ์—ฐ๊ตฌ 5 2.1 ๋ฌผ๋ฆฌ ๊ธฐ๋ฐ˜ ์• ๋‹ˆ๋งค์ด์…˜ 5 2.2 ๊ฐ•ํ™”ํ•™์Šต์„ ์ด์šฉํ•œ ์ œ์–ด๊ธฐ ํ•™์Šต 7 ์ œ 3์žฅ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๊ฐœ์š” 9 ์ œ 4์žฅ ์ดˆ๊ธฐ ์ตœ์ ํ™” ๊ถค์  ์ƒ์„ฑ 13 ์ œ 5์žฅ ์ง„ํ™”์  CACLA 17 ์ œ 6์žฅ ๊ฐ„์ ‘ ๊ฒฝํ—˜ ํ•™์Šต 20 ์ œ 7์žฅ ์‹คํ—˜ ๋ฐ ๊ฒฐ๊ณผ 24 ์ฐธ๊ณ ๋ฌธํ—Œ 27 Abstract 32Maste

    Development of the 6 DOFs ultra precision positioning system using the PZT actuators and elastic hinges

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€,2003.Docto

    (A) Study on Catchment Force by Types of Facilities in Urban neighborhood park

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) --์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ฑด์„คํ™˜๊ฒฝ๊ณตํ•™๋ถ€, 2009.2.Maste

    Effect of adenovirus-p53 on the growth of human non-small cell lung cancer cells

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์˜ํ•™๊ณผ ํ‰๋ถ€์™ธ๊ณผํ•™์ „๊ณต,1998.Docto

    Position and Velocity Estimation of an Object in Uniform Motion Using Monocular Image Sequences

    No full text
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2012. 2. ํ•˜์ธ์ค‘.๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋‹จ์ผ์นด๋ฉ”๋ผ๋กœ ์ดฌ์˜ํ•œ ๋ฌผ์ฒด์˜ ์˜์ƒ์„ ์ด์šฉํ•˜์—ฌ, 3์ฐจ์› ๊ณต๊ฐ„ ์ƒ์—์„œ์˜ ๋ฌผ์ฒด์˜ ์œ„์น˜์™€ ์†๋„๋ฅผ ์ถ”์ •ํ•  ์ˆ˜ ์žˆ๋Š” ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ์šฐ์„  ์›€์ง์ด๋Š” ๋ฌผ์ฒด์— ๋Œ€ํ•œ ํ˜ธ๋ชจ๊ทธ๋ž˜ํ”ผ ํ–‰๋ ฌ์„ ๊ตฌํ•˜์˜€์œผ๋ฉฐ, ์ด ๊ฒฝ์šฐ ํ˜ธ๋ชจ๊ทธ๋ž˜ํ”ผ ํ–‰๋ ฌ์€ ์นด๋ฉ”๋ผ์™€ ๋ฌผ์ฒด์˜ ํšŒ์ „ ํ–‰๋ ฌ ๋ฐ ๋ณ€์œ„, ๋ฌผ์ฒด ํ‰๋ฉด์˜ ๋ฒ•์„  ๋ฒกํ„ฐ์™€ ๊ฑฐ๋ฆฌ ๋“ฑ์˜ ์ธ์ž๋“ค์— ์˜ํ•ด ํ‘œํ˜„๋  ์ˆ˜ ์žˆ์Œ์„ ๋ณด์˜€๋‹ค. ์นด๋ฉ”๋ผ์˜ ์œ„์น˜, ํšŒ์ „ ์ •๋ณด๋ฅผ ์•Œ๊ณ  ์žˆ๋Š” ๊ฒฝ์šฐ, ํ˜ธ๋ชจ๊ทธ๋ž˜ํ”ผ ํ–‰๋ ฌ์„ ์ด์šฉํ•˜์—ฌ ์›€์ง์ด๋Š” ๋ฌผ์ฒด์˜ ์œ„์น˜๋Š” ์ •ํ™•ํ•˜๊ฒŒ ๊ตฌํ•  ์ˆ˜ ์—†์œผ๋ฉฐ, ๋ฌผ์ฒด์˜ ์šด๋™๋ชจ๋ธ์„ ๊ฐ€์ •ํ•˜์—ฌ ๊ทผ์‚ฌ์ ์œผ๋กœ ์ถ”์ •ํ•  ์ˆ˜ ๋ฐ–์— ์—†๋‹ค. ๋‹ค์Œ์œผ๋กœ ๋ฌผ์ฒด์˜ ์œ„์น˜, ์นด๋ฉ”๋ผ์˜ ์œ„์น˜, ํ˜ธ๋ชจ๊ทธ๋ž˜ํ”ผ ํ–‰๋ ฌ์˜ ์ธ์ž๋“ค ์‚ฌ์ด์˜ ๊ด€๊ณ„์‹์„ ๋ถ„์„ํ•˜์—ฌ, ์ด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์นด๋ฉ”๋ผ์˜ ์œ„์น˜, ํšŒ์ „ ์ •๋ณด์™€ ๊ฒฐํ•ฉํ•˜์—ฌ ๋ฌผ์ฒด์˜ ๋™์—ญํ•™ ๋ฐฉ์ •์‹์„ ์„ ํ˜• ์‹œ๋ณ€์ด ์‹œ์Šคํ…œ์œผ๋กœ ๋‚˜ํƒ€๋‚ผ ์ˆ˜ ์žˆ์Œ์„ ๋ณด์ธ๋‹ค. ๋˜ํ•œ, ์œ ๋„๋œ ๋ฌผ์ฒด์˜ ๋™์—ญํ•™ ๋ฐฉ์ •์‹์„ ๊ธฐ๋ฐ˜์œผ๋กœ ์นผ๋งŒ ํ•„ํ„ฐ๋ฅผ ์ด์šฉํ•œ ๋ฌผ์ฒด์˜ ์†๋„ ์ถ”์ •๊ธฐ๋ฅผ ์„ค๊ณ„ํ•˜๊ณ  ๊ฐ€๊ด€์ธก์„ฑ ๋ถ„์„์„ ์ œ๊ณตํ•˜์—ฌ ๊ธฐ์กด ๊ธฐ๋ฒ•์— ๋น„ํ•˜์—ฌ ๊ฐ€๊ด€์ธก์„ฑ์ด ๊ฐœ์„ ๋˜์—ˆ์Œ์„ ๋ฐํžˆ๊ณ , ๊ฐ€์†๋„์˜ ํฌ๊ธฐ์— ๋”ฐ๋ฅธ ๊ฐ€๊ด€์ธก์„ฑ์„ ๋ถ„์„ํ•˜์˜€๋‹ค. ๋์œผ๋กœ, ์ œ์•ˆํ•œ ๊ธฐ๋ฒ•์— ๋Œ€ํ•œ ์‹คํ—˜ ๋ฐ์ดํ„ฐ๋ฅผ ์ œ๊ณตํ•จ์œผ๋กœ์จ ์‹ค์ œ ์‹œ์Šคํ…œ์— ๋Œ€ํ•œ ์ ์šฉ ๊ฐ€๋Šฅ์„ฑ์„ ์ž…์ฆํ•˜๋„๋ก ํ•œ๋‹ค.We propose a new estimation method which provides the estimates of the position and the velocity of a unknown moving object, using monocular image sequences. First, we derive the homography matrix of the moving object. The parameters of the homography matrix are represented by rotational matrix and translational vector of the camera, the object and normal vector of the object, and distance between the camera and the object. We show that if the information of the rotational and translational motion of the camera is known we can estimate the translational motion of the object asymptotically by assumed dynamic model from the homography matrix. Then, we derive the dynamic model of a moving object which is almost the same as a linear time-varying system by using the parameter of the homography matrix. Therefore we can design the motion estimator using the well-known Kalman filter and show the condition of observability. Though the observability condition of the proposed estimator restricts the motion of the camera, it is much milder than that of bearings-only tracking and depends on the magnitude of acceleration of the camera. Finally, experimental data shows an applicability of the proposed method.Maste
    corecore