7 research outputs found

    μΉ΄μ΄λž„ λ‚˜λ…Έκ΅¬μ‘°μ˜ ν”ŒλΌμ¦ˆλͺ¬ μ»€ν”Œλ§μ„ κΈ°λ°˜ν•œ μ›νŽΈκ΄‘ 이색성 λ³€μ‘°

    Get PDF
    ν•™μœ„λ…Όλ¬Έ(박사) -- μ„œμšΈλŒ€ν•™κ΅λŒ€ν•™μ› : κ³΅κ³ΌλŒ€ν•™ μž¬λ£Œκ³΅ν•™λΆ€, 2022.2. λ‚¨κΈ°νƒœ.μΉ΄μ΄λž„ 메타 λ¬Όμ§ˆμ€ λ›°μ–΄λ‚œ κ΄‘ 물질 μƒν˜Έ μž‘μš©μœΌλ‘œ μΈν•˜μ—¬ λ‚˜λ…Έ κ΄‘μž λΆ„μ•Όμ—μ„œ 큰 관심을 λ°›μ•„μ™”λ‹€. λ‹€λ…„κ°„μ˜ 연ꡬλ₯Ό ν†΅ν•˜μ—¬ μ΅œμ²¨λ‹¨ λ¦¬μ†Œκ·Έλž˜ν”Ό 기술과 λΆ„μž 쑰립 μŠ€μΊν΄λ“œλ₯Ό μ‚¬μš©ν•˜μ—¬ μΉ΄μ΄λž„ λ‚˜λ…Έκ΅¬μ‘°κ°€ μ œμž‘λ˜μ–΄ μ™”λ‹€. κΈ°ν•˜ν•™μ  λΉ„λŒ€μΉ­μ„±μ„ μ§€λ‹ˆλŠ” μΉ΄μ΄λž„ 무기 κΈˆμ† λ‚˜λ…Έ λ¬Όμ§ˆμ€ λŒ€μΉ­μ„±μ„ κ°€μ§€λŠ” λ‚˜λ…Έ λ¬Όμ§ˆμ—μ„œ 얻을 수 μ—†μ—ˆλ˜ λ…νŠΉν•œ 물리적 ν˜„μƒμ„ λ‚˜νƒ€λ‚Ό 수 μžˆλ‹€. μΉ΄μ΄λž„ λ‚˜λ…Έ κ΅¬μ‘°λŠ” 음의 ꡴절λ₯ , λΆ„μž 감지 및 κ΄‘λŒ€μ—­ μ›ν˜• νŽΈκ΄‘κ³Ό 같은 광학적 효과λ₯Ό λ‚˜νƒ€λ‚΄κΈ° μœ„ν•΄ μ‚¬μš©λ  수 μžˆλ‹€. μ΄λŸ¬ν•œ μΉ΄μ΄λž„ 메타 물질의 λ›°μ–΄λ‚œ κ΄‘ν•™ νŠΉμ„±μ„ μ‹€μ œ μž₯μΉ˜μ— ν†΅ν•©ν•˜κΈ° μœ„ν•΄μ„œλŠ” μ„¬μ„Έν•˜κ²Œ μ„€κ³„λœ 광학적 μ„±μ§ˆμ„ κ°€μ§€λŠ” μΉ΄μ΄λž„ ꡬ쑰λ₯Ό λ‹¬μ„±ν•˜λŠ” 것이 ν•„μš”ν•˜λ‹€. κ·ΈλŸ¬λ‚˜ κ³ κ°€μ˜ μ œμ‘°λΉ„μš© 및 μ„€λΉ„, λ³΅μž‘ν•œ 제쑰 κ³Όμ • 및 μ œν•œλœ ν•΄μƒλ„λ‘œ 인해 μΉ΄μ΄λž„ 메타 λ¬Όμ§ˆμ„ μ‹€μ œ μž₯치둜 ν†΅ν•©ν•˜λŠ” 데 μ œν•œμ΄ μžˆμ–΄μ™”λ‹€. μ΄λŸ¬ν•œ ν•œκ³„λ₯Ό κ·Ήλ³΅ν•˜κΈ° μœ„ν•΄μ„œλŠ” μΉ΄μ΄λž„ λ‚˜λ…Έ ꡬ쑰 μ œμ–΄λ₯Ό μœ„ν•œ μœ μ—°ν•œ 방법둠을 κ°œλ°œν•˜λŠ” 것이 μš”κ΅¬λœλ‹€. λ³Έ ν•™μœ„ 연ꡬ μ—μ„œλŠ” νŽ©νƒ€μ΄λ“œλ₯Ό μ΄μš©ν•œ λ‚˜λ…Έ μž…μž ν˜•νƒœμ˜ 닀양화와 λ‚˜λ…Έ κ΅¬μ‘°μ—μ„œμ˜ ν”ŒλΌμ¦ˆλͺ¬ μ»€ν”Œλ§μ„ μ΄μš©ν•œ 광학적 λ°˜μ‘μ˜ 좔가적인 쑰절이 μ•žμ„œ μ–ΈκΈ‰ν•œ ν•œκ³„λ₯Ό ν•΄κ²°ν•˜κΈ° μœ„ν•œ μœ λ§ν•œ λŒ€μ•ˆμ΄ 될 수 μžˆμŒμ„ μ œμ•ˆν•œλ‹€. λ³Έ ν•™μœ„ 논문은 μΉ΄μ΄λž„ λ‚˜λ…Έ ꡬ쑰의 λ°œλ‹¬μ— λŒ€ν•œ 이해와 μ‘°μ ˆμ„ 톡해 ν”ŒλΌμ¦ˆλͺ¬ μ»€ν”Œλ§μ„ μ΄μš©ν•˜μ—¬ μΉ΄μ΄λž„ κ΄‘ν•™ 응닡을 μ‘°μ ˆν•  수 μžˆλŠ” ν”Œλž«νΌμ„ μ œμ‹œν•œλ‹€. μƒμ²΄λΆ„μžλ₯Ό μ΄μš©ν•œ ν”ŒλΌμ¦ˆλͺ¬ λ‚˜λ…Έ μž…μžμ˜ μ½œλ‘œμ΄λ“œ 합성에 λŒ€ν•œ 졜근 μ—°κ΅¬κ²°κ³ΌλŠ” ν•©μ„± 과정에 κ΄€μ—¬ν•˜λŠ” μΉ΄μ΄λž„μ„± 인코더인 λΆ„μžλ₯Ό λ³€κ²½ν•¨μœΌλ‘œμ¨ μƒˆλ‘œμš΄ ν˜•νƒœμ™€ 광학적 νŠΉμ„±μ„ 가진 λ‚˜λ…Έμž…μžλ₯Ό ν•©μ„±ν•  수 μžˆμŒμ„ μ‹œμ‚¬ν•œλ‹€. λ˜ν•œ 단일 ν”ŒλΌμ¦ˆλͺ¬ μž…μžμ˜ κ΄‘ν•™ 응닡은 ν”ŒλΌμ¦ˆλͺ¬ μ»€ν”Œλ§μ„ μ‚¬μš©ν•˜μ—¬ 증폭되고 λ―Όκ°ν•˜κ²Œ 변쑰될 수 μžˆλ‹€. μ—¬λŸ¬ ν”ŒλΌμ¦ˆλͺ¬ λ‚˜λ…Έ μž…μžκ°€ 인접할 경우, μž…μž 곡λͺ…μ˜ ν˜Όμ„±ν™”κ°€ μœ λ„λ˜μ–΄ 곡λͺ…을 크게 λ³€ν™”μ‹œν‚¨λ‹€. ν”ŒλΌμ¦ˆλͺ¬ λ‚˜λ…Έ ꡬ쑰의 ν˜•νƒœμ™€ μΉ΄μ΄λž„μ„±μ„ μ œμ–΄ν•˜κΈ° μœ„ν•œ μƒˆλ‘œμš΄ μ „λž΅μ„ μˆ˜λ¦½ν•˜κΈ° μœ„ν•˜μ—¬, μš°λ¦¬λŠ” λ¨Όμ € μƒμ²΄λΆ„μžμ— μ˜ν•΄ μœ λ„λ˜λŠ” 무기 μΉ΄μ΄λž„μ„±μ— μ΄ˆμ μ„ λ§žμΆ”μ—ˆλ‹€. 무기 ν‘œλ©΄μ—μ„œμ˜ μ›μž μ™œκ³‘ λ˜λŠ” κ±°μ‹œμ  μž¬κ΅¬μ„±μ„ ν†΅ν•œ μΉ΄μ΄λž„μ„±μ˜ 진화에 λŒ€ν•œ κΈ°μ‘΄ μ—°κ΅¬λŠ” μΉ΄μ΄λž„ λ‚˜λ…Έ ꡬ쑰 μ œμ–΄λ₯Ό μœ„ν•œ μƒˆλ‘œμš΄ μ „λž΅ μˆ˜λ¦½μ— μ€‘μš”ν•œ 톡찰λ ₯을 μ œκ³΅ν•œλ‹€. λ³Έ ν•™μœ„λ…Όλ¬Έμ—μ„œλŠ” μΉ΄μ΄λž„ κ΄‘ν•™ λ°˜μ‘μ˜ 이해와 μ‘°μ ˆμ„ 단일 λ‚˜λ…Έ μž…μžμ™€ μ‹œμŠ€ν…œμ  μ œμ–΄μ˜ 두 가지 κ΄€μ μ—μ„œ μ†Œκ°œν•œλ‹€. λ‚˜λ…Έ 재료 κ³΅ν•™μ˜ λ°œμ „μœΌλ‘œ λ‚˜λ…Έ 규λͺ¨μ—μ„œ μ •ν™•ν•œ ν˜•νƒœν•™μ  μ œμ–΄κ°€ κ°€λŠ₯ν•œ μ½œλ‘œμ΄λ“œ ν•©μ„± 방법이 κ°œλ°œλ˜μ—ˆλ‹€. λ‹€μ–‘ν•œ ν• λ‘œκ²ν™”λ¬Ό 이온, κΈˆμ† 이온 및 유기 λΆ„μžλ₯Ό 흑착제둜 μ‚¬μš©ν•˜λ©΄ νŠΉμ • Miller μ§€μˆ˜λ‘œ 결정면을 λΆ€λ™νƒœν™”ν•˜μ—¬ κ²°μ •λ©΄κ³Ό λ‚˜λ…Έμž…μž ν˜•νƒœλ₯Ό μ†μ‰½κ²Œ μ œμ–΄ν•  수 μžˆλ‹€. λ˜ν•œ μ’…μž 맀개 방법은 높은 Miller-index 결정면을 높은 κ· μΌλ„λ‘œ 생성할 수 μžˆμœΌλ―€λ‘œ λ‚˜λ…Έ μž…μžμ˜ ν˜•νƒœλ₯Ό μ œμ–΄ν•˜λŠ” μ€‘μš”ν•œ μ „λž΅μœΌλ‘œ μ‚¬μš©λœλ‹€. μš°λ¦¬λŠ” 합성에 μ²¨κ°€ν•˜λŠ” 유기 λΆ„μžλ₯Ό λ³€κ²½ν•˜μ—¬ 금 λ‚˜λ…Έ μž…μžμ˜ μ„±μž₯ 및 μΉ΄μ΄λž„μ„± 진화에 λŒ€ν•œ κ΄‘λ²”μœ„ν•œ 이해λ₯Ό μ œκ³΅ν•œλ‹€. 이λ₯Ό μœ„ν•˜μ—¬ Ξ³-κΈ€λ£¨νƒ€λ°€μ‹œμŠ€ν…ŒμΈ(Ξ³-Glu-Cys) 및 μ‹œμŠ€ν…Œμ΄λ‹κΈ€λ¦¬μ‹ (Cys-Gly) 을 μ‚¬μš©ν•˜μ—¬ ν•©μ„±λœ 금 λ‚˜λ…Έ μž…μžμ˜ μ„±μž₯ κ²½λ‘œμ™€ ν‚€λž„μ„± 진화가 결정학적 κ΄€μ μ—μ„œ λΆ„μ„λ˜μ—ˆλ‹€. Ξ³-Glu-Cys을 μ΄μš©ν•˜μ—¬ ν•©μ„±λœ 금 λ‚˜λ…Έ μž…μžμ˜ 경우 돌좜된 μΉ΄μ΄λž„ λ‚ κ°œλ₯Ό κ°€μ§€λŠ” μ •μœ‘λ©΄μ²΄ ꡬ쑰둜 λ°œλ‹¬ν•œλ‹€. λ°˜λ©΄μ—, Cys-Gly을 μ΄μš©ν•˜μ—¬ ν•©μ„±λœ λ‚˜λ…Έμž…μžμ˜ 경우 νƒ€μ›ν˜•μ˜ 곡동 ꡬ쑰λ₯Ό 가진 λ§ˆλ¦„λͺ¨κΌ΄ 12면체둜 λ°œλ‹¬ν•˜λ©°, 이둜 인해 두 λ‚˜λ…Έ μž…μžλŠ” μ„œλ‘œ λ‹€λ₯Έ μΉ΄μ΄λž„ κ΄‘ν•™ λ°˜μ‘μ„ 보인닀. μ‹œκ°„μ— λ”°λ₯Έ λ‚˜λ…Έ μž…μžμ˜ μ„±μž₯ 뢄석을 톡해 Ξ³-Glu-Cys와 Cys-Glyκ°€ μ„œλ‘œ λ‹€λ₯Έ 쀑간 ν˜•νƒœλ₯Ό μ§€λ‹ˆλ©° μƒμ„±ν•œλ‹€λŠ” 것을 μ•Œ 수 μžˆμ—ˆλ‹€. Ξ³-Glu-CysλŠ” 였λͺ©ν•œ μœ‘νŒ”λ©΄μ²΄ λͺ¨μ–‘μ˜ 쀑간체λ₯Ό μœ λ„ν•˜λŠ” 반면 Cys-GlyλŠ” 였λͺ©ν•œ λ§ˆλ¦„λͺ¨κΌ΄ μ‹­μ΄λ©΄μ²΄μ˜ 쀑간체λ₯Ό 보인닀. μ΄λŸ¬ν•œ κ²°κ³ΌλŠ” νŽ©νƒ€μ΄λ“œμ™€ 금 ν‘œλ©΄ κ°„μ˜ μƒν˜Έ μž‘μš©μ„ μ΄ν•΄ν•¨μœΌλ‘œμ¨ μΉ΄μ΄λž„ ꡬ쑰와 그에 λ”°λ₯Έ κ΄‘ν•™ λ°˜μ‘μ„ μ‘°μ ˆν•  수 μžˆμŒμ„ μ‹œμ‚¬ν•œλ‹€. 생체 λΆ„μžλ₯Ό μ΄μš©ν•œ μΉ΄μ΄λž„ λ‚˜λ…Έκ΅¬μ‘°μ˜ 합성은 주둜 ν”ŒλΌμ¦ˆλͺ¬ λ¬Όμ§ˆμ—μ„œ μ—°κ΅¬λ˜μ–΄ μ™”μ§€λ§Œ, 촉맀 ν™œμ„±μ„ 지녀 μΉ΄μ΄λž„ μ΄‰λ§€λ‘œ μ‚¬μš©λ  수 μžˆλŠ” μΉ΄μ΄λž„ κΈˆμ† 산화물을 ν•©μ„±ν•˜λ €λŠ” μ‹œλ„ λ˜ν•œ μΉ΄μ΄λž„ 물질의 μ‘μš© ν™•λŒ€λ₯Ό μœ„ν•œ μƒˆλ‘œμš΄ λ°©ν–₯으둜 μ œμ‹œλ˜κ³  μžˆλ‹€. 생체 λΆ„μžλ₯Ό μ΄μš©ν•œ μΉ΄μ΄λž„ κΈˆμ† μ‚°ν™”λ¬Ό ν•©μ„±μ—μ„œμ˜ κΈ°μ‘΄ μ—°κ΅¬λŠ” 단일 아미노산에 κ΅­ν•œλ˜μ–΄ μžˆμ§€λ§Œ, μΉ΄μ΄λž„μ„± λ°œλ‹¬μ„ μ΄ν•΄ν•˜κ³  ν™•μž₯ κ°€λŠ₯ν•œ ν•©μ„± μ „λž΅μ„ μˆ˜λ¦½ν•˜κΈ° μœ„ν•΄μ„œλŠ” νŽ©νƒ€μ΄λ“œλ‘œμ˜ μ„œμ—΄ ν™•μž₯이 μš”κ΅¬λœλ‹€. λ³Έ μ—°κ΅¬μ—μ„œλŠ” Tyr-Tyr-Cys νŽ©νƒ€μ΄λ“œλ₯Ό μ„œμ—΄ν™•μž₯을 μœ„ν•œ λ¦¬κ°„λ“œλ‘œ μ„ νƒν•˜μ—¬, μ½”λ°œνŠΈ μ‚°ν™”λ¬Όμ—μ„œ νŽ©νƒ€μ΄λ“œλ₯Ό μ΄μš©ν•œ μΉ΄μ΄λž„μ„± λ°œν˜„μ„ νƒκ΅¬ν•˜μ˜€λ‹€. νŽ©νƒ€μ΄λ“œ λ¦¬κ°„λ“œλ₯Ό μ΄μš©ν•˜μ—¬ ν•©μ„±λœ μΉ΄μ΄λž„ μ½”λ°œνŠΈ μ‚°ν™”λ¬Ό λ‚˜λ…Έ μž…μžλŠ” μžμ™Έμ„  및 κ°€μ‹œκ΄‘μ„  μ˜μ—­μ—μ„œ 0.01의 λ›°μ–΄λ‚œ λΉ„λŒ€μΉ­ 인자λ₯Ό λ‚˜νƒ€λƒˆλ‹€. λ˜ν•œ, 2D NMR λΆ„κ΄‘ 뢄석을 톡해 λ‚˜λ…Έ μž…μž ν‘œλ©΄μ˜ νŽ©νƒ€μ΄λ“œ λ¦¬κ°„λ“œμ˜ 3차원 μž…μ²΄κ΅¬μ‘°λ₯Ό 규λͺ…ν•˜μ˜€λ‹€. λ˜ν•œ νŽ©νƒ€μ΄λ“œ λ¦¬κ°„λ“œμ˜ μ‹œν€€μŠ€μ— λ”°λ₯Έ μΉ΄μ΄λž„ μ½”λ°œνŠΈ μ‚°ν™”λ¬Ό λ‚˜λ…Έ μž…μžμ˜ λ°œλ‹¬μ„ λΆ„μ„ν•˜μ—¬ Tyr-Tyr-Cys λ¦¬κ°„λ“œμ˜ μ‹Έμ΄μ˜¬ κ·Έλ£Ήκ³Ό 카볡싀 그룹이 μΉ΄μ΄λž„μ„± λ°œλ‹¬μ— μ€‘μš”ν•œ 역할을 담당함을 규λͺ…ν•˜μ˜€λ‹€. λ³Έ 연ꡬ κ²°κ³ΌλŠ” 무기 결정에 μΉ΄μ΄λž„μ„±μ„ λ°œν˜„ν•˜λŠ” νŽ©νƒ€μ΄λ“œμ˜ 역할이 μƒν˜Έ μž‘μš©ν•˜λŠ” λ¬Όμ§ˆμ— 따라 λ‹¬λΌμ§ˆ 수 있으며, μΉ΄μ΄λž„ κ΄‘ν•™ νŠΉμ„±μ˜ λ³€ν™”λ₯Ό μ•ΌκΈ°ν•  수 μžˆμŒμ„ μ‹œμ‚¬ν•œλ‹€. 단일 ν”ŒλΌμ¦ˆλͺ¬ λ‚˜λ…Έ μž…μžμ˜ κ΄‘ν•™ μ‹ ν˜ΈλŠ” ν”ŒλΌμ¦ˆλͺ¬ μ»€ν”Œλ§μ„ ν†΅ν•˜μ—¬ 증폭되고 λ―Όκ°ν•˜κ²Œ μ œμ–΄λ  수 μžˆλ‹€. μ—¬λŸ¬ 개의 ν”ŒλΌμ¦ˆλͺ¬ λ‚˜λ…Έ μž…μžκ°€ 인접할 경우, μž…μž 곡λͺ…μ˜ ν˜Όμ„±ν™”κ°€ μΌμ–΄λ‚˜ 곡λͺ…을 크게 λ³€ν™”μ‹œν‚¨λ‹€. μ΄λŸ¬ν•œ λ§₯λ½μ—μ„œ, λ³Έ μ—°κ΅¬μ—μ„œλŠ” ν”ŒλΌμ¦ˆλͺ¬ μ»€ν”Œλ§μ„ μΉ΄μ΄λž„ ν”ŒλΌμ¦ˆλͺ¬ λ‚˜λ…Έ μž…μžμ— μ μš©ν•˜μ—¬ μΉ΄μ΄λž„ κ΄‘ν•™ νŠΉμ„±μ„ μ œμ–΄ν•˜κ³ μž ν•˜μ˜€λ‹€. 이λ₯Ό μœ„ν•˜μ—¬ μΉ΄μ΄λž„ 금 λ‚˜λ…Έ μž…μžλ₯Ό κΈ°νŒμ— μ½”νŒ…ν•˜κ³  λ‚˜λ…Έ 크기의 ν”ŒλΌμ¦ˆλͺ¬ κΈˆμ† 측을 μ¦μ°©ν•˜μ—¬ 메타 λ¬Όμ§ˆμ„ μ œμž‘ν•˜μ˜€λ‹€. ν”ŒλΌμ¦ˆλͺ¬ κ²°ν•©μœΌλ‘œ μΈν•œ κ΄‘ν•™ νŠΉμ„±μ˜ λ³€ν™”λŠ” 투과 기반 및 ν™•μ‚° λ°˜μ‚¬ 기반 μ›νŽΈκ΄‘ 이색성 (cirular dichroism, CD) 뢄광법을 톡해 λΆ„μ„λ˜μ—ˆλ‹€. μΉ΄μ΄λž„ κΈˆμ† λ‚˜λ…Έ μž…μž 기반 메타 물질의 광학적 뢄석을 톡해 CD μŠ€νŽ™νŠΈλŸΌμ˜ 피크 μœ„μΉ˜, μ„ΈκΈ° 및 λΆ€ν˜Έκ°€ ν”ŒλΌμ¦ˆλͺ¬ μ»€ν”Œλ§μ— μ˜ν•΄ 변화함을 μ•Œ 수 μžˆμ—ˆλ‹€. λ˜ν•œ, ν”ŒλΌμ¦ˆλͺ¬ μ»€ν”Œλ§μ— μ˜ν•΄ μƒμ„±λœ λͺ¨λ“œλŠ” λ‚˜λ…Έκ΅¬μ‘°μ²΄μ˜ 크기, 거리 및 μ£Όλ³€ ꡴절λ₯ μ— 따라 크게 λ³€ν™”ν•˜μ˜€λ‹€. 더 λ‚˜μ•„κ°€, μΉ΄μ΄λž„ 금 λ‚˜λ…Έ μž…μžμ— 싀리카 μ‰˜μ˜ ν”ŒλΌμ¦ˆλͺ¬ λ‚˜λ…Έμž…μžμ˜ κ΄‘ν•™ νŠΉμ„± 및 μ•ˆμ •μ„±μ˜ μ œμ–΄κ°€ κ°€λŠ₯함을 규λͺ…ν•˜μ˜€λ‹€. λ³Έ ν•™μœ„ μ—°κ΅¬μ—μ„œλŠ” λ‚˜λ…Έ μž…μžμ˜ μΉ΄μ΄λž„μ„± λ°œλ‹¬μ— νŽ©νƒ€μ΄λ“œ λ¦¬κ°„λ“œκ°€ λ―ΈμΉ˜λŠ” 역할을 μ΄ν•΄ν•¨μœΌλ‘œμ¨ 단일 λ‚˜λ…Έ μž…μž μˆ˜μ€€μ—μ„œ CD μ‹ ν˜Έμ˜ μ œμ–΄λ₯Ό λ‹¬μ„±ν•˜μ˜€λ‹€. λ˜ν•œ ν”ŒλΌμ¦ˆλͺ¬ μ»€ν”Œλ§μ„ μ‚¬μš©ν•˜μ—¬ μΉ΄μ΄λž„ λ‚˜λ…Έ ꡬ쑰의 광학적 νŠΉμ„±μ„ μ‘°μ ˆν•˜λŠ” 방법둠이 ν™•λ¦½λ˜μ—ˆλ‹€. λ³Έ 연ꡬλ₯Ό ν†΅ν•˜μ—¬ 개발된 μΉ΄μ΄λž„ λ‚˜λ…Έ κ΅¬μ‘°μ—μ„œ κ΄‘ν•™ νŠΉμ„±μ˜ μ‘°μ ˆμ„ μœ„ν•œ 방법둠은 μΉ΄μ΄λž„ 메타 λ¬Όμ§ˆμ„ μ‹€μš©μ μΈ κ΄‘ν•™ μž₯치둜 ν†΅ν•©ν•˜λŠ” 것을 μš©μ΄ν•˜κ²Œ ν•  κ²ƒμœΌλ‘œ κΈ°λŒ€λœλ‹€.Chiral metamaterials have been actively pursued in the field of nanophotonics due to their exceptional light-matter interactions. For decades, numerous attempts have been conducted to fabricate chiral nanostructure using state-of-the-art lithography techniques and molecular-assembly scaffolds. Possessing this geometric property, inorganic metal nanomaterials could exhibit fascinating physical phenomena which was difficult to be achieved in symmetric nanomaterials. Chiral nanostructures have greatly expanded the design to demonstrate chiroptic effects such as a negative refractive index, sensitive chiral sensing, and broad-band circular polarizer. In order to integrate the fascinating properties of chiral metamaterials into practical devices, it is necessary to achieve precisely defined chiral morphologies and chiroptic properties. However, the requirement for expensive facilities, the complexity of the process, and the limited resolution had restricted the translation of chiral metamaterials into real devices. Therefore, developing flexible methodologies for nanostructure control is important to address these limitations and provide new directions. Through this study, we propose that the diversification of nanoparticle morphology using peptide molecules and further modulation of the optical response utilizing plasmonic coupling of nanostructures can be a promising alternative to solve the above-mentioned limitations. In this thesis, we present a platform that can modulate the chiroptic response using plasmon coupling through understanding and regulation of the development of chiral nanostructures. Recent study on the colloidal synthesis of plasmonic nanoparticles using biomolecules suggests that nanoparticles with novel morphology and optical property can be achieved by altering molecules, which are chirality encoders, involved during the synthesis. In addition, the optical response of a single plasmonic particle can be amplified and sensitively modulated using plasmon coupling. When several nanoscale plasmonic particles are adjacent to each other, hybridization of particle resonance is induced, which significantly changes the resonance. To establish new strategies for controlling the morphology and chirality of plasmonic nanostructures, we have first studied previous studies on bio-inspired pathways for complex nanostructures, focusing on the inorganic chirality induced by biomolecules in Chapter 2. Importantly, the interactions at the interface between biomolecules and inorganic surfaces provide an important insight into the evolution of chirality through atomic distortion or macroscopic reconstruction. Chapter 3 describes the experimental procedures, and Chapter 4, 5, and 6 describe the understanding and modulation of the chiroptic response from the two perspectives of single nanoparticles and systemic control. Advances in nanomaterial engineering have enabled the development of colloidal synthesis methods for precise morphological control at the nanoscale. The use of various halide ions, metal ions and organic molecules as adsorbates can control the crystal facet and nanoparticle morphology by passivating the crystal facet with a specific Miller index. In addition, the seed-mediated method can synthesize high-Miller-index crystal facets with high uniformity, and thus is being used as an important strategy for controlling NP morphology. In this thesis, we have provided a broad understanding of the growth and chirality evolution in gold NPs by adjusting the type of additive molecules. We have analyzed the growth pathway and chirality evolution of the Ξ³-glutamylcysteine- (Ξ³-Glu-Cys-) and cysteinylglycine- (Cys-Gly-) directed gold NPs from a crystallographic perspective. Gold NPs developed into a cube-like structure with protruding chiral wings in the presence of Ξ³-Glu-Cys, whereas the NPs synthesized with Cys-Gly exhibited a rhombic dodecahedron-like outline with elliptical cavity structures, showing different chiroptic responses. Through time-dependent analysis, we reported that Ξ³-Glu-Cys and Cys-Gly generate different intermediate morphologies. Ξ³-Glu-Cys induced concave hexoctahedra-shaped intermediate, whereas Cys-Gly showed concave rhombic dodecahedra-shaped intermediate. These results showed that the chiral structure and resulting chiroptic response can be modulated through understanding the interaction between peptides and gold surfaces. Molecule-directed synthesis of chiral nanostructure has been mainly studied in plasmonic materials, but attempts to synthesize chiral metal oxides that can be used as chiral catalysts due to their catalytic activity has been suggested as a new direction for expanding the application of chiral materials. Existing studies on the synthesis of chiral metal oxide using molecule have been limited to single amino acids, but sequence expansion with peptides is required to understand the chirality evolution and achieve a scalable synthetic strategy. In this thesis, Tyr-Tyr-Cys tripeptide including tyrosine and cysteine were selected as peptide ligands and the role of peptide in developing chirality in cobalt oxide was explored. Synthesized chiral cobalt oxide nanoparticles showed a g-factor of 0.01 in the UV–visible region. In addition, the 3D conformation of the peptide ligand on the nanoparticle surfaces was identified by 2D NMR spectroscopy analysis. Furthermore, the sequence effect of Tyr-Tyr-Cys developing chiral cobalt oxide was analyzed, demonstrating that the thiol group and carboxyl group of the Tyr-Tyr-Cys ligand played an important role in chirality evolution. This results suggest that the role of the peptides can vary depending on the interacting material, leading to further variability in chiroptical properties. The optical signal of a single plasmonic particle can be amplified and sensitively controlled using plasmon coupling. When several nanoscale plasmonic particles are adjacent to each other, hybridization of particle resonance occurs, which significantly changes the resonance. In this context, plasmonic coupling which has been mainly studied in achiral plasmon structures, was applied to chiral plasmonic nanoparticles to control chiroptical properties. In this thesis, we demonstrated the fabrication of metamaterial by coating chiral gold nanoparticles on a substrate and depositing a nanoscale plasmonic metal layer. In order to investigate changes in optical properties due to plasmon coupling, transmission-based and diffuse reflectance circular dichroism (CD) spectroscopy were utilized. Through this, it was confirmed that the resonance position, magnitude, and sign of the CD spectrum were changed by plasmon coupling. In addition, the coupled plasmon mode was significantly changed according to the dimension, distance, and refractive index of the nanostructure. Furthermore, synthesis of chiral gold-silica core-shell NPs enables versatile control of the structure and properties of plasmonic nanoparticles, facilitating their application to tailored plasmon coupling. In conclusion, by understanding the role of peptides in nanoparticle development, CD manipulation has been achieved at the single nanoparticle level. In addition, a methodology for modulating the optical properties of chiral nanostructures using plasmon coupling has been established. We believe the development of versatile methodology for modulation of the chiroptical response in chiral nanostructures ultimately facilitate integration of the chiral metamaterials into practical optical devices.Chapter 1. Introduction 1 1.1 Chirality in Nature 1 1.2 Chiral Plasmonic Nanostructure 9 1.3 Objective of Thesis 21 Chapter 2. Fabrication of Chiral Inorganic Nanostructure and Its Optical Properties 24 2.1 Fabrication of Chiral Nanostructures using Hard Approach 24 2.2 Biomolecule-Directed Chiral Nanostructure 29 2.2.1 Biomolecule-Conjugated Inorganic Nanoparticles 29 2.2.2 Chirality Development by Biomolecule-Induced Local Distortion 36 2.2.3 Biomolecule-Directed Chiral Morphology 44 Chapter 3. Experimental Procedures 62 3.1 Synthesis of Chiral Gold Nanoparticles 62 3.2 Synthesis of Chiral Cobalt Oxide Nanoparticles 64 3.3 Synthesis of Chiral Gold-Silica Core-Shell Nanoparticles 66 3.4 Optical Characterization of Chiral Nanostructures 67 Chapter 4. Dipeptide-Directed Chiral Gold Nanoparticles 69 4.1 Introduction 69 4.2 Solution-Based Synthesis of Dipeptide-Directed Chiral NPs 72 4.3 Morphology Analysis of Ξ³-Glu-Cys- and Cys-Gly-directed NPs 79 4.4 Time-Dependent Analysis of Chiral Morphology Development 83 4.5 Concentration-Dependent Chiral Morphology and Chiroptical Responses 91 4.6 Sequence Effects 101 4.7 Conclusion 102 Chapter 5. Peptide-Directed Chiral Cobalt Oxide Nanoparticle 103 5.1 Introduction 103 5.2 Synthesis of Chiral Cobalt Oxide Nanoparticles using Tyr-Tyr-Cys 107 5.3 Effect of Synthetic Parameters on Chirality Development of Chiral Cobalt Oxide Nanoparticles 114 5.4 3D Conformation of Tyr-Tyr-Cys Ligand 120 5.5 Sequence Effect of the Tyr-Tyr-Cys 125 5.6 Magnetic Circular Dichroism in Chiral Cobalt Oxide Nanoparticles. 129 5.7 Conclusion 134 Chapter 6. Circular Dichroism Manipulation based on Plasmonic Coupling of Chiral Nanostructures 136 6.1 Introduction 136 6.2 Chiroptical Property of Helicoid-Based Plasmonic Nanostructure 138 6.3 Effect of Chiral Gap Structure 145 6.4 Spectral Manipulation through Structural Parameter Control 149 6.5 Synthesis of Chiral Gold-Silica Core-Shell Nanoparticles 151 6.6 Conclusion 154 Chapter 7. Concluding Remarks 155 References 159λ°•
    corecore