93 research outputs found

    ๋Œ€๋„์‹œ๊ถŒ ๊ตํ†ต๊ฐœ์„ ์„ ์œ„ํ•œ ์žฌํƒ๊ทผ๋ฌด ํ™œ์„ฑํ™” ๋ฐฉ์•ˆ ์—ฐ๊ตฌ(Alternatives of telecommuting facilitation for metropolitan transportation improvement)

    Get PDF
    ๋…ธํŠธ : ์ด ์—ฐ๊ตฌ๋ณด๊ณ ์„œ์˜ ๋‚ด์šฉ์€ ๊ตญํ† ์—ฐ๊ตฌ์›์˜ ์ž์ฒด ์—ฐ๊ตฌ๋ฌผ๋กœ์„œ ์ •๋ถ€์˜ ์ •์ฑ…์ด๋‚˜ ๊ฒฌํ•ด์™€๋Š” ์ƒ๊ด€์—†์Šต๋‹ˆ๋‹ค

    ๋ฏผ๊ฐ„์ œ์•ˆ์— ์˜ํ•œ ๋„์‹œ๊ฐœ๋ฐœ์‚ฌ์—…์˜ ์‹คํƒœ์™€ ๋ฐœ์ „๋ฐฉ์•ˆ(Measures to facilitate private sector participation in urban development projects)

    Get PDF
    ๋…ธํŠธ : ์ด ์—ฐ๊ตฌ๋ณด๊ณ ์„œ์˜ ๋‚ด์šฉ์€ ๊ตญํ† ์—ฐ๊ตฌ์›์˜ ์ž์ฒด ์—ฐ๊ตฌ๋ฌผ๋กœ์„œ ์ •๋ถ€์˜ ์ •์ฑ…์ด๋‚˜ ๊ฒฌํ•ด์™€๋Š” ์ƒ๊ด€์—†์Šต๋‹ˆ๋‹ค

    UVA-LED์™€ ๋ฆฌ๋ณดํ”Œ๋ผ๋นˆ์„ ์ด์šฉํ•œ ์‹์ค‘๋… ๊ท ์˜ ์ €๊ฐํ™”

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๋†์—…์ƒ๋ช…๊ณผํ•™๋Œ€ํ•™ ๋†์ƒ๋ช…๊ณตํ•™๋ถ€, 2020. 8. ๊ฐ•๋™ํ˜„.Although the low hydrogen ion concentration (pH) and water activity (Aw) have a significant adverse effect on the survival of bacteria, there have been several reports of foodborne outbreak caused such conditions. To inactivate these foodborne pathogens, in this experiment, I investigated inactivation efficacy using reactive oxygen species (ROS) using UVA-LED as a light source and riboflavin under change of pH and Aw. The wavelength of UVA-LED was 398 nm, and the riboflavin was dissolved in an aqueous solution of 0.33 g/L and the concentration of in sample was diluted to 50 ฮผmol/L for each experiment. The amount of light was treated as 10 J/cm2, 20 J/cm2, 30 J/cm2. As a result of PBS sample, combination treatment of UVA and riboflavin showed further inactivation than UVA treatment in both E. coli O157:H7 and S. Typhimurium. As a result of variation of riboflavin concentration test, E. coli O157:H7 was confirmed to show an increased inactivation between 0.005 ฮผmol/L and 0.05 ฮผmol/L, S. Typhimurium was confirmed to show an increased inactivation efficacy between 0.5 ฮผmol/L and 5 ฮผmol/L. It was confirmed that E. coli O157:H7 is more sensitive to the increase of reactive oxygen species than S. Typhimurium. And, I investigated the inactivation under changes of intrinsic factor of food, pH, and Aw. When pH lowered, UVA treatment did not show any further inactivation, but the further inactivation was confirmed in the UVA-riboflavin combination treatment. In the case of Aw test, the inactivation of UVA treatment was shown to increase as the Aw lowered, and the inactivation of UVA-riboflavin treatment was confirmed to decrease as the Aw lowered. In the apple juice, In E. coli O157:H7, the inactivation of UVA treatment was confirmed to increase, and the inactivation of UVA-riboflavin treatment was shown to decrease compared to the PBS treatment. For S. Typhimurium, there was no difference from treatment in PBS. As a result of measuring cell membrane damage, free radical species, and redox potential using PI, DCFH-DiOxyQ, and ORP, the results showed same tendency as inactivation result. In this study, it was found that all UVA-riboflavin treatments had a further inactivation than UVA treatment.๋‚ฎ์€ ์ˆ˜์†Œ์ด์˜จ๋†๋„ (pH)์™€ ์ˆ˜๋ถ„ํ™œ์„ฑ๋„ (Aw)๋Š” ์„ธ๊ท ์˜ ์ƒ์กด์— ํฐ ์•…์˜ํ–ฅ์„ ์ฃผ์ง€๋งŒ, ๊ทธ๋Ÿผ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ๊ทธ๋Ÿฌํ•œ ์กฐ๊ฑด์—์„œ๋„ ์‹ํ’ˆ์ด ์˜ค์—ผ๋˜์–ด ์‹์ค‘๋…์„ ์ผ์œผํ‚จ ์‚ฌ๋ก€๊ฐ€ ์ˆ˜ ์ฐจ๋ก€ ๋ณด๊ณ ๋œ ๋ฐ” ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ์‹์ค‘๋…๊ท ์˜ ์ €๊ฐํ™”๋ฅผ ์œ„ํ•˜์—ฌ, ์ด๋ฒˆ ์‹คํ—˜์—์„œ๋Š”UVA-LED๋ฅผ ๊ด‘์›์œผ๋กœ ํ•˜๋Š” UVA ๊ด‘์„ ๊ณผ ๋ฆฌ๋ณดํ”Œ๋ผ๋นˆ์„ ์ด์šฉํ•˜์—ฌ ํ™œ์„ฑ์‚ฐ์†Œ์ข…์„ ์ด์šฉํ•œ ์ €๊ฐํ™” ํšจ๊ณผ๋ฅผ ์•Œ์•„๋ณด์•˜๊ณ , ์ดํ•˜ pH์™€ Aw์˜ ๋ณ€ํ™”์— ๋”ฐ๋ฅธ ์ €๊ฐํ™” ํšจ๊ณผ๋ฅผ ์‚ดํŽด๋ณด์•˜๋‹ค. ํŒŒ์žฅ๋Œ€๊ฐ€ 398 nm ์ธ UVA-LED ์„ธํŠธ๋ฅผ ์‹คํ—˜์— ์‚ฌ์šฉํ•˜์˜€์œผ๋ฉฐ, ์‚ฌ์šฉํ•œ ๋ฆฌ๋ณดํ”Œ๋ผ๋นˆ์˜ ๊ฒฝ์šฐ 0.33 g/L์˜ ์ˆ˜์šฉ์•ก์œผ๋กœ ๋งŒ๋“ค์–ด ์‹คํ—˜๋งˆ๋‹ค ์ƒ˜ํ”Œ์˜ ๋†๋„๊ฐ€ 50 ฮผmol/L๊ฐ€ ๋˜๋„๋ก ์‹คํ—˜ํ•˜์˜€๋‹ค. ๋น›์˜ ์–‘์€ 10 J/cm2, 20 J/cm2, 30 J/cm2์œผ๋กœ ์ฒ˜๋ฆฌํ•˜์˜€๋‹ค. PBS ์šฉ์•ก ์‹คํ—˜ ๊ฒฐ๊ณผ, E. coli O157:H7, S. Typhimurium ๋ชจ๋‘ UVA ๊ด‘์„ ๊ณผ ๋ฆฌ๋ณดํ”Œ๋ผ๋นˆ์˜ ์กฐํ•ฉ์ฒ˜๋ฆฌ๊ฐ€ UVA๊ด‘์„  ๋‹จ์ผ ์ฒ˜๋ฆฌ์— ๋น„ํ•ด ์‹œ๋„ˆ์ง€ ํšจ๊ณผ๊ฐ€ ์žˆ์Œ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋ฆฌ๋ณดํ”Œ๋ผ๋นˆ์˜ ๋†๋„๋ฅผ ๋‚ฎ์ถ˜ ์‹คํ—˜ ๊ฒฐ๊ณผ, E. coli O157:H7๋Š” 0.005 ฮผmol/L์™€ 0.05 ฮผmol/L ์‚ฌ์ด์—์„œ ์ €๊ฐํ™”๊ฐ€ ๋Š˜์–ด๋‚˜๊ธฐ ์‹œ์ž‘ํ–ˆ๊ณ , S. Typhimurium๋Š” 0.5 ฮผmol/L์™€ 5 ฮผmol/L ์‚ฌ์ด์—์„œ ์ €๊ฐํ™”๊ฐ€ ๋Š˜์–ด๋‚œ ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. ์ด๋ฅผ ํ†ตํ•ด E. coli O157:H7๋Š” S. Typhimurium๋ณด๋‹ค ํ™œ์„ฑ์‚ฐ์†Œ์ข…์˜ ์ฆ๊ฐ€์— ๋ฏผ๊ฐํ•˜๋‹ค๋Š” ๊ฒƒ์„ ๋ฐํ˜€๋ƒˆ๋‹ค. ๋‹ค์Œ์œผ๋กœ, ์‹ํ’ˆ์˜ ๋‚ด์žฌ์ธ์ž์ธ pH์™€ ์ˆ˜๋ถ„ํ™œ์„ฑ๋„์— ๋”ฐ๋ฅธ ์ €๊ฐํ™”๋ฅผ ๋น„๊ตํ•˜์˜€๋‹ค. ๊ทธ ๊ฒฐ๊ณผ, pH๊ฐ€ ๋‚ฎ์„์ˆ˜๋ก UVA ๊ด‘์„  ๋‹จ์ผ ์ฒ˜๋ฆฌ๋Š” ์ถ”๊ฐ€์ ์ธ ์ €๊ฐํ™”๊ฐ€ ์—†์—ˆ๊ณ UVA-๋ฆฌ๋ณดํ”Œ๋ผ๋นˆ ์กฐํ•ฉ์ฒ˜๋ฆฌ์˜ ๊ฒฝ์šฐ ์‹œ๋„ˆ์ง€ ํšจ๊ณผ๋ฅผ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ˆ˜๋ถ„ํ™œ์„ฑ๋„์˜ ๊ฒฝ์šฐ, UVA๊ด‘์„  ๋‹จ์ผ ์ฒ˜๋ฆฌ๋Š” ์ˆ˜๋ถ„ํ™œ์„ฑ๋„๊ฐ€ ๋‚ฎ์„์ˆ˜๋ก ์ €๊ฐํ™”๊ฐ€ ๋†’์•„์กŒ์œผ๋ฉฐ, UVA-๋ฆฌ๋ณดํ”Œ๋ผ๋นˆ ์กฐํ•ฉ ์ฒ˜๋ฆฌ๋Š” ์ €๊ฐํ™”๊ฐ€ ๋‚ฎ์•„์ง€๋Š” ๊ฒฐ๊ณผ๋ฅผ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์‹ค์ œ ์‹ํ’ˆ ์ฒ˜๋ฆฌ๊ฒฐ๊ณผ, ์‚ฌ๊ณผ์ฃผ์Šค์—์„œ E. coli O157:H7๋Š” PBS์˜ ์ฒ˜๋ฆฌ์— ๋น„ํ•ด UVA ๊ด‘์„  ๋‹จ์ผ ์ฒ˜๋ฆฌ๋Š” ์ €๊ฐํ™”๊ฐ€ ๋Š˜์—ˆ์œผ๋ฉฐ UVA-๋ฆฌ๋ณดํ”Œ๋ผ๋นˆ ์กฐํ•ฉ ์ฒ˜๋ฆฌ๋Š” ์ €๊ฐํ™”๊ฐ€ ๊ฐ์†Œํ•˜์˜€๋‹ค. S. Typhimurium์˜ ๊ฒฝ์šฐ PBS์— ๋น„ํ•ด ์ €๊ฐํ™”๊ฐ€ ์ฐจ์ด๊ฐ€ ์—†์—ˆ๋‹ค. ์ด๋ฅผ ํ™•์ธํ•˜๊ธฐ ์œ„ํ•ด PI, DCFH-DiOxyQ, redox potential์„ ์ด์šฉํ•˜์—ฌ ์„ธํฌ๋ง‰ ์†์ƒ๊ณผ ํ™œ์„ฑ์‚ฐ์†Œ์ข…, ์‚ฐํ™”ํ™˜์›์ „์œ„๋ฅผ ์ธก์ •ํ•œ ๊ฒฐ๊ณผ ์ €๊ฐํ™”์™€ ๊ฐ™์€ ๊ฒฝํ–ฅ์„ ๋ณด์˜€๋‹ค. ์ด ์—ฐ๊ตฌ์—์„œ ๋ชจ๋“  UVA-๋ฆฌ๋ณดํ”Œ๋ผ๋นˆ ์กฐํ•ฉ ์ฒ˜๋ฆฌ์˜ ๊ฒฝ์šฐ UVA ๋‹จ์ผ ๊ด‘์„  ์ฒ˜๋ฆฌ๋ณด๋‹ค ์‹œ๋„ˆ์ง€ ์ €๊ฐํ™” ํšจ๊ณผ๊ฐ€ ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ๋ฐํ˜€๋ƒˆ๋‹ค.I. INTRODUCTION. 11 II. MATERIALS AND METHODS. 14 2.1. UVA-LED system. 14 2.1.1. Irradiance measurement 14 2.2. Bacterial suspension 15 2.3. Sample preparation and noculation. 16 2.4. UV treatment. 18 2.5. Bacterial cell enumeration 18 2.6. Analyzing inactivation mechanism 18 2.6.1. Reactive oxygen species (ROS) measurement. 18 2.6.2. PI uptake.. . 19 2.6.3. Measurement of redox potential (ORP) 20 2.6.4. Transmission electron microscopy 20 2.7. Statistical analysis. 22 III. RESULTS 23 3.1. Emission spectrum of UVA-LED. 23 3.2. Inactivation of foodborne pathogens in various conditions 23 3.2.1. Effect of inactivation in phosphate buffer solution (PBS) 23 3.2.2. Comparison of effect of inactivation between different concentration of riboflavin. 26 3.2.3. Comparison of effect of inactivation between different pH. 28 3.2.4. Comparison of effect of inactivation between different water activity (Aw). 31 3.3. Inactivation of foodborne pathogens in apple juice 34 3.4. Measurement of inactivation mechanism in various conditions. 36 3.4.1. ROS measurement. 36 3.4.2. PI uptake assessment. 39 3.4.3. ORP measurement. 41 3.5. Transmission electron microscopy analysis. 43 IV. DISCUSSIONS. 45 V. REFERENCES. 53 VI. ๊ตญ๋ฌธ์ดˆ๋ก 57Maste

    Real Time Torque Control of IPMM under Flux Variations

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2019. 2. ์„ค์Šน๊ธฐ.For IPMSM drives, accurate torque control and loss-minimizing operation are important issues to maintain the excellent features such as high efficiency and wide speed operating range. Thus, a current magnitude should be minimized while maintaining a torque accuracy under the base speed, i.e., in a maximum torque per ampere (MTPA) region. On the other hand, a current angle as well as the current magnitude should be adjusted above the base speed due to the limit of a dc-link voltage, i.e., in a flux-weakening region. For efficient operations, current references should be carefully decided by considering current and voltage constraints. However, it is difficult to find optimal current references due to the influence of magnetic saturation, cross-coupling effects and their variation according to operating conditions. In this thesis, an online minimum-copper-loss torque control is proposed to satisfy both a torque accuracy and high-efficiency operation in consideration of flux linkage variations due to magnetic saturation. Firstly, the minimum-copper-loss torque control can be dealt as a constrained optimization problem to satisfy both torque reference tracking and loss-minimizing operation. Nonlinear simultaneous equations can be derived from Lagrange multiplier method, which could be solved by numerical algorithms. Among them, Levenberg-Marquardt algorithm is employed as the numerical algorithm to guarantee a robust calculation of current references in a command optimizer. It can be optimized to alleviate calculation burden while maintaining the stability of the proposed algorithm. In addition, a torque reference limiter is implemented to satisfy the current and voltage constraints in real time. Stator flux linkages and dynamic inductances should be estimated to calculate the current references in the command optimizer. However, not only a dc offset but also low-order harmonics are contained in the estimated flux linkages due to various reasons. Thus, a distortion-minimizing flux observer is proposed to suppress the dc offset and harmonic flux errors by adopting frequency-adaptive observers. A proposed frequency-adaptive flux observer is appropriate to extract the fundamental flux linakges while keeping a simple structure even if a rotating speed of IPMSM varies. The fundamental flux linkages could be estimated quickly by the proposed current- and voltage- model based flux observer, which is implemented with not only the frequency-adaptive flux observer but also harmonic extractors. In addition, a dynamic inductance estimator is proposed to estimate the dynamic inductances by using a high-frequency signal injection method. The self- and mutual- inductance informations can be derived from a high-freqeuncy current response in case of a rotating vector voltage injection method. Thus, the voltage injection and corresponding signal processing method are derived based on the high-freqeuncy impedance modeling, where the effects of cross-coupling terms are included. As a result, the proposed estimator with sine-wave or square-wave injection method improves the precision of estimated dyanamic inductances in high speed operations. The feasibility of the proposed methods has been verified under various operating conditions by simulation and experimental results. Through the proposed command opimizer, the copper-loss minimizing torque control has been achieved under not only unsaturated but also highly-saturated operating conditions. In case of the tested IPMSM, the robust calculation of current references could be guaranteed even when the torque reference is over 80 % of a peak torque by applying the proposed Levenberg-Marquardt algorithm unlike the conventional Gauss-Newton algorithm. Furthermore, the proposed fundamental flux observer and dynamic inductance estimator have maintained high dynamic performance over a wide operating range. In case of the tested IPMSM, the fundamental stator flux linkages and dynamic inductances could be estimated even under 10 pu/s torque refenence variation and 3.75 pu/s load speed variation.๋†’์€ ํšจ์œจ๊ณผ ๋„“์€ ์šด์ „ ์˜์—ญ์„ ๊ฐ–๋Š” ๋งค์ž…ํ˜• ์˜๊ตฌ์ž์„ ์ „๋™๊ธฐ์˜ ํšจ๊ณผ์ ์ธ ํ™œ์šฉ์„ ์œ„ํ•ด ์ •ํ™•ํ•œ ํ† ํฌ ์ œ์–ด์™€ ์†์‹ค ์ตœ์†Œํ™” ์šด์ „์€ ์ค‘์š”ํ•˜๊ฒŒ ๋‹ค๋ค„์ ธ ์™”๋‹ค. ๋”ฐ๋ผ์„œ, ๊ธฐ์ € ์†๋„ ์ดํ•˜์—์„œ๋Š” ์ถœ๋ ฅ ํ† ํฌ๋ฅผ ์œ ์ง€ํ•˜๋ฉด์„œ ์ „๋ฅ˜ ํฌ๊ธฐ๋ฅผ ์ตœ์†Œํ™”ํ•˜๋„๋ก ํ•˜๋Š” ๋‹จ์œ„ ์ „๋ฅ˜ ๋‹น ์ตœ๋Œ€ ํ† ํฌ(MTPA) ์šด์ „ ๋ฐฉ์‹์ด ์‚ฌ์šฉ๋œ๋‹ค. ๋ฐ˜๋ฉด, ๊ธฐ์ € ์†๋„ ์ด์ƒ์—์„œ๋Š” ์ง๋ฅ˜๋‹จ ์ „์••์˜ ์ œํ•œ์œผ๋กœ ์ธํ•ด ์ „๋ฅ˜ ํฌ๊ธฐ์™€ ์ „๋ฅ˜ ๊ฐ์„ ๋ณ€๋™ํ•˜๋Š” ์•ฝ์ž์†(flux-weaking) ์šด์ „ ๋ฐฉ์‹์ด ์‚ฌ์šฉ๋œ๋‹ค. ํšจ์œจ์ ์ธ ์šด์ „์„ ์œ„ํ•ด ์ „๋ฅ˜ ์ง€๋ น์€ ์ „๋ฅ˜ ๋ฐ ์ „์•• ์ œํ•œ ์กฐ๊ฑด์„ ๊ณ ๋ คํ•˜์—ฌ ์ฃผ์˜ ๊นŠ๊ฒŒ ์„ค์ •๋˜์–ด์•ผ ํ•œ๋‹ค. ํ•˜์ง€๋งŒ, ์ „๋™๊ธฐ์˜ ์ž๊ธฐํฌํ™”, ๊ต์ฐจ๊ฒฐํ•ฉ ํ˜„์ƒ ๋ฐ ์šด์ „ ์กฐ๊ฑด ๋ณ€๋™์˜ ์˜ํ–ฅ์œผ๋กœ ์ธํ•ด ์ตœ์ ์˜ ์ „๋ฅ˜ ์ง€๋ น์„ ๊ณ„์‚ฐํ•˜๋Š” ๊ฒƒ์€ ์‰ฝ์ง€ ์•Š๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ž๊ธฐํฌํ™”์— ์˜ํ•œ ์‡„๊ต์ž์† ๋ณ€๋™์„ ๊ณ ๋ คํ•˜์—ฌ ํ† ํฌ ์ •๋ฐ€๋„์™€ ๊ณ ํšจ์œจ ์šด์ „์„ ๋™์‹œ์— ๋งŒ์กฑํ•˜๋Š” ์‹ค์‹œ๊ฐ„ ์ตœ์†Œ ๋™์† ํ† ํฌ ์šด์ „์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์šฐ์„ ์ ์œผ๋กœ, ์ตœ์†Œ ๋™์† ํ† ํฌ ์šด์ „์€ ํ† ํฌ ์ง€๋ น ์ถ”์ข…๊ณผ ์†์‹ค ์ตœ์†Œํ™” ์šด์ „์„ ๋งŒ์กฑํ•˜๋Š” ์ œํ•œ ์ตœ์ ํ™” ๋ฌธ์ œ๋กœ ์ ‘๊ทผํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด๋Š” ๋ผ๊ทธ๋ž‘์ฆˆ ์Šน์ˆ˜๋ฒ•์„ ํ†ตํ•ด ๋น„์„ ํ˜• ์—ฐ๋ฆฝ ๋ฐฉ์ •์‹ ํ˜•ํƒœ๋กœ ์œ ๋„๋  ์ˆ˜ ์žˆ์œผ๋ฉฐ ์ˆ˜์น˜ ํ•ด์„ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ†ตํ•ด ํ’€์–ด๋‚ผ ์ˆ˜ ์žˆ๋‹ค. ์—ฌ๋Ÿฌ ์ˆ˜์น˜ ํ•ด์„ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๋น„๊ตํ•˜์—ฌ ์ „๋ฅ˜ ์ง€๋ น ๊ณ„์‚ฐ๊ธฐ์˜ ์•ˆ์ •์ ์ธ ๊ณ„์‚ฐ์„ ๋ณด์žฅํ•  ์ˆ˜ ์žˆ๋Š” ๋ ˆ๋ฒค๋ฒ„๊ทธ-๋งˆ์ฟผํŠธ๋ฒ•(Levenberg-Marquardt algorithm)์„ ์ˆ˜์น˜ ํ•ด์„ ์•Œ๊ณ ๋ฆฌ์ฆ˜์œผ๋กœ ์„ ํƒํ•˜์˜€๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ์ œ์•ˆ๋œ ์ „๋ฅ˜ ์ง€๋ น ๊ณ„์‚ฐ๊ธฐ์˜ ์•ˆ์ •์„ฑ์„ ๋ณด์žฅํ•˜๋ฉด์„œ ๋™์‹œ์— ๊ณ„์‚ฐ ๋ถ€๋‹ด์„ ์ตœ์†Œํ™”ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ ์ „๋ฅ˜ ๋ฐ ์ „์•• ์ œํ•œ์„ ์‹ค์‹œ๊ฐ„์œผ๋กœ ๋ฐ˜์˜ํ•˜๊ธฐ ์œ„ํ•ด ํ† ํฌ ์ง€๋ น ์ œํ•œ๊ธฐ๋ฅผ ๊ตฌํ˜„ํ•˜์˜€๋‹ค. ์ œ์•ˆ๋œ ์ „๋ฅ˜ ์ง€๋ น ๊ณ„์‚ฐ๊ธฐ์˜ ๋™์ž‘์„ ์œ„ํ•ด ์˜๊ตฌ์ž์„ ์ „๋™๊ธฐ์˜ ์‡„๊ต์ž์† ๋ฐ ๋™์  ์ธ๋•ํ„ด์Šค์˜ ์ถ”์ •์ด ํ•„์š”ํ•˜๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ถ”์ • ์‡„๊ต์ž์†์€ ๋‹ค์–‘ํ•œ ์ด์œ ๋กœ ์ธํ•ด DC ์˜คํ”„์…‹ ๋ฐ ์ €์ฐจ ๊ณ ์กฐํŒŒ๋ฅผ ํฌํ•จํ•˜๊ฒŒ ๋œ๋‹ค. ๋”ฐ๋ผ์„œ, ์ด๋Ÿฌํ•œ DC ์˜คํ”„์…‹ ๋ฐ ๊ณ ์กฐํŒŒ ์ž์† ์˜ค์ฐจ๋ฅผ ์–ต์ œํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์ฃผํŒŒ์ˆ˜ ์ ์‘ ๊ด€์ธก๊ธฐ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ์™ธ๋ž€ ์ตœ์†Œํ™” ์ž์† ๊ด€์ธก๊ธฐ๋ฅผ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ œ์•ˆ๋œ ์ฃผํŒŒ์ˆ˜ ์ ์‘ ์ž์† ๊ด€์ธก๊ธฐ๋Š” ํšŒ์ „ ์†๋„ ๋ณ€๋™ ์‹œ์—๋„ ๋‹จ์ˆœํ•œ ๊ตฌ์กฐ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ๊ธฐ๋ณธํŒŒ ์‡„๊ต์ž์†๋งŒ์„ ์ถ”์ถœํ•ด ๋‚ผ ์ˆ˜ ์žˆ๋‹ค. ์ฃผํŒŒ์ˆ˜ ์ ์‘ ์ž์† ๊ด€์ธก๊ธฐ์™€ ๊ณ ์กฐํŒŒ ์ถ”์ถœ๊ธฐ๋กœ ๊ตฌํ˜„ํ•œ ์ œ์•ˆ๋œ ์ „๋ฅ˜ ๋ชจ๋ธ ๋ฐ ์ „์•• ๋ชจ๋ธ ์ž์† ๊ด€์ธก๊ธฐ๋ฅผ ํ†ตํ•ด ๊ธฐ๋ณธํŒŒ ์‡„๊ต์ž์†์„ ๋น ๋ฅด๊ฒŒ ์ถ”์ •ํ•˜๋Š” ๊ฒƒ์ด ๊ฐ€๋Šฅํ•˜๋‹ค. ๋˜ํ•œ ๊ณ ์ฃผํŒŒ ์‹ ํ˜ธ ์ฃผ์ž…์— ๊ธฐ๋ฐ˜ํ•˜์—ฌ ๋™์  ์ธ๋•ํ„ด์Šค๋ฅผ ์ถ”์ •ํ•˜๊ธฐ ์œ„ํ•œ ๋™์  ์ธ๋•ํ„ด์Šค ์ถ”์ •๊ธฐ๋ฅผ ์ œ์•ˆํ•˜์˜€๋‹ค. ํšŒ์ „ ๋ฒกํ„ฐ ์ „์•• ์ฃผ์ž… ๋ฐฉ๋ฒ•์˜ ๊ฒฝ์šฐ, ์œ ๊ธฐ๋œ ๊ณ ์ฃผํŒŒ ์ „๋ฅ˜๋ฅผ ํ†ตํ•ด ์ž๊ธฐ ๋ฐ ์ƒํ˜ธ ์ธ๋•ํ„ด์Šค๋ฅผ ์ถ”์ถœํ•  ์ˆ˜ ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ, ์ƒํ˜ธ ๊ต์ฐจํ•ญ์˜ ์˜ํ–ฅ์„ ํฌํ•จํ•œ ๊ณ ์ฃผํŒŒ ์ž„ํ”ผ๋˜์Šค ๋ชจ๋ธ๋ง์— ๊ธฐ๋ฐ˜ํ•˜์—ฌ ์ „์•• ์ฃผ์ž… ๋ฐ ์ „๋ฅ˜ ์‹ ํ˜ธ ์ฒ˜๋ฆฌ ๋ฐฉ์•ˆ์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ ์ •ํ˜„ํŒŒ ํ˜น์€ ๊ตฌํ˜•ํŒŒ ์ฃผ์ž…์— ๊ธฐ๋ฐ˜ํ•œ ์ œ์•ˆ๋œ ์ถ”์ •๊ธฐ๋ฅผ ํ†ตํ•ด ๊ณ ์† ์šด์ „ ์‹œ ๋™์  ์ธ๋•ํ„ด์Šค ์ถ”์ • ์ •๋ฐ€๋„๋ฅผ ํ–ฅ์ƒ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋‹ค. ์ œ์•ˆ๋œ ์•Œ๊ณ ๋ฆฌ์ฆ˜๋“ค์˜ ํƒ€๋‹น์„ฑ์€ ๋‹ค์–‘ํ•œ ์กฐ๊ฑด์—์„œ์˜ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ฐ ์‹คํ—˜์„ ํ†ตํ•ด ๊ฒ€์ฆ๋˜์—ˆ๋‹ค. ์šฐ์„ ์ ์œผ๋กœ ์ œ์•ˆ๋œ ์ „๋ฅ˜ ์ง€๋ น ๊ณ„์‚ฐ๊ธฐ๋ฅผ ํ†ตํ•ด ์ž๊ธฐํฌํ™”๊ฐ€ ๊ฑฐ์˜ ์—†๋Š” ์˜์—ญ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ํฌํ™”๊ฐ€ ์‹ฌํ•œ ์˜์—ญ์—์„œ๋„ ์‹ค์‹œ๊ฐ„ ์ตœ์†Œ ๋™์† ํ† ํฌ ์šด์ „์ด ๊ฐ€๋Šฅํ•จ์„ ํ™•์ธํ•˜์˜€๋‹ค. ์‹œํ—˜์šฉ ์ „๋™๊ธฐ์˜ ๊ฒฝ์šฐ, ๊ธฐ์กด ๊ฐ€์šฐ์Šค-๋‰ดํŠผ๋ฒ•๊ณผ ๋‹ฌ๋ฆฌ ์ œ์•ˆ๋œ ๋ ˆ๋ฒค๋ฒ„๊ทธ-๋งˆ์ฟผํŠธ๋ฒ•์„ ํ†ตํ•ด 0.8 pu ์ด์ƒ์˜ ํ† ํฌ ์ง€๋ น์— ๋Œ€ํ•ด์„œ๋„ ์ตœ์†Œ ๋™์† ํ† ํฌ ์šด์ „์ด ๊ฐ€๋Šฅํ•˜์˜€๋‹ค. ๋˜ํ•œ ์ œ์•ˆ๋œ ๊ธฐ๋ณธํŒŒ ์ž์† ๊ด€์ธก๊ธฐ ๋ฐ ๋™์  ์ธ๋•ํ„ด์Šค ์ถ”์ •๊ธฐ๊ฐ€ ๋„“์€ ์šด์ „ ์˜์—ญ์—์„œ ์ถฉ๋ถ„ํ•œ ๋™ํŠน์„ฑ์„ ๊ฐ€์ง€๋Š” ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์‹œํ—˜์šฉ ์ „๋™๊ธฐ์˜ ๊ฒฝ์šฐ, 10 pu/s ํ† ํฌ ์ง€๋ น ๋ณ€๋™ ๋ฐ 3.75 pu/s ๋ถ€ํ•˜ ์†๋„ ๋ณ€๋™์—์„œ๋„ ๊ธฐ๋ณธํŒŒ ์ž์† ๋ฐ ๋™์  ์ธ๋•ํ„ด์Šค๋ฅผ ์ž˜ ์ถ”์ •ํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค.์ œ 1์žฅ ์„œ๋ก  ๏ผ‘ 1.1 ์—ฐ๊ตฌ์˜ ๋ฐฐ๊ฒฝ ๏ผ‘ 1.2 ์—ฐ๊ตฌ์˜ ๋ชฉ์  ๏ผ— 1.3 ๋…ผ๋ฌธ์˜ ๊ตฌ์„ฑ ๏ผ˜ ์ œ 2์žฅ ์˜๊ตฌ์ž์„ ์ „๋™๊ธฐ์˜ ํŠน์„ฑ ๋ฐ ์šด์ „ ๋ฐฉ์•ˆ ๏ผ™ 2.1 ์˜๊ตฌ์ž์„ ์ „๋™๊ธฐ์˜ ํŠน์„ฑ ๏ผ‘๏ผ 2.1.1 ์ž๊ธฐํฌํ™” ๋ฐ ๊ต์ฐจ๊ฒฐํ•ฉ ํ˜„์ƒ ๏ผ‘๏ผ 2.1.2 ๊ณต๊ฐ„ ๊ณ ์กฐํŒŒ ๏ผ‘๏ผ– 2.1.3 ์ œ์ •์ˆ˜ ๋ณ€๋™์— ๋”ฐ๋ฅธ ํ† ํฌ ์˜ํ–ฅ ๏ผ‘๏ผ™ 2.1.4 ์˜๊ตฌ์ž์„ ์ „๋™๊ธฐ์˜ ๋ชจ๋ธ๋ง ๏ผ’๏ผ“ 2.2 ๊ธฐ์กด์˜ ์†์‹ค ์ตœ์†Œํ™” ์šด์ „ ๋ฐฉ์•ˆ ๏ผ’๏ผ• 2.2.1 ์„ญ๋™ ๊ธฐ๋ฐ˜ ํƒ์ƒ‰ ๋ฐฉ๋ฒ• ๏ผ’๏ผ– 2.2.2 ์ˆ˜ํ•™์  ๋ชจ๋ธ ๊ธฐ๋ฐ˜ ๊ณ„์‚ฐ ๋ฐฉ๋ฒ• ๏ผ’๏ผ˜ 2.2.3 ๊ธฐ์กด ์šด์ „ ๋ฐฉ์•ˆ์˜ ํŠน์„ฑ ๋น„๊ต ๏ผ“๏ผ’ 2.3 ์ œ์•ˆ๋œ ์†์‹ค ์ตœ์†Œํ™” ์šด์ „ ๋ฐฉ์•ˆ ๏ผ“๏ผ” ์ œ 3์žฅ ์ตœ์†Œ ๋™์† ์ „๋ฅ˜ ์ง€๋ น ๊ณ„์‚ฐ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๏ผ“๏ผ– 3.1 ์ตœ์†Œ ๋™์† ์šด์ „ ๋ฐฉ์ •์‹ ๏ผ“๏ผ— 3.1.1 MTPA ์˜์—ญ ๏ผ“๏ผ˜ 3.1.2 ์•ฝ์ž์† ์˜์—ญ ๏ผ”๏ผ 3.2 ์ œ์•ˆ๋œ ์ „๋ฅ˜ ์ง€๋ น ๊ณ„์‚ฐ๊ธฐ [49] ๏ผ”๏ผ’ 3.2.1 ์ˆ˜์น˜ ํ•ด์„ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ๊ฒ€ํ†  ๏ผ”๏ผ’ 3.2.2 ๋ ˆ๋ฒค๋ฒ„๊ทธ-๋งˆ์ฟผํŠธ๋ฒ•์˜ ๊ฐ์‡ ๋น„ ์˜ํ–ฅ ๊ณ ์ฐฐ ๏ผ•๏ผ” 3.2.3 ๊ณ„์‚ฐ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ๊ตฌํ˜„ ๏ผ–๏ผ 3.3 ์ œ์•ˆ๋œ ํ† ํฌ ์ง€๋ น ์ œํ•œ๊ธฐ ๏ผ–๏ผ’ 3.3.1 ์ตœ๋Œ€ ํ† ํฌ ์šด์ „ ๋ฐฉ์ •์‹ ๏ผ–๏ผ“ 3.3.2 ๊ณ„์‚ฐ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ๊ตฌํ˜„ ๏ผ–๏ผ• 3.4 ์šด์ „ ์˜์—ญ ํŒ๋ณ„ ๋ฐ ์ ˆํ™˜ ๋ฐฉ์•ˆ ๏ผ–๏ผ˜ 3.5 ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ฐ ์‹คํ—˜ ๊ฒฐ๊ณผ ๏ผ—๏ผ• 3.5.1 ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฒฐ๊ณผ ๏ผ—๏ผ– 3.5.2 ์‹คํ—˜ ๊ฒฐ๊ณผ ๏ผ˜๏ผ’ ์ œ 4์žฅ ์™ธ๋ž€ ์ตœ์†Œํ™” ๊ธฐ๋ณธํŒŒ ์ž์† ๊ด€์ธก๊ธฐ ๏ผ˜๏ผ˜ 4.1 ๊ธฐ์กด ์ž์† ๊ด€์ธก๊ธฐ์˜ ํŠน์„ฑ ๏ผ˜๏ผ™ 4.2 ์ œ์•ˆ๋œ ์ฃผํŒŒ์ˆ˜ ์ ์‘ ์ž์† ๊ด€์ธก๊ธฐ [68] ๏ผ™๏ผ“ 4.3 ์ œ์•ˆ๋œ ๊ธฐ๋ณธํŒŒ ์ž์† ๊ด€์ธก๊ธฐ ๏ผ™๏ผ™ 4.3.1 ์ „์•• ๋ชจ๋ธ ๊ธฐ๋ฐ˜ ์ž์† ๊ด€์ธก๊ธฐ ๏ผ™๏ผ™ 4.3.2 ์ „๋ฅ˜ ๋ชจ๋ธ ๊ธฐ๋ฐ˜ ์ž์† ๊ด€์ธก๊ธฐ ๏ผ‘๏ผ๏ผ” 4.4 ์ž์† ๊ด€์ธก๊ธฐ ๊ตฌํ˜„ ์‹œ ๊ณ ๋ ค ์‚ฌํ•ญ ๏ผ‘๏ผ๏ผ— 4.4.1 ์ „๋™๊ธฐ ์ œ์ •์ˆ˜ ์˜ค์ฐจ ๋ฐ ์˜คํ”„์…‹ ์˜ํ–ฅ ๋ถ„์„ ๏ผ‘๏ผ๏ผ— 4.4.2 ์ž์† ๊ด€์ธก๊ธฐ ๊ฐ„ ์ ˆํ™˜ ๋ฐฉ์•ˆ ๏ผ‘๏ผ๏ผ˜ 4.4.3 ๋””์ง€ํ„ธ ์‹œ์ง€์—ฐ์„ ๊ณ ๋ คํ•œ ๋ณด์ƒ ๋ฐฉ์•ˆ ๏ผ‘๏ผ‘๏ผ 4.5 ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ฐ ์‹คํ—˜ ๊ฒฐ๊ณผ ๏ผ‘๏ผ‘๏ผ’ 4.5.1 ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฒฐ๊ณผ ๏ผ‘๏ผ‘๏ผ“ 4.5.2 ์‹คํ—˜ ๊ฒฐ๊ณผ ๏ผ‘๏ผ’๏ผ‘ ์ œ 5์žฅ ์‹ ํ˜ธ ์ฃผ์ž… ๊ธฐ๋ฐ˜ ๋™์  ์ธ๋•ํ„ด์Šค ์ถ”์ •๊ธฐ ๏ผ‘๏ผ’๏ผ™ 5.1 ์‹ ํ˜ธ ์ฃผ์ž… ์•Œ๊ณ ๋ฆฌ์ฆ˜ ํŠน์„ฑ ๏ผ‘๏ผ“๏ผ 5.2 ๊ณ ์ฃผํŒŒ ์ž„ํ”ผ๋˜์Šค ๋ชจ๋ธ๋ง ๏ผ‘๏ผ“๏ผ• 5.3 ์ œ์•ˆ๋œ ๋™์  ์ธ๋•ํ„ด์Šค ์ถ”์ •๊ธฐ ๏ผ‘๏ผ“๏ผ— 5.3.1 ์ •ํ˜„ํŒŒ ์ „์•• ๊ณ ์ฃผํŒŒ ์ฃผ์ž… ๏ผ‘๏ผ“๏ผ— 5.3.2 ๊ตฌํ˜•ํŒŒ ์ „์•• ๊ณ ์ฃผํŒŒ ์ฃผ์ž… ๏ผ‘๏ผ”๏ผ‘ 5.4 ๊ณ ์ฃผํŒŒ ์‹ ํ˜ธ ์ฃผ์ž… ์‹œ ๊ณ ๋ ค ์‚ฌํ•ญ ๏ผ‘๏ผ”๏ผ– 5.4.1 ๊ณต๊ฐ„ ๊ณ ์กฐํŒŒ ์˜ํ–ฅ ๏ผ‘๏ผ”๏ผ– 5.4.2 ๋ถ€์ฐจ์ ์ธ ์†์‹ค ๋ฐ ์˜ค์ฐจ ์˜ํ–ฅ ๏ผ‘๏ผ”๏ผ— 5.5 ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ฐ ์‹คํ—˜ ๊ฒฐ๊ณผ ๏ผ‘๏ผ”๏ผ™ 5.5.1 ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฒฐ๊ณผ ๏ผ‘๏ผ•๏ผ 5.5.2 ์‹คํ—˜ ๊ฒฐ๊ณผ ๏ผ‘๏ผ•๏ผ– ์ œ 6์žฅ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ฐ ์‹คํ—˜ ๏ผ‘๏ผ–๏ผ’ 6.1 ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฒฐ๊ณผ ๏ผ‘๏ผ–๏ผ“ 6.2 ์‹คํ—˜ ๊ฒฐ๊ณผ ๏ผ‘๏ผ–๏ผ— ์ œ 7์žฅ ๊ฒฐ๋ก  ๏ผ‘๏ผ—๏ผ’ 7.1 ์—ฐ๊ตฌ ๊ฒฐ๊ณผ ๏ผ‘๏ผ—๏ผ’ 7.2 ํ–ฅํ›„ ๊ณผ์ œ ๏ผ‘๏ผ—๏ผ” ๋ถ€ ๋ก ๏ผ‘๏ผ—๏ผ— A. ์ œ์•ˆ๋œ ๊ธฐ๋ณธํŒŒ ์ž์† ๊ด€์ธก๊ธฐ์˜ ํƒ€ ์ „๋™๊ธฐ ์ ์šฉ ๊ฒฐ๊ณผ ๏ผ‘๏ผ—๏ผ— B. ์‹œํ—˜์šฉ ์˜๊ตฌ์ž์„ ์ „๋™๊ธฐ์˜ ์‹คํ—˜ ์ œ์ •์ˆ˜ ๏ผ‘๏ผ™๏ผ‘ ์ฐธ๊ณ  ๋ฌธํ—Œ ๏ผ‘๏ผ™๏ผ” Abstract ๏ผ‘๏ผ™๏ผ™Docto

    ์ˆ˜๋„๊ถŒ ๋„์‹œ์„ฑ์žฅ๊ด€๋ฆฌ์™€ ์‹ ๋„์‹œ๊ฐœ๋ฐœ(Growth control and new town development in the capital region)

    Get PDF
    ๋…ธํŠธ : ์ด ์—ฐ๊ตฌ๋ณด๊ณ ์„œ์˜ ๋‚ด์šฉ์€ ๊ตญํ† ์—ฐ๊ตฌ์›์˜ ์ž์ฒด ์—ฐ๊ตฌ๋ฌผ๋กœ์„œ ์ •๋ถ€์˜ ์ •์ฑ…์ด๋‚˜ ๊ฒฌํ•ด์™€๋Š” ์ƒ๊ด€์—†์Šต๋‹ˆ๋‹ค

    Propuesta del Nombre Coreano para el Pretรฉrito Imperfecto y el Pretรฉrito en Espaรฑol

    Get PDF
    Para los coreanos que estudian espanol, el tiempo verbal espanol no es facil de entender. Esco se debe a la diferencia entre los sistemas de tiempo verbal en el coreano y en el espanol. Por lo tanto, si tuvieramos una nomenclatura en coreano que sea mas eficaz en expresar bien el significado de tiempo verbal espanol, entenderlo seria mas facil. Pues se necesita considerar como entienden los coreanos el nombre coreano del tiempo verbal espanol. El preterito imperfecto traducido en coreano 'bulwanlyogwage' designa unas veces al aspecto imperfectivo acordando con el significado de su nombre y otras veces al aspecto perfectivo sin coincidencia: p. ej. Estudiaba yo en esta universidad; El l2 de abril de 1555 moria en Tordesillas una extrana mujer. Por lo tanto con el nombre 'bulwanlyogwage' es dificil entender el uso del preterito imperfecto espanol.

    18์„ธ๊ธฐ ์‚ฌ์กฑ์ธต ๊ฐ€์‚ฌ ์—ฐ๊ตฌ

    Get PDF
    2011๋…„ 8์›” ๊ณ ์ „๋ฌธํ•™ ๋ฐ•์‚ฌํ•™์œ„ ๋…ผ๋ฌธ, ์ง€๋„๊ต์ˆ˜ ๊ถŒ๋‘ํ™˜ ์„ ์ƒ

    ๋„์‹œ์˜ ์‚ถ์˜ ์งˆ์— ๊ด€ํ•œ ์—ฐ๊ตฌ(Quality of life in cities)

    Get PDF
    ๋…ธํŠธ : ์ด ์—ฐ๊ตฌ๋ณด๊ณ ์„œ์˜ ๋‚ด์šฉ์€ ๊ตญํ† ์—ฐ๊ตฌ์›์˜ ์ž์ฒด ์—ฐ๊ตฌ๋ฌผ๋กœ์„œ ์ •๋ถ€์˜ ์ •์ฑ…์ด๋‚˜ ๊ฒฌํ•ด์™€๋Š” ์ƒ๊ด€์—†์Šต๋‹ˆ๋‹ค

    ๊ณ ์ • ๊ฒฉ์ž๊ณ„๋ฅผ ์ด์šฉํ•œ ๊ธˆํ˜• ์ถฉ์ „ ๊ณผ์ • ๋ฐ ์ƒ๋ณ€ํ™”์— ๋Œ€ํ•œ ์—ฐ๊ตฌ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€,2001.Maste
    • โ€ฆ
    corecore