44 research outputs found

    뢄광법을 μ΄μš©ν•œ λ¬΄μ •λž€μ˜ λΆ€ν™” 쀑 μ‘°κΈ° κ²€μΆœκ³Ό μ €μž₯ 쀑 신선도 μΈ‘μ • 기술 개발

    Get PDF
    ν•™μœ„λ…Όλ¬Έ (박사)-- μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› 농업생λͺ…κ³Όν•™λŒ€ν•™ λ°”μ΄μ˜€μ‹œμŠ€ν…œΒ·μ†Œμž¬ν•™λΆ€, 2017. 8. κΉ€μš©λ…Έ.λΆ€ν™”μž₯μ—μ„œ 정상적인 λΆ€ν™” μ—¬λΆ€λ₯Ό νŒλ³„ν•˜κΈ° μœ„ν•œ 1μ°¨ κ²€λž€μ€ 일반적으둜 5일∼7일 이후에 인λ ₯에 μ˜ν•΄ μˆ˜ν–‰λ˜λ©°, λ¬΄μ •λž€κ³Ό λ°°μ•„κ°€ λ°œμƒν•˜μ§€ μ•Šμ€ μ•Œλ“€μ€ λͺ¨λ‘ 폐기 μ²˜λΆ„λœλ‹€. λ―Έλ°œμƒλž€μ„ 보닀 더 λΉ λ₯Έ μ‹œκ°„(3일 이내) μ•ˆμ— μžλ™ κ²€μΆœν•  경우 뢀화에 μ†Œμš”λ˜λŠ” 인λ ₯ 및 μ—λ„ˆμ§€μ˜ κ°μ†Œ νš¨κ³Όμ™€ λ¬΄μ •λž€μ„ λ‹€λ₯Έ μš©λ„λ‘œ ν™œμš©ν•  수 μžˆμŒμ„ κΈ°λŒ€ν•  수 μžˆλ‹€. λ³Έ μ—°κ΅¬λŠ” 기쑴의 과싀을 λΉ„λ‘―ν•œ 농산물 λΉ„νŒŒκ΄΄ ν’ˆμ§ˆνŒλ³„μ— 적용되고 μžˆλŠ” 뢄광뢄석법과 의료 진단에 μ‚¬μš©λ˜λŠ” MRI κΈ°μˆ μ„ μ΄μš©ν•˜μ—¬ λ¬΄μ •λž€(배반의 λ―Έλ°œμƒλž€ 포함)의 μ‘°κΈ° νŒλ³„ κΈ°μˆ μ„ κ°œλ°œν•˜κ³  λ‚˜μ•„κ°€μ„œ 뢄광뢄석법을 μ΄μš©ν•˜μ—¬ λ¬΄μ •λž€μ˜ 신선도 μΈ‘μ •κΈ°μˆ μ„ κ°œλ°œν•˜λŠ”λ° λͺ©μ μ΄ 있으며 연ꡬ κ²°κ³Όλ₯Ό μš”μ•½ν•˜λ©΄ λ‹€μŒκ³Ό κ°™λ‹€. 1. λΆ€ν™” 쀑인 κ³„λž€μ„ λŒ€μƒμœΌλ‘œ 투과 μŠ€νŽ™νŠΈλŸΌμ„ μΈ‘μ •ν•˜κΈ° μœ„ν•΄ 청색 LED와 녹색 LED둜 κ΅¬μ„±λ˜λŠ” κ°€μ‹œκ΄‘ λŒ€μ—­ 광원 μž₯μΉ˜μ™€(광원A) ν• λ‘œκ²λž¨ν”„λ₯Ό μΆ”κ°€ν•œ κ°€μ‹œ 및 근적외선 λŒ€μ—­μ˜ 광원 μž₯치(광원B)λ₯Ό κ΅¬μ„±ν•˜κ³ , μ‚°λž€κ³„μΈ ν•˜μ΄λΌμΈ λΈŒλΌμš΄μ’…μ˜ κ°ˆμƒ‰λž€μ„ λŒ€μƒμœΌλ‘œ μΈ‘μ •ν•œ 투과 μŠ€νŽ™νŠΈλŸΌμ„ μ΄μš©ν•˜μ—¬ μœ Β·λ¬΄μ •λž€ νŒλ³„μ„ μœ„ν•œ PLS-DAλͺ¨λΈμ„ κ°œλ°œν•˜μ˜€λ‹€. 개발된 PLS-DA νŒλ³„ λͺ¨λΈμ—μ„œ κ°€μ‹œκ΄‘ μ˜μ—­(440∼800nm)의 κ²½μš°μ—λŠ” λΆ€ν™” 40μ‹œκ°„λΆ€ν„°, κ°€μ‹œ/근적외선(440∼950nm) μ˜μ—­μ˜ κ²½μš°μ—λŠ” λΆ€ν™” 22μ‹œκ°„λΆ€ν„° μœ Β·λ¬΄μ •λž€ νŒλ³„μœ¨μ΄ 90%μ •λ„λ‘œ λ‚˜νƒ€λ‚¬μœΌλ©° μ‹œκ°„μ΄ μ§€λ‚ μˆ˜λ‘ νŒλ³„μœ¨μ΄ μ•½κ°„ μ¦κ°€ν•˜κ³  λͺ¨λΈμ˜ μ•ˆμ •μ„±μ΄ ν–₯μƒλ˜μ—ˆλ‹€. 결과적으둜 λΆ€ν™” 56μ‹œκ°„ μ •λ„μ—μ„œ νŒλ³„μœ¨μ΄ 92%이상 λ˜λŠ” κ²ƒμœΌλ‘œ 판λͺ…λ˜μ—ˆλ‹€. 이와 같은 μ‘°κΈ° νŒλ³„ κ²°κ³ΌλŠ” 광원 μž₯μΉ˜μ—μ„œ 450nm λŒ€μ—­μ˜ 청색 광원을 κ°•ν™”ν•˜κ³ , λ³Έ μ—°κ΅¬μ—μ„œ κ°œλ°œν•œ μ›μ‹œ μŠ€νŽ™νŠΈλŸΌμ„ μ΄μš©ν•œ μ •κ·œν™” μ „μ²˜λ¦¬μ™€ 관계가 κΉŠμ€ κ²ƒμœΌλ‘œ μƒκ°λœλ‹€. 2. 1.0T MRI μž₯λΉ„λ₯Ό μ΄μš©ν•˜μ—¬ TR=14ms, TE=4ms, Flip angle=20°으둜 μ„€μ •ν•˜κ³  μΆ• λ°©ν–₯의 64개 슬라이슀 μ˜μƒμ„ μΈ‘μ •ν•˜μ˜€λ‹€. λΆ€ν™” 쀑 λ…Έλ₯Έμž ν˜•μƒμ˜ λ³€ν™”λ₯Ό μ •λŸ‰ν™”ν•˜κΈ° μœ„ν•΄ λ…Έλ₯Έμžμ˜ μœ€κ³½μ„  μΆ”μΆœ 및 μΆ”μΆœν•œ μ˜μƒμ˜ 쀑심(centroid), μ›ν˜•λ„, μž₯단좕 λΉ„ 등을 뢄석할 수 μžˆλŠ” μ˜μƒ 처리 μ•Œκ³ λ¦¬μ¦˜μ„ κ°œλ°œν•˜μ˜€λ‹€. κ³„λž€ 쀑앙 λΆ€μœ„ 슬라이슀의 평균 μ˜μƒ 정보λ₯Ό μ΄μš©ν•˜μ—¬ λ…Έλ₯Έμžμ˜ μ›ν˜•λ„μ™€ μž₯단좕 λΉ„ λ“±μ˜ ν˜•μƒ μ§€μˆ˜λ₯Ό κ΅¬ν•˜κ³ , μœ Β·λ¬΄μ •λž€μ„ νŒλ³„ν•œ κ²°κ³Ό νŒλ³„μœ¨μ€ λΆ€ν™” 72μ‹œκ°„μ—μ„œ 각각 98.3% 및 95%λ₯Ό λ‚˜νƒ€λ‚΄μ—ˆλ‹€. 3. MR μ˜μƒ λΆ„μ„μ—μ„œ κ΅¬ν•œ λ…Έλ₯Έμžμ˜ μž₯단좕 비와 κ°€μ‹œ/근적외선 μ˜μ—­μ—μ„œ 얻은 μŠ€νŽ™νŠΈλŸΌμ„ PLSR을 μ΄μš©ν•˜μ—¬ μ˜ˆμΈ‘ν•œ κ²°κ³Ό R와 SEPκ°€ 각각 0.46132, 0.11634μ΄μ—ˆλ‹€. MR μ˜μƒμ„ μ΄μš©ν•œ ν˜•μƒ μ§€μˆ˜ 뢄석 결과와 μ—°κ³„ν•˜μ—¬ μœ Β·λ¬΄μ •λž€ νŒλ³„μ„ μœ„ν•œ PLSR λͺ¨λΈ κ°œλ°œμ— μžˆμ–΄ 좔가적인 μ—°κ΅¬λŠ” λͺ¨λΈμ˜ μ„±λŠ₯ ν–₯상을 μœ„ν•΄ ν•„μš”ν•  κ²ƒμœΌλ‘œ νŒλ‹¨λœλ‹€. 4. λ¬΄μ •λž€μ˜ 신선도(ν˜Έμš°μœ λ‹›, HU)λ₯Ό μ˜ˆμΈ‘ν•˜κΈ° μœ„ν•΄ κ°€μ‹œ/근적외선 광원 μž₯치λ₯Ό κ΅¬μ„±ν•˜κ³ , κ°ˆμƒ‰λž€κ³Ό λ°±μƒ‰λž€μ„ λŒ€μƒμœΌλ‘œ 투과 μŠ€νŽ™νŠΈλŸΌμ„ μΈ‘μ •ν•˜μ—¬ PLSR λͺ¨λΈμ„ κ°œλ°œν•˜μ˜€λ‹€. κ°ˆμƒ‰λž€μ—μ„œ HU 예츑 κ²°κ³ΌλŠ” =0.72132, SEP=8.84, bias=0.11729, 였차 13.63%μ΄μ—ˆμœΌλ©°, λ°±μƒ‰λž€μ˜ 경우 =0.92162, SEP=5.27, bias=0.26917, 였차=8.70%μ΄μ˜€λ‹€.β… . μ„œλ‘  β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯ 1 β…‘. 연ꡬ사 β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯ 4 2.1. κ³„λž€μ˜ ꡬ쑰 및 생성 κ³Όμ • Β·β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯ 4 2.2. μœ μ •λž€κ³Ό λΆ€ν™” κ³Όμ • Β·β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯ 7 2.3. κ³„λž€μ˜ ν˜„ν–‰ 선별 기술 Β·β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯ 9 2.4. κ°€μ‹œ/근적외선 뢄광법을 μ΄μš©ν•œ λ‚΄λΆ€ νŒλ³„ β€₯β€₯β€₯β€₯β€₯ 10 2.4.1. μœ μ •λž€Β·ν˜ˆλž€ νŒλ³„ β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯ 10 2.4.2. 신선도 νŒλ³„ β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯ 10 2.5. 자기곡λͺ…μ˜μƒ(MRI)κΈ°μˆ μ„ μ΄μš©ν•œ λ‚΄λΆ€ νŒλ³„ β€₯β€₯β€₯ 12 2.6. 기타 κΈ°μˆ μ„ μ΄μš©ν•œ λ‚΄λΆ€ νŒλ³„ Β·β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯ 14 β…’. κ°€μ‹œ/근적외선 뢄광법을 μ΄μš©ν•œ λ¬΄μ •λž€ μ‘°κΈ° κ²€μΆœ 15 3.1. μ„œμ–Έ β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯ 15 3.2. 이둠적 λ°°κ²½ Β·β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯ 17 3.2.1. κ°€μ‹œ/κ·Όμ μ™Έμ„ μ˜ 흑수 원리 및 νŠΉμ§• β€₯β€₯β€₯β€₯β€₯β€₯ 17 3.2.2. κ°€μ‹œ/κ·Όμ μ™Έμ„ μ˜ 흑광도 μΈ‘μ • β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯ 18 3.2.3. μŠ€νŽ™νŠΈλŸΌμ˜ μ „μ²˜λ¦¬ β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯ 19 3.2.4. 뢄광뢄석 예츑 λͺ¨λΈ 개발과 μ„±λŠ₯ 평가 β€₯β€₯β€₯β€₯β€₯ 22 3.3. 재료 및 방법 Β·β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯ 25 3.3.1. κ΄‘μ›μ˜ 선택 β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯ 25 3.3.2. κ³΅μ‹œ 재료 및 μ‹€ν—˜ μž₯치 β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯ 30 3.3.3. 투과 μŠ€νŽ™νŠΈλŸΌ μΈ‘μ • 및 뢄석 β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯ 32 3.3.4. μœ Β·λ¬΄μ •λž€μ˜ νŒλ³„ β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯ 34 3.4. κ²°κ³Ό 및 κ³ μ°° Β·β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯ 35 3.4.1. λΆ€ν™” μ‹œκ°„μ— λ”°λ₯Έ μŠ€νŽ™νŠΈλŸΌμ˜ λ³€ν™” β€₯β€₯β€₯β€₯β€₯β€₯ 35 3.4.2. λΆ€ν™” μ‹œκ°„μ— λ”°λ₯Έ μƒκ΄€κ³„μˆ˜μ˜ λ³€ν™” β€₯β€₯β€₯β€₯β€₯β€₯ 42 3.4.3. μœ Β·λ¬΄μ •λž€μ˜ νŒλ³„ β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯ 46 3.5. μš”μ•½ 및 κ²°λ‘  Β·β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯ 52 β…£. MR μ˜μƒ 뢄석을 μ΄μš©ν•œ λ¬΄μ •λž€μ˜ μ‘°κΈ° κ²€μΆœ 및 뢄광뢄석법에 μ˜ν•œ ν˜•μƒ μ§€μˆ˜ 예츑 β€₯β€₯β€₯β€₯β€₯β€₯β€₯ 54 4.1. μ„œμ–Έ β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯ 54 4.2. 재료 및 방법 β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯ 56 4.2.1. κ³΅μ‹œ 재료 β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯ 56 4.2.2. MRI μž₯λΉ„ β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯ 57 4.2.3. 트레이 및 ν™€λ”μ˜ μ œμž‘ β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯ 58 4.2.4. λΆ€ν™” κ³Όμ • λͺ¨λ‹ˆν„°λ§ 및 MR μ˜μƒμ˜ νšλ“ β€₯β€₯β€₯β€₯ 60 4.2.5. ν˜•μƒ μ§€μˆ˜μ˜ μ„€μ • β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯ 67 4.2.6. ν˜•μƒ μ§€μˆ˜ μ˜ˆμΈ‘μ„ μœ„ν•œ 투과 μŠ€νŽ™νŠΈλŸΌ μΈ‘μ • 및 뢄석 68 4.3. κ²°κ³Ό 및 κ³ μ°° Β·β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯ 70 4.3.1. λΆ€ν™” μ‹œκ°„μ— λ”°λ₯Έ MR μ˜μƒμ—μ„œμ˜ ν˜•μƒ λ³€ν™” β€₯β€₯ 70 4.3.2. 정상 λΆ€ν™” νŒλ³„μš© ν˜•μƒ μ§€μˆ˜ 개발 β€₯β€₯β€₯β€₯β€₯β€₯β€₯ 75 4.3.3. PLSR에 μ˜ν•œ λ…Έλ₯Έμž μž₯λ‹¨μΆ•λΉ„μ˜ λ³€ν™” 예츑 β€₯β€₯ 81 4.4. μš”μ•½ 및 κ²°λ‘  Β·β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯ 88 β…€. κ°€μ‹œ 근적외선 뢄광법을 μ΄μš©ν•œ μ €μž₯ 쀑 κ³„λž€μ˜ 신선도 (Haugh Unit) 예츑 β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯ 90 5.1. μ„œμ–Έ Β·β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯ 90 5.2. 이둠적 λ°°κ²½ Β·β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯ 92 5.3. 재료 및 방법 Β·β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯ 95 5.3.1. κ³΅μ‹œ 재료 및 μ‹€ν—˜ μž₯치 β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯ 95 5.3.2. μ‹€ν—˜ 및 데이터 νšλ“ 방법 β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯ 96 5.3.3. μŠ€νŽ™νŠΈλŸΌ μ „μ²˜λ¦¬ 및 λͺ¨λΈ 개발 β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯ 97 5.4. κ²°κ³Ό 및 κ³ μ°° Β·β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯ 98 5.4.1. μŠ€νŽ™νŠΈλŸΌ νŒŒν˜• 및 Haugh Unit의 λ³€ν™” Β·β€₯β€₯β€₯β€₯ 98 5.4.2. μ „μ²˜λ¦¬ 효과 β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯ 100 5.4.3. λͺ¨λΈμ˜ μ„±λŠ₯ 평가 β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯ 102 5.5. μš”μ•½ 및 κ²°λ‘  Β·β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯ 108 β…₯. μ’…ν•© κ²°λ‘  β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯ 109 β…¦. μ°Έκ³  λ¬Έν—Œ β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯ 111 뢀둝 β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯ 117 Abstract β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯β€₯ 143Docto

    Determination of lithium diffusion coefficient and reaction mechanism into ultra-small nanocrystalline SnO2 particles

    No full text
    High-performance electrode materials for lithium-ion batteries (LIBs) are urgently required to meet the re- quirement of the widespread use of energy storage devices from small-to large-scale applications. In this regard, ultra-small nanocrystalline SnO2 particles with a size of ∼3 nm are synthesized using a simple hydrothermal method and investigated as a high capacity anode material for LIBs. The SnO2 anode shows a high reversible capacity of 1026 mAh g−1 at a current density of 150mAg−1. The kinetic study of the anode material is conducted and compared using cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic intermittent titration techniques and the lithium diffusion coefficient at open circuit potential is calculated to be 3.71978 × 10−13, 1.818 × 10−14, and ∼1.82 × 10−16 cm2 s−1, respectively. The reaction mechanism of highly reversible SnO2 nanoparticles is investigated using ex-situ XRD, XPS, in-situ X-ray absorption near edge spec- troscopy, and TEM and the results reveal the formation of lithium-tin alloy in the lithiated electrode and re- versible formation of SnO2 upon delithiation.This research was supported by the Technology Development Program to Solve Climate Changes of the National Research Foundation funded by the Ministry of Science & ICT (grant number: 2017M1A2A2044482) and the R&D Convergence Program of National Research Council of Science & Technology of Republic of Korea

    κ³΅ν›„μΈμ˜ μ‹ κ³ μ°°

    No full text

    Facile and cost-effective methodology to fabricate MoS2 counter electrode for efficient dye-sensitized solar cells

    No full text
    Interests in the development of economical and high-efficiency counter electrodes (CEs) of dye-sensitized solar cell (DSSC) to replace the excessively cost and scarce platinum (Pt) CEs have been increased. In this report, we demonstrate a facile chemical bath deposition (CBD) route to prepare layered MoS2/fluorine-doped tin oxide (FTO) films that directly act as the CEs of DSSCs. A DSSC containing the CBD-synthesized MoS2/FTO CE (prepared at 0.03 M Mo source concentration, 90 degrees C bath temperature and 30 min deposition time) exhibits high power conversion efficiency (PCE) of 7.14%, which is approaching that of DSSC with Pt/FTO CE (8.73%). The electrocatalytic activity of the MoS2/FTO and Pt/FTO CEs are discussed in detail with their cyclic voltammetry (CV), Tafel polarization curves, and electrochemical impedance spectra (EIS). The observed results indicate that our low-cost CE has a high electrocatalytic activity for the reduction of triiodide to iodide and a low charge transfer resistance at the electrolyte-electrode interface with a comparable state to that of a Pt/FTO CE.This work was supported by the Ministry of Trade, Industry and Energy (MOTIE, 10051565) and Korea Display Research Corporation (KDRC) support program for the development of future devices technology for display industry. This work was partially supported by the GRRC program of Gyeonggi province [GRRC AJOU 2016803, Photonics-Medical Convergence Technology Research Center]. Part of this work was supported by the Ministry of Trade, Industry and Energy under Sensor Industrial Technology Innovation Program (Project No. 10063682)

    μ‹œμ‘°μ˜ 미적 μœ ν˜• 체계둠

    No full text

    고체 μ•„λ₯΄κ³€ λ‚΄μ—μ„œ λ²€μ  (ν• λ‘œλ²€μ  )κ³Ό μ•ŒμΉΌλ¦¬ κΈˆμ†κ°„μ˜ μƒν˜Έ μž‘μš© : 적외선 뢄광법적 연ꡬ

    No full text
    Thesis (doctoral)--μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› :ν™”ν•™κ³Ό 물리화학전곡,1995.Docto

    The influence of crystallinity in carbon fiber reinforced PET composites at various temperature

    No full text
    This work was supported by the industrial Strategic technology Development Program(10076562,Development of fiber reinforced thermoplastic nano-composite via fiber bundle spreading for high quality resin impregnation process and its application to the underbody shield component for protecting battery pack of an electric-vehicle) funded By Ministry of Trade, industry & Energy(MI,Korea). This research was also supported by the National Research Foundation of Korea(NRF) funded by the Ministry of Education(2012R1A6A1029029 and 2018R1D1A1A09083236)

    A study on copper/silver core-shell microparticles with silver nanoparticles hybrid ink and its sintering characteristics with flash light for oxidation resistance

    No full text
    This work was supported by Materials & Components Technology Development Program (20002957,Development of AgNW RGO transparent electrode material and process based on IPL for OPV) funded by the Ministry of Trade, Industry&Energy (MOTIE,Korea). This research was also supported by the National Research Foundation of Korea(NRF) funded by the Ministry of Education(2012R1A6A1029029 and 2018R1D1A1A09083236)

    λΆˆν™•μ‹€μ„±μ„ κ°–λŠ” λΉ„μ„ ν˜• μ„œλ³΄μ‹œμŠ€ν…œμ˜ κ°•μΈμ œμ–΄

    No full text
    Thesis (doctoral)--μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› :기계항곡곡학뢀,2002.Docto

    Development of a WS2/MoTe2 heterostructure as a counter electrode for the improved performance in dye-sensitized solar cells

    No full text
    A facile large-area synthesis of a WS2/MoTe2 heterostructure via a sputtering-CVD approach on conductive glass substrates was demonstrated and, for the first time, it was used as a counter electrode (CE) for dye-sensitized solar cells (DSSCs). Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and Tafel curves verified that the unique structure is beneficial for improving the catalytic activity for the reduction of triiodide to iodide and a low charge transfer resistance at the electrode/electrolyte interface. The thicknesses of the top and bottom layers of WS2/MoTe2 were varied to achieve high DSSC performance. Consequently, DSSCs assembled with the optimized WS2/MoTe2 CE reached a high power conversion efficiency (PCE) of 7.99%, which is comparable to the conventional Pt CE (8.50%) and their pristine WS2 and MoTe2 CEs (6.3% and 7.25%, respectively). Our findings create a way to prepare DSSCs with efficient performance.This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (2010-0020207, 2017R1C1B5076952, and 2012R1A6A1029029), by the MOTIE (10052928) and the KSRC (Korea Semiconductor Research Consortium) support programs for the development of future semiconductor devices. This research was also supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry, and Energy (MOTIE) of the Republic of Korea (20172010106080)
    corecore