11 research outputs found

    초 거대 뇌하수체 선종 61 증례의 수술 후 장기 치료 결과

    No full text
    학위논문(석사)--서울대학교 대학원 :의학과 신경외과학 전공,2003.Maste

    측두엽 간질에서의 언어 경로의 변화 : 확산 텐서 자기 공명 영상을 이용한 궁상 다발과 갈고리 다발에 대한 분석

    No full text
    Thesis(doctors) --서울대학교 대학원 :의학과(뇌신경과학전공),2008.8.Docto

    The Current Status of and Suggestions for Writing Center - in the case of the Keimyung University

    No full text

    랜덤현상의 계산적 구조 및 응용

    No full text
    학위논문(박사) - 한국과학기술원 : 수학전공, 2003.2, [ [iii], 101 p. ]The aim of this work is to investigate computational structures of random phenomena in various fields such as pseudorandom number generations and ergodic theory. First, we propose new empirical tests for pseudorandom numbers based on random walks on Zn=0,1,,n1\mathbb Z_n={0,1, …,n-1}. The tests focus on the distribution of arrival time at zero starting from a fixed point x neq 0. Three types of random walk are defined and the exact probability density of the arrival time for each version is obtained by the Fourier analysis on finite groups. The test results show hidden defects in some generators such as combined multiple recursive generators and Mersenne Twister generators, which are considered to be flawless until now. Next, we observe the limiting behavior of the generalized Khintchine constants. Let Tp(x)=1/xp(mod1)T_p(x)=1/x^p (mod1) for 0 < x < 1 and Tp(0)=0T_p(0)=0. It is known that if pp0=0.241485,thenp > p_0=0.241485…, then T_phasanabsolutelycontinuousergodicmeasure.Put has an absolutely continuous ergodic measure. Put a_n=\left\lfloor\left(1/T_p^{n-1}(x)\right)^p\right\rfloor,, n ≥ 1,where where \lfloor t \rflooristheintegerpartoft.Forarealnumberq,defineaveragesof is the integer part of t. For a real number q, define averages of a_nby◁수식삽입▷(원문을참조하세요)Let by ◁수식 삽입▷(원문을 참조하세요) Let K_{p,q}:=lim_{n → ∞}K(p,q,n,x).Foralmosteveryx,weshowthat(i). For almost every x, we show that (i) K_{p,q} <∞ifandonlyif if and only if q <1/p,(ii)ifq=0,then, (ii) if q=0, then lim_{p → ∞}(log K_{p,q})/p = 1,(iii)ifq0,then, (iii) if q <0, then lim_{p → ∞}log K_{p,q}/log{p} = 1/|q|,wherelogdenotesthenaturallogarithm.Thelimitingbehaviorof,where `log` denotes the natural logarithm. The limiting behavior of K_{p,q}isinvestigatedaspdownarrow is investigated as p downarrow p_0$ with high precision computer simulations.한국과학기술원 : 수학전공
    corecore