23 research outputs found

    ์ž„์˜์˜ ์˜์กด์„ฑ ๊ตฌ์กฐํ•˜์—์„œ ๋ถ„๊ณ„์ ์„ ์ด์šฉํ•œ ์ฝ”์‰ฌ ๊ฒฐํ•ฉ ๊ฒ€์ • ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ์ž์—ฐ๊ณผํ•™๋Œ€ํ•™ ํ†ต๊ณ„ํ•™๊ณผ, 2021.8. ์žฅ์›์ฒ .Combining individual p-values to aggregate sparse and weak effects is a substantial interest in large-scale data analysis. The individual p-values or test statistics are often correlated, although many p-values combining methods are developed under i.i.d. assumption. The Cauchy combination test is a method to combine p-values for arbitrary dependence structures, but in practice, the type I error increases as the correlation increases. In this thesis, we propose a global test that extends the Cauchy combination test by thresholding arbitrarily dependent p-values. Under arbitrary dependence structures, we show that the tail probability of the proposed method is asymptotically equivalent to that of the Cauchy distribution. In addition, we show that the power of the proposed test achieves the optimal detection boundary asymptotically in a strong sparsity condition. Extensive simulation results show that the power of the proposed test is robust to correlation structures and more powerful under a sparse situation. As a case study, we apply the proposed test to GWAS of Inflammatory bowel disease (IBD).ํฌ๊ธฐ๊ฐ€ ์•ฝํ•˜๊ณ  ํฌ๋ฐ•ํ•œ ์‹ ํ˜ธ๋“ค์„ ์ง‘ํ•ฉํ•˜๊ธฐ ์œ„ํ•ด ๊ฐœ๋ณ„์ ์œผ๋กœ ๊ตฌํ•ด์ง„ ์œ ์˜ํ™•๋ฅ ๋“ค์„ ๊ฒฐํ•ฉํ•˜๋Š” ๋ฐฉ๋ฒ•์€ ๊ณ ์ฐจ์› ๋Œ€๊ทœ๋ชจ ์ž๋ฃŒ ๋ถ„์„์— ์žˆ์–ด ๋งค์šฐ ์ค‘์š”ํ•œ ์ฃผ์ œ ์ค‘ ํ•˜๋‚˜์ด๋‹ค. ๊ฐœ๋ณ„์ ์œผ๋กœ ๊ตฌํ•ด์ง„ ์œ ์˜ํ™•๋ฅ  ๋˜๋Š” ๊ฒ€์ • ํ†ต๊ณ„๋Ÿ‰์€ ๋•Œ๋•Œ๋กœ ๋ฐ€์ ‘ํ•˜๊ฒŒ ์—ฐ๊ด€๋˜์–ด ์žˆ๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋งŽ์€๋ฐ, ๋งŽ์€ ๊ฒฝ์šฐ์˜ ์œ ์˜ํ™•๋ฅ  ๊ฒฐํ•ฉ ๋ฐฉ๋ฒ•๋“ค์€ ์ด๋Ÿฌํ•œ ์—ฐ๊ด€์„ฑ์„ ๊ณ ๋ คํ•˜์ง€ ์•Š๊ณ  ๋™์ผํ•˜๋ฉฐ ๋…๋ฆฝ์ ์ด๋ผ๋Š” ๊ฐ€์ •ํ•˜์—์„œ ๊ฐœ๋ฐœ๋œ ๊ฒฝ์šฐ๊ฐ€ ๋งŽ๋‹ค. ์ฝ”์‰ฌ ๊ฒฐํ•ฉ ๊ฒ€์ •์€ ์ด๋Ÿฌํ•œ ๋ฐฉ๋ฒ•๋“ค๊ณผ๋Š” ๋‹ค๋ฅด๊ฒŒ ์ž„์˜์˜ ์—ฐ๊ด€์„ฑ ๊ตฌ์กฐ์— ์˜ํ–ฅ์„ ๋ฐ›์ง€ ์•Š๊ณ  ๊ฐœ๋ณ„ ์œ ์˜ํ™•๋ฅ ๋“ค์„ ๊ฒฐํ•ฉํ•  ์ˆ˜ ์žˆ๊ฒŒ๋” ๊ฐœ๋ฐœ๋œ ๋ฐฉ๋ฒ•์ด์ง€๋งŒ ์‹ค์ œ๋กœ๋Š” ๋ณ€์ˆ˜๋“ค ์‚ฌ์ด์˜ ์—ฐ๊ด€์„ฑ์ด ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ ์—ฌ์ „ํžˆ ์ œ1์ข… ์˜ค๋ฅ˜๊ฐ€ ์ฆ๊ฐ€ํ•œ๋‹ค๋Š” ๋‹จ์ ์ด ์žˆ๋‹ค. ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์€ ์ž„์˜์˜ ์—ฐ๊ด€์„ฑ ๊ตฌ์กฐํ•˜์—์„œ ์–ป์–ด์ง„ ์œ ์˜ํ™•๋ฅ ๋“ค์˜ ๋ถ„๊ณ„์ ์„ ์ด์šฉํ•˜์—ฌ ์ฝ”์‰ฌ ๊ฒฐํ•ฉ ๊ฒ€์ •์„ ํ™•์žฅํ•œ ์ƒˆ๋กœ์šด ์ „์—ญ ๊ฐ€์„ค ๊ฒ€์ • ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ์ž„์˜์˜ ์—ฐ๊ด€์„ฑ ๊ตฌ์กฐํ•˜์—์„œ, ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์—์„œ ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•์˜ ๊ผฌ๋ฆฌ ํ™•๋ฅ ์ด ์ ๊ทผ์ ์œผ๋กœ ์ฝ”์‰ฌ ๋ถ„ํฌ์˜ ๊ผฌ๋ฆฌ ํ™•๋ฅ ๊ณผ ์ผ์น˜ํ•จ์„ ๋ณด์ธ๋‹ค. ๋˜ํ•œ ๊ฐ•ํ•œ ํฌ๋ฐ•์„ฑ ์กฐ๊ฑดํ•˜์—์„œ ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•์˜ ๊ฒ€์ •๋ ฅ์ด ์ ๊ทผ์ ์œผ๋กœ ์ตœ์ ์˜ ์‹ ํ˜ธ ํƒ์ง€ ๊ฒฝ๊ณ„๋ฅผ ๋‹ฌ์„ฑํ•  ์ˆ˜ ์žˆ์Œ์„ ๋ณด์ธ๋‹ค. ๋Œ€๊ทœ๋ชจ์˜ ๋ชจ์˜์‹คํ—˜ ๊ฒฐ๊ณผ๋ฅผ ํ†ตํ•ด ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•์˜ ๊ฒ€์ •๋ ฅ์ด ์‹ค์ œ๋กœ ๋ณ€์ˆ˜๋“ค ์‚ฌ์ด์˜ ์ƒ๊ด€ ๊ตฌ์กฐ์— ๊ฐ•๊ฑดํ•˜๋ฉฐ, ์‹ ํ˜ธ๊ฐ€ ํฌ๋ฐ•ํ•œ ์ƒํ™ฉ์—์„œ ๋‹ค๋ฅธ ๋ฐฉ๋ฒ•๋“ค์— ๋น„ํ•ด ๊ฒ€์ •๋ ฅ์ด ๋†’๋‹ค๋Š” ์‚ฌ์‹ค์„ ์ œ์‹œํ•œ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ ์‚ฌ๋ก€์—ฐ๊ตฌ๋กœ์„œ, ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•์„ ์—ผ์ฆ์„ฑ ์žฅ์งˆํ™˜ (Inflammatory bowel disease, IBD) ์ „์ฒด์œ ์ „์ฒด ์ƒ๊ด€๋ถ„์„ ์—ฐ๊ตฌ์— ์ ์šฉํ•œ๋‹ค.1 Introduction 1 1.1 Combining p-values. 3 1.2 Main Contributions . 4 1.3 Out line of the Thesis 6 2 Literature Review . 7 2.1 Combining p-values Under Independence Structure 9 2.1.1 Based on Empirical Distribution of p-values 10 2.1.2 Based on Combination Statistic of p-values . 13 2.2 Combining p-values Under Dependence Structure . 14 2.2.1 Based on Decorrelating or Estimating Correlation Structure 15 2.2.2 Based on Merging p-values . 15 2.3 Cauchy Combination Test . 18 2.3.1 Cauchy Combination Test Under Independence Structure . 19 2.3.2 Cauchy Combination Test Under Arbitrary Dependency Structure . 20 3 Cauchy Combination Test with Threshold Under Arbitrary Dependency Structures 23 3.1 Null Distribution . 25 3.1.1 Approximation of Tail Probability for The Null Distribution in Finite Dimension 26 3.1.2 Approximation of Tail Probability for The Null Distribution in Infinite Dimension . 28 3.1.3 Approximation of Tail Probability for The Null Distribution with Random Weights . 30 3.2 Power Analysis of Cauchy Combination Test with Thresholding . 33 3.3 Choosing the thresholding value ฮด 35 4 Estimating The Proportion of Non-null Hypotheses 38 4.1 Literature Reviews 39 4.1.1 Methods That Estimating The Proportion of Signals for Independent p-values 40 4.1.2 Methods That Estimating The Proportion of Signals for Arbitrarily Dependent p-values 43 4.2 Proposed Method . 44 5 Numerical Studies . 47 5.1 Simulation Studies of Estimating the proportion of nonnull hypotheses . 49 5.2 Simulation Studies of Type I Error 53 5.3 Simulation Studies of PowerAnalysis . 54 6 Case Studies 61 7 Conclusions . 68 A Proof of Theorems and Lemmas 70 A.1 Proof of Theorem 4. 70 A.2 Proof of Theorem 3. 80 A.3 Proof of Theorem 5. 88 B Supplementary Analysis . 93 B.1 t-Distribution . 93 B.2 Comparison with Hartung's method 96 Bibliography . 102 Abstract in Korean 107๋ฐ•

    ์Šค์ฟผํŠธ ๋™์ž‘์˜ ํšจ๊ณผ๊ฒ€์ฆ ๋ฐ ๋ฉ”ํƒ€๋ถ„์„

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์‚ฌ๋ฒ”๋Œ€ํ•™ ์ฒด์œก๊ต์œก๊ณผ, 2021. 2. ๊น€์—ฐ์ˆ˜.์—ฐ๊ตฌ์˜ ๋ชฉ์  ๋ณธ ์—ฐ๊ตฌ์˜ ๋ชฉ์ ์€ ๊ณ ํ˜ˆ์•• ์ „๋‹จ๊ณ„ ๋ฐ ๊ณ ํ˜ˆ์••์— ํ•ด๋‹นํ•˜๋Š” ์„ฑ์ธ๊ณผ ๋…ธ์ธ๋“ค์„ ๋Œ€์ƒ์œผ๋กœ ๋„๊ตฌ ์—†์ด ์ˆ˜ํ–‰ ๊ฐ€๋Šฅํ•œ Isometric squat ๋™์ž‘์˜ ์ ์ • ์šด๋™๊ฐ•๋„๋ฅผ ํŒŒ์•…ํ•˜๊ณ , Isometric handgip, Isometric leg extension, ๊ทธ๋ฆฌ๊ณ  ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์—์„œ ํ˜ˆ์••๊ฐ์†Œ ์ค‘์žฌ๋กœ ๊ฐ€์žฅ ๊ถŒ๊ณ ๋˜๊ณ  ์žˆ๋Š” ์œ ์‚ฐ์†Œ ์šด๋™๊ณผ ๋น„๊ตํ•˜์—ฌ Isometric squat ๋™์ž‘์˜ ์šด๋™ ํ›„ ํ˜ˆ์•• ๊ฐ์†Œ ํšจ๊ณผ๋ฅผ ๋น„๊ตํ•ด๋ณด๊ณ ์ž ํ•œ๋‹ค. ๋˜ํ•œ, ๋ฉ”ํƒ€๋ถ„์„์„ ํ†ตํ•˜์—ฌ ํ˜„์žฌ๊นŒ์ง€ ์—ฐ๊ตฌ๊ฐ€ ๋ถ€์กฑํ•œ ์ผํšŒ์„ฑ ๋“ฑ์ฒ™์„ฑ ์šด๋™์˜ ํ˜ˆ์•• ๊ฐ์†Œ ํšจ๊ณผ๋ฅผ ํ™•์ธํ•ด๋ณด๊ณ  ์žฅ๊ธฐ๊ฐ„ ์šด๋™ ์ค‘์žฌ์˜ ํ˜ˆ์•• ๊ฐ์†Œ ํšจ๊ณผ์™€ ๋น„๊ตํ•ด๋ณด๊ณ ์ž ํ•œ๋‹ค. ์—ฐ๊ตฌ ๋ฐฉ๋ฒ• ๋ณธ ์—ฐ๊ตฌ์˜ ๋ชฉ์ ์„ ๋‹ฌ์„ฑํ•˜๊ธฐ ์œ„ํ•ด ์„ธ ํŽธ์˜ ์„ธ๋ถ€์ ์ธ ์—ฐ๊ตฌ๋ฅผ ์ง„ํ–‰ํ•˜์˜€์œผ๋ฉฐ ๊ฐ ์—ฐ๊ตฌ ๋ฐฉ๋ฒ•์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. ์ฒซ ๋ฒˆ์งธ ์—ฐ๊ตฌ๋Š” ๋ฌด์ž‘์œ„ ๊ต์ฐจ์—ฐ๊ตฌ ์„ค๊ณ„๋กœ ๊ณ ํ˜ˆ์•• ์ „๋‹จ๊ณ„ ๋ฐ ๊ณ ํ˜ˆ์•• ์„ฑ์ธ ๋‚จ์„ฑ 13๋ช…์€ 4๊ฐ€์ง€ ์ค‘์žฌ(Isometric handgrip, Isometric leg extension, Isometric squat and Usual care)์— ๋ฌด์ž‘์œ„ ์ˆœ์„œ๋กœ ํ• ๋‹น๋˜์—ˆ์œผ๋ฉฐ, ์šด๋™ ์ค‘์žฌ์˜ ์ด์›”ํšจ๊ณผ๋ฅผ ์ œ๊ฑฐํ•˜๊ธฐ ์œ„ํ•ด ์šด๋™ ์ค‘์žฌ ๊ฐ„ 1์ฃผ์ผ์˜ wash out ๊ธฐ๊ฐ„์„ ๋‘๊ณ  ๊ฐ ์ค‘์žฌ์— ์ฐธ์—ฌํ•˜์˜€๋‹ค. ์—ฐ๊ตฌ ์ฐธ์—ฌ์ž๋“ค์€ ๋“ฑ์ฒ™์„ฑ ์šด๋™ ํ”„๋กœํ† ์ฝœ์— ์ต์ˆ™ํ•ด์ง€๊ธฐ ์œ„ํ•œ ์—ฐ์Šต ๊ธฐ๊ฐ„์„ ๊ฐ€์กŒ๊ณ , 1์ฃผ์ผ ๊ฐ„๊ฒฉ์œผ๋กœ ์ด 5์ฃผ๊ฐ„ ์‹คํ—˜์‹ค์— ๋ฐฉ๋ฌธํ•˜์˜€๋‹ค. ์šด๋™ ์ „ ์•ˆ์ • ์‹œ ํ˜ˆ์••๊ณผ ๋™๋งฅ๊ฒฝ์ง๋„๋ฅผ ์ธก์ •ํ•˜์˜€๊ณ , ์šด๋™ ์ค‘์—๋Š” ํ˜ˆ์••๊ณผ ์‹ฌ๋ฐ•์ˆ˜, ์šด๋™์ž๊ฐ๋„ ๊ทธ๋ฆฌ๊ณ  ์šด๋™ ํ›„ ๋™๋งฅ๊ฒฝ์ง๋„ ๋ฐ 8์‹œ๊ฐ„ ๋™์•ˆ ํ™œ๋™์„ฑ ํ˜ˆ์••๊ณผ ์‹ ์ฒดํ™œ๋™๋Ÿ‰์„ ์ธก์ •ํ•˜์˜€๋‹ค. ์šด๋™ ์ค‘์žฌ๊ฐ„ ์—๋„ˆ์ง€ ์†Œ๋น„๋Ÿ‰ ๋น„๊ต ๋“ฑ์„ ์œ„ํ•ด ๋…๋ฆฝํ‘œ๋ณธ t ๊ฒ€์ •์„ ์‚ฌ์šฉํ•˜์˜€์œผ๋ฉฐ, ๊ฐ ์šด๋™์ค‘์žฌ ๋ฐ ์‹œ๊ธฐ ๊ฐ„ ํšจ๊ณผ ๊ฒ€์ฆ์„ ์œ„ํ•ด ๋ฐ˜๋ณต์ธก์ • ๋ถ„์‚ฐ๋ถ„์„ (Repeated measures ANOVA) ๋ฐ ์‚ฌํ›„๊ฒ€์ •(Bonferroni post hoc)์„ ์‹ค์‹œํ•˜์˜€๋‹ค. ๋‘ ๋ฒˆ์งธ ์—ฐ๊ตฌ๋Š” ๋ฌด์ž‘์œ„ ๊ต์ฐจ์—ฐ๊ตฌ ์„ค๊ณ„๋กœ ๊ณ ํ˜ˆ์•• ์ „๋‹จ๊ณ„ ๋ฐ ๊ณ ํ˜ˆ์•• ์ค‘โ€ค๋…ธ๋…„ ์—ฌ์„ฑ 16๋ช…์€ 3๊ฐ€์ง€ ์ค‘์žฌ(Isometric squat, Aerobic exercise and Usual care)์— ๋ฌด์ž‘์œ„ ์ˆœ์„œ๋กœ ํ• ๋‹น๋˜์—ˆ์œผ๋ฉฐ, ์šด๋™ ์ค‘์žฌ์˜ ์ด์›”ํšจ๊ณผ๋ฅผ ์ œ๊ฑฐํ•˜๊ธฐ ์œ„ํ•ด ์šด๋™ ์ค‘์žฌ ๊ฐ„ 1์ฃผ์ผ์˜ wash out ๊ธฐ๊ฐ„์„ ๋‘๊ณ  ๊ฐ ์ค‘์žฌ์— ์ฐธ์—ฌํ•˜์˜€๋‹ค. ์—ฐ๊ตฌ ์ฐธ์—ฌ์ž๋“ค์€ ๋“ฑ์ฒ™์„ฑ ์šด๋™๊ณผ ์œ ์‚ฐ์†Œ ์šด๋™ ํ”„๋กœํ† ์ฝœ์— ์ต์ˆ™ํ•ด์ง€๊ธฐ ์œ„ํ•ด ๊ฐ๊ฐ 1์ฃผ์ผ๊ฐ„์˜ ์—ฐ์Šต๊ธฐ๊ฐ„์„ ๊ฐ€์กŒ๊ณ , 1์ฃผ์ผ ๊ฐ„๊ฒฉ์œผ๋กœ ์ด 5์ฃผ๊ฐ„ ์‹คํ—˜์‹ค์— ๋ฐฉ๋ฌธํ•˜์—ฌ ์•ˆ์ • ์‹œ ํ˜ˆ์••๊ณผ ๋™๋งฅ๊ฒฝ์ง๋„, ์šด๋™ ํ›„ ๋™๋งฅ๊ฒฝ์ง๋„ ๋ฐ 8์‹œ๊ฐ„ ๋™์•ˆ ํ™œ๋™์„ฑ ํ˜ˆ์••๊ณผ ์‹ ์ฒดํ™œ๋™๋Ÿ‰์„ ์ธก์ •ํ•˜์˜€๋‹ค. ๊ฐ ์šด๋™์ค‘์žฌ ๋ฐ ์‹œ๊ธฐ ๊ฐ„ ํšจ๊ณผ๊ฒ€์ฆ์„ ์œ„ํ•ด ๋ฐ˜๋ณต์ธก์ • ๋ถ„์‚ฐ๋ถ„์„ (Repeated measures ANOVA) ๋ฐ ์‚ฌํ›„๊ฒ€์ •(Bonferroni post hoc)์„ ์‹ค์‹œํ•˜์˜€๋‹ค. ์„ธ ๋ฒˆ์งธ ์—ฐ๊ตฌ๋Š” ๋ฉ”ํƒ€๋ถ„์„ ์—ฐ๊ตฌ๋กœ ๊ณ ํ˜ˆ์•• ์ „๋‹จ๊ณ„ ๋ฐ ๊ณ ํ˜ˆ์•• ์„ฑ์ธ๊ณผ ๋…ธ์ธ๋“ค์„ ๋Œ€์ƒ์œผ๋กœ ์ˆ˜ํ–‰๋œ ์ผํšŒ์„ฑ, ๊ทธ๋ฆฌ๊ณ  8์ฃผ ์ด์ƒ์˜ ์žฅ๊ธฐ๊ฐ„ ๋“ฑ์ฒ™์„ฑ ์—ฐ๊ตฌ๋“ค์„ ๊ตญ์™ธํ•™์ˆ ์ง€ ๊ฒ€์ƒ‰์›์ธ โ€œPubmedโ€, โ€œScience of Directโ€, โ€œGoogle scholarโ€, โ€œWeb of scienceโ€, ๊ทธ๋ฆฌ๊ณ  โ€œCochrane Libraryโ€ ๋“ฑ๊ณผ ๊ตญ๋‚ด ํ•™์ˆ ์ง€ ๊ฒ€์ƒ‰์›์ธ โ€œํ•œ๊ตญํ•™์ˆ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šคโ€, โ€œํ•œ๊ตญํ•™์ˆ ์ •๋ณด์„œ๋น„์Šคโ€ ๋“ฑ์„ ํ†ตํ•ด ๊ฒ€์ƒ‰ํ•˜์—ฌ ํ•œ๊ตญ์–ด์™€ ์˜์–ด๋กœ ์ถœํŒ๋œ RCT ๋ฐ Crossover design ์—ฐ๊ตฌ๋ฅผ ์„ ์ •ํ•˜์˜€๋‹ค. ์ตœ์ข… ์„ ์ •๋œ 11๊ฐœ์˜ ๋ฌธํ—Œ ๋ถ„์„์„ ์œ„ํ•ด Comprehensive Mete-Analysis ver 3์„ ์‚ฌ์šฉํ•˜์˜€์œผ๋ฉฐ, ๊ฒฐ๊ณผ ๋ณ€์ˆ˜์ธ ์ˆ˜์ถ•๊ธฐ ํ˜ˆ์••๊ณผ ์ด์™„๊ธฐ ํ˜ˆ์••์— ๋ฏธ์น˜๋Š” ํšจ๊ณผํฌ๊ธฐ๋ฅผ ํŒŒ์•…ํ•˜๊ธฐ ์œ„ํ•ด ํ‘œ๋ณธ ์ˆ˜์— ๋”ฐ๋ฅธ ๊ฐ€์ค‘์น˜๋ฅผ ๋ถ€์—ฌํ•˜์—ฌ ๊ต์ •๋œ ํšจ๊ณผํฌ๊ธฐ(Hedgesโ€™s g)์™€ ํ‰๊ท  ์ฐจ์ด ๊ฐ’์„ ์‚ฐ์ถœํ•˜์˜€๋‹ค. ์—ฐ๊ตฌ ๊ฐ„ Publication bias ํ‰๊ฐ€์˜ ๊ฒฝ์šฐ, Funnel plot๊ณผ Student residual๊ณผ Jacknifed residual์˜ ์ˆ˜์น˜, ๊ทธ๋ฆฌ๊ณ  Trim and Fill์„ ์‚ฌ์šฉํ•˜์—ฌ ํ‰๊ฐ€ ํ›„ ์ตœ์ข… ๋ถ„์„์„ ์‹ค์‹œํ•˜์˜€๋‹ค. ์—ฐ๊ตฌ ๊ฒฐ๊ณผ ์ฒซ์งธ, 13๋ช…์˜ ๊ณ ํ˜ˆ์•• ์ „๋‹จ๊ณ„ ๋ฐ ๊ณ ํ˜ˆ์•• ๋‚จ์„ฑ์„ ๋Œ€์ƒ์œผ๋กœ ์ผํšŒ์„ฑ ๋“ฑ์ฒ™์„ฑ ์šด๋™์„ ์‹ค์‹œํ•œ ๊ฒฐ๊ณผ ์ผํšŒ์„ฑ ๋“ฑ์ฒ™์„ฑ ์šด๋™๋“ค์€ ์ผ์ƒ์ƒํ™œ ์ค‘์žฌ์— ๋น„ํ•ด ์‹ฌ๋ฐ•์ˆ˜์™€ ํ˜ˆ์••์„ ์œ ์˜ํ•˜๊ฒŒ ์ฆ๊ฐ€์‹œ์ผฐ๊ณ , ๋™์›๋˜๋Š” ๊ทผ์œก ๋ถ€์œ„๊ฐ€ ์ปค์งˆ์ˆ˜๋ก ์‹ฌ๋ฐ•์ˆ˜์™€ ํ˜ˆ์••์˜ ์ฆ๊ฐ€๊ฐ€ ๋” ํฌ๊ฒŒ ๋‚˜ํƒ€๋‚ฌ์œผ๋‚˜ ์ด์— ๋”ฐ๋ฅธ ๋ถ€์ž‘์šฉ์€ ๋ฐœ์ƒํ•˜์ง€ ์•Š์•˜๋‹ค. ์ค‘์žฌ๋ณ„ ๋“ฑ์ฒ™์„ฑ ์šด๋™์˜ ํ˜ˆ์•• ๊ฐ์†Œ ํšจ๊ณผ ๋น„๊ต์—์„œ ์ผํšŒ์„ฑ ๋“ฑ์ฒ™์„ฑ ์šด๋™์€ ์šด๋™ ํ›„ ํ™œ๋™์„ฑ ํ˜ˆ์••๊ณผ ๋™๋งฅ๊ฒฝ์ง๋„๋ฅผ ์œ ์˜ํ•˜๊ฒŒ ๊ฐ์†Œ์‹œ์ผฐ์œผ๋ฉฐ, ๋™์›๋˜๋Š” ๊ทผ์œก ๋ถ€์œ„๊ฐ€ ์ปค์งˆ์ˆ˜๋ก ์šด๋™ ํ›„ ํ˜ˆ์••์„ ๋” ํฌ๊ฒŒ ๊ฐ์†Œ์‹œ์ผฐ๋‹ค. ๋‘˜์งธ, 16๋ช…์˜ ๊ณ ํ˜ˆ์•• ์ „๋‹จ๊ณ„ ๋ฐ ๊ณ ํ˜ˆ์•• ์ค‘โ€ค๋…ธ๋…„ ์—ฌ์„ฑ์„ ๋Œ€์ƒ์œผ๋กœ ์ผํšŒ์„ฑ์œผ๋กœ Isometric squat ์šด๋™๊ณผ Aerobic exercise์„ ์‹ค์‹œํ•œ ๊ฒฐ๊ณผ ๋‘ ์šด๋™ ๋ชจ๋‘ ๋™๋งฅ๊ฒฝ์ง๋„๋ฅผ ๊ฐ์†Œ์‹œ์ผฐ๊ณ , Isometric squat์€ 4์‹œ๊ฐ„, Aerobic exercise๋Š” 5์‹œ๊ฐ„ ๋™์•ˆ ํ™œ๋™์„ฑ ํ˜ˆ์••์„ ๊ฐ์†Œ์‹œ์ผฐ์œผ๋ฉฐ, ์ค‘์žฌ ๊ฐ„ ์ฐจ์ด๋Š” ๋‚˜ํƒ€๋‚˜์ง€ ์•Š์•˜๋‹ค. ์…‹์งธ, ๋ณธ ์—ฐ๊ตฌ์—์„œ ๋ฌด์ž‘์œ„ ๋Œ€์กฐ๊ตฐ ์‹คํ—˜์—ฐ๊ตฌ ๋ฐ ๊ต์ฐจ์„ค๊ณ„ ์—ฐ๊ตฌ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๊ณ ํ˜ˆ์•• ์ „๋‹จ๊ณ„ ๋ฐ ๊ณ ํ˜ˆ์•• ์„ฑ์ธ๊ณผ ๋…ธ์ธ๋“ค์„ ๋Œ€์ƒ์œผ๋กœ ๋“ฑ์ฒ™์„ฑ ์šด๋™ํšจ๊ณผ๋ฅผ ๊ธฐ๊ฐ„์— ๋”ฐ๋ผ ๋ถ„์„ํ•œ ๊ฒฐ๊ณผ ์ผํšŒ์„ฑ ์šด๋™๊ณผ 8์ฃผ ์ด์ƒ์˜ ์žฅ๊ธฐ๊ฐ„ ๋“ฑ์ฒ™์„ฑ ์šด๋™ ๋ชจ๋‘ ํ˜ˆ์•• ๊ฐ์†Œ์— ์œ ์˜ํ•œ ํšจ๊ณผ๊ฐ€ ์žˆ์—ˆ์œผ๋ฉฐ, ์šด๋™ ๊ธฐ๊ฐ„์ด ๊ธธ์–ด์งˆ์ˆ˜๋ก, ๋Œ€๊ทผ์œก์„ ์‚ฌ์šฉํ•˜๋Š” ์ค‘์žฌ์—์„œ ํ˜ˆ์•• ๊ฐ์†Œ ํšจ๊ณผ๊ฐ€ ๋” ํฐ ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๊ฒฐ ๋ก  ๋ฉ”ํƒ€๋ถ„์„ ๊ฒฐ๊ณผ์—์„œ ๋“ฑ์ฒ™์„ฑ ์šด๋™์€ ๊ณ ํ˜ˆ์•• ์ „๋‹จ๊ณ„ ๋ฐ ๊ณ ํ˜ˆ์•• ์„ฑ์ธ๊ณผ ๋…ธ์ธ์—๊ฒŒ ์žฅ๊ธฐ๊ฐ„๋ฟ ์•„๋‹ˆ๋ผ ์ผํšŒ์„ฑ์œผ๋กœ ์ ์šฉํ–ˆ์„ ๋•Œ์—๋„ ์œ ์˜ํ•œ ํ˜ˆ์•• ๊ฐ์†Œ ํšจ๊ณผ๋ฅผ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋˜ํ•œ, ์‹คํ—˜์—ฐ๊ตฌ์—์„œ ๋„๊ตฌ ์—†์ด ์ˆ˜ํ–‰ ๊ฐ€๋Šฅํ•˜๋ฉฐ ๋งŽ์€ ๊ทผ์œก ๋ถ€์œ„๊ฐ€ ๋™์›๋˜๋Š” ์ผํšŒ์„ฑ Isometric squat ์šด๋™์€ ์„ ํ–‰์—ฐ๊ตฌ์—์„œ ๋„๊ตฌ๋ฅผ ํ•„์š”๋กœ ํ–ˆ๋˜ Isometric handgrip๊ณผ Isometric leg extension ์šด๋™๊ณผ ๋น„๊ตํ•˜์—ฌ ์œ ์‚ฌํ•˜๊ฑฐ๋‚˜ ๋” ํฐ ํ˜ˆ์•• ๊ฐ์†Œ ํšจ๊ณผ๊ฐ€ ์žˆ๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ์œผ๋ฉฐ, ๊ธฐ์กด ๊ถŒ๊ณ ๋˜๋˜ ์œ ์‚ฐ์†Œ ์šด๋™๊ณผ ๋น„๊ตํ•ด์„œ๋„ ์งง์€ ์‹œ๊ฐ„ ๋‚ด์— ํšจ๊ณผ์ ์œผ๋กœ ํ˜ˆ์••์„ ๊ฐ์†Œ์‹œํ‚ค๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚˜ ํ–ฅํ›„ ๊ณ ํ˜ˆ์•• ์ „๋‹จ๊ณ„ ๋ฐ ๊ณ ํ˜ˆ์•• ์„ฑ์ธ๊ณผ ๋…ธ์ธ๋“ค์˜ ํ˜ˆ์••์„ ๊ฐ์†Œ ์‹œํ‚ค๊ธฐ๊ธฐ์— ํšจ๊ณผ์ ์ธ ์ค‘์žฌ ์ค‘ ํ•˜๋‚˜๋กœ ๊ถŒ๊ณ ๋  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ์‚ฌ๋ฃŒ๋œ๋‹ค.Purpose : The purpose of this study is to identify the proper exercise intensity of isometrics squat, which can be performed without tools, and to idenfy post exercise hypotension effects of isometric squat compared to isometric handgrip, isometric leg extension, and aerobic exercise which the most recommended exercise in pre-hypertension and in existing studies. In addition, through meta-anlaysis, this study aim to investigate the effect of acute isometric exercise on resting blood pressure reduction effect and to detect any differences in effect of long-term isometric exercise. Method : In order to achieve the purpose of this study, three detailed studies were conducted, and each study method is as follows. The first study was a randomized crossover study design. 13 pre-hypertensive and hypertensive adult males were assigned to 4 interventions(isometric handgrip, isometric leg extension, isometric squat and usual care) in random order. To eliminate the carryover effect of exercise interventions, all participants had a 1-week washout period between exercise interventions. All patricipants had a practice period to become familiar with the isometric exercise protocols and visited the laboratory for total 5 weeks at 1-week intervals. Resting blood pressure and arterial stiffness were measure befor exercise. and then blood presure, heart rate and rating of perceived exertion during exercise. Lastly, arterial stiffness was measure after exercise. after that, ambulatory blood pressure and physical activity level were measureed for 8 hours thereafter. An independent t-test was used to compare energy consumption between exercise interventions, and repeated measures ANOVA and Bonferroni post hoc were performed to verify the effectiveness of each exercise intervention and period. The Second study was a randomized crossover study design. 16 pre-hypertensive and hypertensive middle-aged and elderly women were assigned to 3 interventions (isometric squat, aerobic exercise and usual care) in random order. To eliminate the carryover effect of exercise interventions, all participants had a 1-week washout period between exercise interventions. All patricipants had a practice period to become familiar with the both exercise protocols and visited the laboratory for total 5 weeks at 1-week intervals. Before exercise, all participants were measured resting blood pressure, arterial stiffness. And then we measured arterial stiffness after exercise. After that, ambulatory blood pressure and physical activity level were measured for 8 hours thereafter. Repeated measures ANOVA and Bonferroni post hoc were performed to verify the effectiveness of each exercise intervention and period. The third sutdy is a meta-analysis study. the acute and chronic effect of isometric exercise on blood pressure in prehypertensive and hypertensive adult and elderly. RCT and crossover design studies published in Korean and English were selected by searching through the โ€œPubmedโ€, โ€œScience of Directโ€, โ€œGoogle scholarโ€, โ€œWeb of scienceโ€, and โ€œCochrane Libraryโ€, which are search source for foreign journal and โ€œKoranstudies Information Service Systemโ€, โ€œResearch Information Sharing Serviceโ€ which are search sources for domestic journals. Comprehensive Mete-Analysis version 3 was used for analysis of the 11 finally selected literatures. The corrected effect size (Hedges's g) and the average difference value was calculated. For the evaluation of publication bias between studies, the final analysis was performed after evaluation using the Funnel plot, the values of the Student residual and Jacknifed residual, and Trim and Fill methods. Results : First, as a result of performing acute isometric exercises in 13 prehypertensive and hypertensive men, the acute isometric exercises significantly increased heart rate and blood pressure compared to Usual care. In addition, as the muscle area used for exercise increased, the heart rate and blood pressure increased more, but side effects did not occur. In the comparison of the blood pressure reduction effect of isometric exercise by interventions, it was shown that acute isometric exercises reduced post-exercise blood pressure and arterial stiffness. Also, the larger the muscle area used during exercise, the greater the post-exercise blood pressure decreased. Second, as a result of acute isometric squat and aerobic exercise in 16 prehypertensive and hypertensive middle and elderly women, both exercise decreased arterial stiffness significantly. In addition, Isometric squat reduced ambulatory blood pressure for 4 hours and aerobic exercise for 5 hours, and there was no difference between interventions. Third, as a result of analyzing randomized controlled experimental studies and crossover design isometric exercise studies conducted in prehypertension and hypertensive adults and the elderly, both aute exercise and chronic isometric exercise for more than 8 weeks represented significant effects on blood pressure reduction. In addition, the longer the exercise period and the larger the muscle group was used, the greater the blood pressure reduction effect appeared. Conclusion : In the meta-analysis results, it was confirmed that the isometric exercises for prehypertensive and hypertensive adults and the elderly had a significant blood pressure reduction effect when acute exercise as well as chronic exercise was applied. In addition, in the experimental study, the acute isometric squat, which can be performed without tools and used many muscle groups, has a similar or greater post exercise blood pressure reduction compared to the isometric handgrip and isometric leg extension exercises that required tools in previous studies. Also, it has been shown to effectively reduce blood pressure in a short time compared to aerobic exercise, which is the most commonly recommended intervention for blood pressure reduction. Therefore, acute isometric squat can be recommended as one of the effective interventions to reduce blood pressure in pre- or hypertensive adults and the elderly in the future.๋ชฉ ์ฐจ I. ์„œ ๋ก  1 1. ์—ฐ๊ตฌ์˜ ํ•„์š”์„ฑ 1 2. ์—ฐ๊ตฌ์˜ ๋ชฉ์  4 3. ์—ฐ๊ตฌ์˜ ๊ฐ€์„ค 5 4. ์—ฐ๊ตฌ์˜ ์ œํ•œ์  6 5. ์šฉ์–ด์˜ ์ •์˜ 7 II. ์ด๋ก ์  ๋ฐฐ๊ฒฝ 8 1. ๊ณ ํ˜ˆ์•• 8 1) ๊ณ ํ˜ˆ์••์˜ ์ •์˜ ๋ฐ ์ง„๋‹จ๊ธฐ์ค€ 8 2) ๊ณ ํ˜ˆ์••์˜ ๊ธฐ์ „ 9 3) ๊ณ ํ˜ˆ์•• ํ•ฉ๋ณ‘์ฆ 10 4) ๊ณ ํ˜ˆ์••์˜ ๊ด€๋ฆฌ 11 2. ํ˜ˆ์••๊ฐ์†Œ๋ฅผ ์œ„ํ•œ ์‹ ์ฒดํ™œ๋™ ๋ฐ ์šด๋™ํ”„๋กœ๊ทธ๋žจ 13 1) ์‹ ์ฒดํ™œ๋™๊ณผ ์šด๋™ํ”„๋กœ๊ทธ๋žจ์˜ ์ •์˜ ๋ฐ ์ข…๋ฅ˜ 13 2) ๊ณ ํ˜ˆ์•• ํ™˜์ž๋ฅผ ์œ„ํ•œ ์šด๋™์ฒ˜๋ฐฉ 14 3) ์šด๋™์ด ๊ณ ํ˜ˆ์•• ํ™˜์ž์—๊ฒŒ ๋ฏธ์น˜๋Š” ์˜ํ–ฅ 16 4) ์šด๋™์˜ ํ˜ˆ์•• ๊ฐ์†Œ ํšจ๊ณผ์— ๊ด€ํ•œ ์ฒด๊ณ„์  ๋ถ„์„ ๋ฐ ๋ฉ”ํƒ€๋ถ„์„ ์—ฐ๊ตฌ 17 3. ๋“ฑ์ฒ™์„ฑ ์šด๋™์ด ํ˜ˆ์••๊ฐ์†Œ์— ๋ฏธ์น˜๋Š” ํšจ๊ณผ 19 1) ๋“ฑ์ฒ™์„ฑ ์šด๋™์˜ ์ •์˜ 19 2) ํ˜ˆ์••๊ฐ์†Œ ์ค‘์žฌ๋กœ์„œ ๋“ฑ์ฒ™์„ฑ ์šด๋™์˜ ์ด์  19 3) ๋“ฑ์ฒ™์„ฑ ์šด๋™์˜ ํ˜ˆ์•• ๊ฐ์†Œ ํšจ๊ณผ 21 4. ์ฐธ๊ณ ๋ฌธํ—Œ 23 III. ์†Œ๋…ผ๋ฌธ 1. ์ผํšŒ์„ฑ Isometric squat์ด ๊ณ ํ˜ˆ์•• ์ „๋‹จ๊ณ„ ๋ฐ ๊ณ ํ˜ˆ์•• ์„ฑ์ธ ๋‚จ์„ฑ์˜ ์šด๋™ ์ค‘ ํ˜ˆ์••๊ณผ ์šด๋™ ํ›„ ํ˜ˆ์••์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ 32 1. ์„œ ๋ก  33 2. ์—ฐ๊ตฌ๋ฐฉ๋ฒ• 36 1) ์—ฐ๊ตฌ๋Œ€์ƒ 36 2) ์—ฐ๊ตฌ์„ค๊ณ„ 36 3) ์ธก์ •๋„๊ตฌ 40 4) ์šด๋™ํ”„๋กœ๊ทธ๋žจ 45 5) ์ž๋ฃŒ์ฒ˜๋ฆฌ 47 3. ์—ฐ๊ตฌ๊ฒฐ๊ณผ 48 1) ๊ธฐ์กด ๋“ฑ์ฒ™์„ฑ ์šด๋™์ค‘์žฌ์™€ ๋“ฑ์ฒ™์„ฑ ์Šค์ฟผํŠธ์˜ ์—๋„ˆ์ง€ ์†Œ๋น„๋Ÿ‰ ๋ฐ ์šด๋™๊ฐ•๋„ ๋น„๊ต 50 2) ๋“ฑ์ฒ™์„ฑ ์šด๋™ ์ค‘ ๊ฐ ์‹œ์ ์— ๋”ฐ๋ฅธ ์ˆ˜์ถ•๊ธฐ ํ˜ˆ์••์˜ ๋ณ€ํ™” 51 3) ๋“ฑ์ฒ™์„ฑ ์šด๋™ ์ค‘ ๊ฐ ์‹œ์ ์— ๋”ฐ๋ฅธ ์ด์™„๊ธฐ ํ˜ˆ์••์˜ ๋ณ€ํ™” 52 4) ๋“ฑ์ฒ™์„ฑ ์šด๋™ ์ค‘ ๊ฐ ์‹œ์ ์— ๋”ฐ๋ฅธ ์šด๋™ ๊ฐ•๋„์˜ ๋ณ€ํ™” 53 5) ๋“ฑ์ฒ™์„ฑ ์šด๋™ ํ›„ ํ™œ๋™์„ฑ ์ˆ˜์ถ•๊ธฐ ํ˜ˆ์••์˜ ๋ณ€ํ™” 55 6) ๋“ฑ์ฒ™์„ฑ ์šด๋™ ํ›„ ํ™œ๋™์„ฑ ์ด์™„๊ธฐ ํ˜ˆ์••์˜ ๋ณ€ํ™” 57 7) ๋“ฑ์ฒ™์„ฑ ์šด๋™ ํ›„ ๋™๋งฅ๊ฒฝ์ง๋„์˜ ๋ณ€ํ™” 59 8) ๋“ฑ์ฒ™์„ฑ ์šด๋™ ํ›„ ์ค‘์žฌ๋ณ„ ์‹ ์ฒดํ™œ๋™๋Ÿ‰ ๋น„๊ต 60 4. ๋…ผ ์˜ 61 5. ๊ฒฐ๋ก  ๋ฐ ์ œ์–ธ 65 1) ๊ฒฐ๋ก  65 2) ์ œ์–ธ 66 6. ์ฐธ๊ณ ๋ฌธํ—Œ 67 โ…ฃ. ์†Œ๋…ผ๋ฌธ 2. ์ผํšŒ์„ฑ Isometric Squat์ด ๊ณ ํ˜ˆ์•• ์ „๋‹จ๊ณ„ ๋ฐ ๊ณ ํ˜ˆ์•• ์ค‘โ€ค๋…ธ๋…„ ์—ฌ์„ฑ์˜ ์ฃผ๊ฐ„ ํ™œ๋™์„ฑ ํ˜ˆ์••์— ๋ฏธ์น˜๋Š” ๋‹จ๊ธฐ ํšจ๊ณผ ๊ฒ€์ฆ 73 1. ์„œ ๋ก  74 2. ์—ฐ๊ตฌ๋ฐฉ๋ฒ• 77 1) ์—ฐ๊ตฌ๋Œ€์ƒ 77 2) ์—ฐ๊ตฌ์„ค๊ณ„ 77 3) ์ธก์ •๋„๊ตฌ 81 4) ์šด๋™ํ”„๋กœ๊ทธ๋žจ 84 5) ์ž๋ฃŒ์ฒ˜๋ฆฌ 85 3. ์—ฐ๊ตฌ๊ฒฐ๊ณผ 86 1) ๋“ฑ์ฒ™์„ฑ ์šด๋™ ํ›„ ํ™œ๋™์„ฑ ์ˆ˜์ถ•๊ธฐ ํ˜ˆ์••์˜ ๋ณ€ํ™” 88 2) ๋“ฑ์ฒ™์„ฑ ์šด๋™ ํ›„ ํ™œ๋™์„ฑ ์ด์™„๊ธฐ ํ˜ˆ์••์˜ ๋ณ€ํ™” 90 3) ๋“ฑ์ฒ™์„ฑ ์šด๋™ ํ›„ ๋™๋งฅ ๊ฒฝ์ง๋„์˜ ๋ณ€ํ™” 92 4) ๋“ฑ์ฒ™์„ฑ ์šด๋™ ํ›„ ์ค‘์žฌ๋ณ„ ์‹ ์ฒดํ™œ๋™๋Ÿ‰ ๋น„๊ต 93 4. ๋…ผ ์˜ 94 5. ๊ฒฐ๋ก  ๋ฐ ์ œ์–ธ 98 1) ๊ฒฐ๋ก  98 2) ์ œ์–ธ 99 6. ์ฐธ๊ณ ๋ฌธํ—Œ 100 โ…ค. ์†Œ๋…ผ๋ฌธ 3. ์ผํšŒ์„ฑ ๋“ฑ์ฒ™์„ฑ ์šด๋™๊ณผ ์žฅ๊ธฐ๊ฐ„ ๋“ฑ์ฒ™์„ฑ ์šด๋™์ด ๊ณ ํ˜ˆ์•• ์ „๋‹จ๊ณ„ ๋ฐ ๊ณ ํ˜ˆ์•• ์„ฑ์ธ ๋ฐ ๋…ธ์ธ์˜ ํ˜ˆ์••์— ๋ฏธ์น˜๋Š” ํšจ๊ณผ : RCT ๋ฐ ๊ต์ฐจ์„ค๊ณ„ ์—ฐ๊ตฌ ๋ฉ”ํƒ€๋ถ„์„ 105 1. ์„œ ๋ก  106 2. ์—ฐ๊ตฌ๋ฐฉ๋ฒ• 109 1) ์—ฐ๊ตฌ์„ค๊ณ„ 109 2) ๋ฌธํ—Œ ์„ ์ • ๊ธฐ์ค€ 109 3) ์ž๋ฃŒ ๊ฒ€์ƒ‰ ๋ฐ ์„ ์ • ๊ณผ์ • 111 4) ์ž๋ฃŒ์ถ”์ถœ 112 5) Publication bias์˜ ํ‰๊ฐ€ 112 6) ์ž๋ฃŒ ๋ถ„์„ ๋ฐฉ๋ฒ• 113 3. ์—ฐ๊ตฌ๊ฒฐ๊ณผ 117 1) ๋ฌธํ—Œ ์„ ์ • ๊ฒฐ๊ณผ 117 2) ์„ ์ •๋œ ๋ฌธํ—Œ์˜ ํŠน์„ฑ 118 3) Publication bias ๋ถ„์„ 121 4) ๋“ฑ์ฒ™์„ฑ ์šด๋™ ์ค‘์žฌ์˜ ํšจ๊ณผ 125 5) ํ•˜์œ„ ๋ณ€์ธ ๋ถ„์„ 127 4. ๋…ผ ์˜ 141 5. ๊ฒฐ๋ก  ๋ฐ ์ œ์–ธ 145 1) ๊ฒฐ๋ก  145 2) ์ œ์–ธ 146 6. ์ฐธ๊ณ ๋ฌธํ—Œ 147 โ…ฅ. Abstract 153Docto

    ์›๋ฟ” ์ง„์ž ์šด๋™์„ ์ด์šฉํ•œ ๊ณ ์••ํ•ญ์•”ํ™”ํ•™ ์š”๋ฒ• ๊ธฐ๊ธฐ ๊ฐœ๋ฐœ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ํ˜‘๋™๊ณผ์ • ๋ฐ”์ด์˜ค์—”์ง€๋‹ˆ์–ด๋ง์ „๊ณต, 2019. 2. ์ด์ •์ฐฌ.Colorectal and ovarian cancers are two types of pelvic tumors known for poor prognosis due to recurrence. These two cancers are often associated with the incidence of peritoneal carcinomatosis (PC) during recurrence. Due to its poor survival rate and limited treatment options, PC is considered as a terminal stage of cancer for patients. Local drug administration in intraperitoneal chemotherapy such as early postoperative intraperitoneal chemotherapy (EPIC) and heated intraperitoneal chemotherapy (HIPEC) has been adopted as a therapeutic indication for many years. However, there are some limitations of EPIC and HIPEC. Those are not significantly effective for patients, and there are some crucial complications. Pressurized intraperitoneal aerosol chemotherapy (PIPAC) has been introduced as an alternative approach for PC treatment which delivers chemotherapeutic drugs into the abdominal cavity in aerosol while maintaining the abdominal pressure at 12 mmHg with carbon dioxide. Drug particles are sprayed and floating the room of peritoneal cavity, and the pressure makes drugs penetrate tissues. PIPAC treatment does not have complications rather than conventional treatments and could be performed repetitively. Even though PIPAC uses 10% and 20% of a significantly lower dose chemotherapeutic drugs compared to the intravenous chemotherapy dosage and HIPEC respectively, it delivers drugs directly to the tumor tissues increasing the local chemotherapy concentration since drugs only affect at specific region. However, current PIPAC treatment also has a disadvantage that it does not guarantee homogeneous drug distribution. To overcome these limitations of current options, a novel PIPAC system with a conical pendulum motion device has been developed. The nozzle has been made the nozzle to alternate current PIPACs nozzle(Micropump) to optimize the particle size, wider distribution and deeper penetration depth. Also, a conical pendulum motion device has been applied to widen drugs distribution which is sprayed directly. With the prototype, experiments have been performed to test nozzle performance and PIPAC performance in this study. It has been demonstrated that our nozzle performance is slightly improved than Micropump performance in terms of drugs distribution and penetration depth. Moreover, through In-vivo experiment, it has been proved that using a conical pendulum motion device makes superior results which affect larger regions in peritoneal cavity rather than using a nozzle alone.๋Œ€์žฅ์•”๊ณผ ๋‚œ์†Œ์•”์€ ์˜ˆํ›„๊ฐ€ ๋ถˆ๋Ÿ‰ํ•˜์—ฌ ์žฌ๋ฐœ ๊ฐ€๋Šฅ์„ฑ์ด ๋†’์€ ๋Œ€ํ‘œ์ ์ธ ๊ณจ๋ฐ˜ ์ข…์–‘์ด๋‹ค. ์ด๋Ÿฌํ•œ ๊ณจ๋ฐ˜ ์ข…์–‘๋“ค์€ ์žฌ๋ฐœ ๊ณผ์ •์—์„œ ๋ณต๊ฐ• ํŒŒ์ข…์„ ๋ณด์ธ๋‹ค. ์กฐ๊ธฐ ์ง„๋‹จ์ด ์‰ฝ์ง€ ์•Š๊ณ , ์ƒ์กด์œจ์ด ๋‹ค๋ฅธ ์•”๋“ค์— ๋น„ํ•ด ๋‚ฎ์œผ๋ฉฐ ์น˜๋ฃŒ๋ฒ•์ด ๋‹ค์–‘ํ•˜์ง€ ์•Š๊ธฐ ๋•Œ๋ฌธ์— ๋ณต๊ฐ• ํŒŒ์ข…์ด ์ง„ํ–‰๋˜๊ณ  ์žˆ๋Š” ํ™˜์ž๋Š” ๋ง๊ธฐ ์•”ํ™˜์ž๋กœ ๊ฐ„์ฃผํ•œ๋‹ค. ๋Œ€์žฅ์•”๊ณผ ๋‚œ์†Œ์•”์˜ ์น˜๋ฃŒ๋ฅผ ์œ„ํ•ด์„œ ์ง์ ‘ ๋ณต๊ฐ• ๋‚ด์— ํ•ญ์•”์ œ๋ฅผ ํˆฌ์—ฌํ•˜๋Š” ์„ธ์ฒ™๋ณต๊ฐ•ํ•ญ์•”ํ™”ํ•™์š”๋ฒ•(LIPEC)๊ณผ ๊ณ ์˜จ๋ณต๊ฐ•ํ•ญ์•”ํ™”ํ•™์š”๋ฒ•(HIPEC)๊ณผ ๊ฐ™์€ ์ƒˆ๋กœ์šด ์น˜๋ฃŒ๋ฒ•์ด ๋„์ž…๋˜์—ˆ๋‹ค. ์œ„ ์น˜๋ฃŒ๋“ค์€ ์ •๋งฅ์ฃผ์‚ฌ ํ•ญ์•”ํ™”ํ•™์š”๋ฒ•์˜ ๋ถ€์ž‘์šฉ๋“ค์„ ์ค„์ผ ์ˆ˜ ์žˆ๋Š” ์žฅ์ ์„ ๋ณด์ด๋‚˜ ์—ฌ๋Ÿฌ๊ฐ€์ง€ ๋‹จ์ ์ด ์žˆ๋‹ค. ๋จผ์ € ์กฐ์ง ๋‚ด์˜ ์•ฝ๋ฌผ ์นจํˆฌ ๊นŠ์ด์— ํ•œ๊ณ„๊ฐ€ ์žˆ๊ณ , ๋ณต๊ฐ• ๋‚ด์— ์•ฝ๋ฌผ์„ ๊ณจ๊ณ ๋ฃจ ๋ถ„ํฌ ์‹œํ‚ฌ ์ˆ˜ ์—†๋‹ค๋Š” ๋‹จ์ ์„ ๋ณด์ธ๋‹ค. ๋˜ํ•œ ์‹ ๋ถ€์ „ ๋“ฑ์„ ํฌํ•จํ•œ ์ค‘์ฆ์˜ ํ•ฉ๋ณ‘์ฆ์„ ์ผ์œผํ‚ฌ ์ˆ˜ ์žˆ ์ˆ˜๋„ ์žˆ๋‹ค. ๊ทธ์— ๋”ฐ๋ผ ์œ ๋Ÿฝ์„ ์ค‘์‹ฌ์œผ๋กœ ํ•œ ๊ณ ์•• ๋ณต๊ฐ• ์—์–ด๋กœ์กธ ํ•ญ์•”ํ™”ํ•™์š”๋ฒ•(PIPAC)์ด ๋ณต๊ฐ• ํŒŒ์ข…์˜ ์ƒˆ๋กœ์šด ํ•ด๊ฒฐ์ฑ…์œผ๋กœ ๋Œ€๋‘๋˜๊ณ  ์žˆ์œผ๋ฉฐ ํ˜„์žฌ ์ „์ž„์ƒ ์‹œํ—˜์„ ๊ฑฐ์ณ ์ž„์ƒ ์‹œํ—˜์— ๋Œ์ž…ํ•œ ์ƒํƒœ์ด๋‹ค. ๋ณต๊ฐ•๊ฒฝ ์ˆ˜์ˆ ์„ ํ†ตํ•ด ํ•ญ์•”์ œ๋ฅผ ์—์–ด๋กœ์กธ ํ˜•ํƒœ๋กœ ๋ณต๊ฐ•์— ๋ถ„์‚ฌํ•œ ํ›„ ๋ณต๊ฐ• ์•ˆ์„ 12mmHg์˜ ๊ณ ์•• ์ƒํƒœ๋กœ 30๋ถ„๊ฐ„ ์œ ์ง€ํ•˜์—ฌ ์•ฝ๋ฌผ์˜ ์นจํˆฌ ํšจ๊ณผ๋ฅผ ํ–ฅ์ƒ ์‹œํ‚ค๋Š” ์ƒˆ๋กœ์šด ์น˜๋ฃŒ๋ฒ•์ด๋‹ค. ์ •๋งฅ ์ฃผ์‚ฌ ํ•ญ์•”์ œ ์šฉ๋Ÿ‰์˜ 10%, HIPEC์—์„œ์˜ 20%๋ฅผ ์‚ฌ์šฉํ•˜๊ณ  ๊ณ ์˜จ์œผ๋กœ ์ธํ•œ ํ•ฉ๋ณ‘์ฆ์ด ๊ฑฐ์˜ ๋ฐœ์ƒํ•˜์ง€ ์•Š์•„ ๋ฐ˜๋ณต์ ์œผ๋กœ ์น˜๋ฃŒํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์žฅ์ ์ด ์žˆ๋‹ค. ํ•˜์ง€๋งŒ ์ด ๋˜ํ•œ ๋ณต๊ฐ• ๋‚ด์—์„œ ์•ฝ๋ฌผ์ด ๊ท ์ผํ•˜๊ฒŒ ๋ณธํฌ ๋˜์ง€ ๋ชปํ•˜๋Š” ๋‹จ์ ์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ํ˜„์žฌ ์น˜๋ฃŒ๋ฒ•๋“ค์˜ ๋‹จ์ ๋“ค์„ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์›๋ฟ” ์ง„์ž ์šด๋™ ๊ธฐ๊ธฐ๋ฅผ ์ด์šฉํ•œ ๊ณ ์••๋ณต๊ฐ•์—์–ด๋กœ์กธํ•ญ์•”ํ™”ํ•™์š”๋ฒ• ์‹œ์Šคํ…œ์„ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ๋…ธ์ฆ, ๊ณ ์••์šฉ ์‹œ๋ฆฐ์ง€ ํŽŒํ”„, ์›๋ฟ” ์ง„์ž ์šด๋™ ๊ธฐ๊ธฐ๋ฅผ ์ œ์ž‘ํ•˜์—ฌ ๋…ธ์ฆ ์ž์ฒด์˜ ํŠน์„ฑ์„ ์•Œ์•„๋ณด๋Š” ๋‹ค์–‘ํ•œ ์‹คํ—˜์„ ์ง„ํ–‰ํ•˜์˜€๊ณ , PIPAC์œผ๋กœ์จ์˜ ์„ฑ๋Šฅ์„ ํ™•์ธํ•˜๊ธฐ ์œ„ํ•ด ์ƒ์ฒด๋‚ด ์‹คํ—˜์„ ์ง„ํ–‰ํ•˜์˜€๋‹ค. ๊ทธ ๊ฒฐ๊ณผ, ๋ณธ ์—ฐ๊ตฌ์—์„œ ๊ฐœ๋ฐœ๋œ ๋…ธ์ฆ๊ณผ ๊ณ ์••์šฉ ์‹œ๋ฆฐ์ง€ ํŽŒํ”„๋Š” ๋ถ„์‚ฌ ๋„“์ด์™€ ์นจํˆฌ ๊นŠ์ด ์ธก๋ฉด์—์„œ ๊ธฐ์กด์— ์‚ฌ์šฉ๋˜๊ณ  ์žˆ๋Š” ๋…ธ์ฆ๋ณด๋‹ค ํ–ฅ์ƒ๋œ ์„ฑ๋Šฅ์„ ๋ณด์ด๋Š” ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ์œผ๋ฉฐ, ์›๋ฟ” ์ง„์ž ์šด๋™ ๊ธฐ๊ธฐ๋ฅผ ์ด์šฉํ•œ ์ฒด๋‚ด ์‹คํ—˜์—์„œ๋„ ๋…ธ์ฆ๋งŒ ์‚ฌ์šฉํ–ˆ์„ ๋•Œ์™€ ๋น„๊ตํ•˜์—ฌ ๋” ๋„“์€ ์žฅ๊ธฐ์— ์œ ์˜๋ฏธํ•˜๊ฒŒ ์˜ํ–ฅ์„ ๋ผ์นœ๋‹ค๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์—ฌ ํ•ญ์•” ์š”๋ฒ•์œผ๋กœ์จ ์ ์šฉ ๊ฐ€๋Šฅ์„ฑ์„ ํ™•์ธํ•˜์—ฌ ํ–ฅํ›„ ์ƒˆ๋กœ์šด ํ•ญ์•”์š”๋ฒ•์œผ๋กœ ๋ฐœ์ „ํ•  ์ˆ˜ ์žˆ์Œ์„ ์‹œ์‚ฌํ•œ๋‹ค.Abstract i Table of Contents iii List of Tables v List of Figures vi List of Abbreviations viii Chapter 1. Introduction 1 1.1 Peritoneal Carcinomatosis(PC) 1 1.2 Treatment Options and Limitations 3 1.3 Pressurized intraperitoneal aerosol chemotherapy (PIPAC) 5 1.4 Limitation of PIPAC 9 1.5 Research aims 10 Chapter 2. Method 11 2.1 Components of Prototype 11 2.1.1 Description of the Nozzle and Syringe Pump 11 2.1.2 Description of the Conical Pendulum Motion Device 20 2.2 Nozzle Performance Test 23 2.2.1 Granulometric Analysis and Spray Angle analysis 23 2.2.2 Distribution Comparison with Methylene Blue Solution 25 2.2.3 Ex-vivo Penetration Depth Analysis 26 2.3 PIPAC Performance Test 29 2.3.1 In-vivo Distribution Comparison with Methylene Blue Solution 29 2.3.2 In-vivo Penetration Depth Analysis without a Conical Pendulum Motion Device 29 2.3.3 In-vivo Penetration Depth Analysis with a Conical Pendulum Motion Device 30 Chapter 3. Result 33 3.1. Nozzle Performance Test 33 3.1.1 Granulometric Analysis and Spray Angle Analysis 33 3.1.2 Distribution Comparison with Methylene Blue Solution 37 3.1.3 Ex-vivo Penetration Depth Analysis 39 3.2 PIPAC Performance Test 43 3.2.1 In-vivo Distribution Comparison with Methylene Blue Solution 43 3.2.2 In-vivo Penetration Depth Analysis 45 Chapter 4. Discussion 47 4.1 Effective Penetration Depth and Drug Distribution with Lower Pressure 47 4.2 Comparable Penetration Depth 48 4.3 Importance of Conical Pendulum Motion Device 49 4.4 Notable results in In-vivo experiments 50 4.5 Limitations of the Present Study 50 Chapter 5. Conclusion 52 References 53 Abstract in Korean 56Maste

    Effect of deposition temperatures on the properties of ZnSnO thin film grown by atomic layer deposition and its application to TFTs

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์žฌ๋ฃŒ๊ณตํ•™๋ถ€, 2014. 8. ํ™ฉ์ฒ ์„ฑ.๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์›์ž์ธต ์ฆ์ฐฉ๋ฒ•(Atomic Layer Deposition, ALD)์„ ์ด์šฉํ•˜์—ฌ ์ฆ์ฐฉํ•œ ZTO ๋ฐ•๋ง‰ ๋ฐ ZTO ๋ฐ•๋ง‰์„ ์ฑ„๋„๋ง‰์œผ๋กœ ์‚ฌ์šฉํ•˜๋Š” ๋ฐ•๋ง‰ ํŠธ๋žœ์ง€์Šคํ„ฐ(Thin Film Transistor, TFT) ์†Œ์ž๋ฅผ ์ œ์ž‘ํ•˜์—ฌ ์ด๋“ค์˜ ๋ฌผ๋ฆฌ์  ํŠน์„ฑ ๋ฐ ์ „๊ธฐ์  ํŠน์„ฑ์„ ํ‰๊ฐ€ํ•˜์˜€๋‹ค. ALD๋Š” ๊ฐ ์›์†Œ ๋ณ„ ์„œ๋ธŒ์‚ฌ์ดํด(sub cycle)์˜ ํšŸ์ˆ˜๋ฅผ ๋‹ฌ๋ฆฌํ•˜์—ฌ ๋ฐ•๋ง‰์˜ ์กฐ์„ฑ์„ ์›ํ•˜๋Š” ๋Œ€๋กœ ์ •๋ฐ€ํ•˜๊ฒŒ ์กฐ์ ˆํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์žฅ์ ์ด ์žˆ์–ด ๋ฌผ์งˆ์˜ ์กฐ์„ฑ์ด ์ „๊ธฐ์  ํŠน์„ฑ์— ํฐ ์˜ํ–ฅ์„ ์ฃผ๋Š” ๋‹ค์„ฑ๋ถ„๊ณ„ ์‚ฐํ™”๋ฌผ ๋ฐ˜๋„์ฒด๋ฅผ ์ฆ์ฐฉํ•˜๋Š”๋ฐ ๋งค์šฐ ์ ํ•ฉํ•œ ๊ณต์ •์ด๋ฉฐ, ์šฐ์ˆ˜ํ•œ conformality ํŠน์„ฑ์„ ๊ฐ€์ง€๋ฏ€๋กœ ํฐ ๋‹จ์ฐจ๋ฅผ ๊ฐ€์ง€๋Š” ๊ตฌ์กฐ์— ๊ท ์ผํ•˜๊ณ  ์–‡์€ ๋‘๊ป˜์˜ ๋ฐ•๋ง‰์„ ํ˜•์„ฑํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์žฅ์ (high step coverage)์ด ์žˆ์–ด 3์ฐจ์›์˜ ๊ตฌ์กฐ์˜ ์ฐจ์„ธ๋Œ€ ๋ฐ˜๋„์ฒด ์†Œ์ž์˜ ์ œ์ž‘์—๋„ ์œ ๋ฆฌํ•˜๋‹ค. ALD๋ฅผ ์ด์šฉํ•œ ZTO ๋ฐ•๋ง‰์˜ ์ฆ์ฐฉ์€ ZnO ๋ฐ•๋ง‰๊ณผ SnO2 ๋ฐ•๋ง‰์„ ์ฆ์ฐฉํ•˜๋Š” ์„œ๋ธŒ์‚ฌ์ดํด๋กœ ๊ตฌ์„ฑ๋˜๋Š” ํ•˜๋‚˜์˜ ์Šˆํผ ์‚ฌ์ดํด์„ ์—ฌ๋Ÿฌ ๋ฒˆ ๋ฐ˜๋ณต ์‹œํ–‰ํ•จ์œผ๋กœ์จ ์–ป์–ด์ง€๋Š”๋ฐ, ์ด ๋•Œ ZnO ๋ฐ•๋ง‰๊ณผ SnO2 ๋ฐ•๋ง‰ ๊ฐ๊ฐ์˜ ์„œ๋ธŒ์‚ฌ์ดํด ์‹œํ–‰ ํšŸ์ˆ˜ ๋ฐ ์Šˆํผ ์‚ฌ์ดํด ์‹œํ–‰ ํšŸ์ˆ˜๋ฅผ4 ์กฐ์ ˆํ•˜์—ฌ ์›ํ•˜๋Š” Zn:Sn ์กฐ์„ฑ๋น„ ๋ฐ ์›ํ•˜๋Š” ๋‘๊ป˜๋ฅผ ๊ฐ€์ง€๋Š” ZTO ๋ฐ•๋ง‰์„ ํ˜•์„ฑํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. TFT ์ฑ„๋„๋ง‰์œผ๋กœ์„œ ๊ฐ€์žฅ ์šฐ์ˆ˜ํ•œ ํŠน์„ฑ์„ ๋ณด์ธ๋‹ค๊ณ  ์•Œ๋ ค์ง„ Zn:Sn ์กฐ์„ฑ์ธ 1:1 ์กฐ์„ฑ์˜ ๋ฐ•๋ง‰์„ ์ฆ์ฐฉ ์˜จ๋„๋ฅผ ๋‹ฌ๋ฆฌํ•˜์—ฌ ์ฆ์ฐฉํ•˜์˜€๊ณ , ์—ด์ฒ˜๋ฆฌ์— ๋”ฐ๋ฅธ ๋ฐ•๋ง‰์˜ ๋ฌผ์„ฑ ๋ณ€ํ™”๋ฅผ ๋‹ค์–‘ํ•œ ๋ถ„์„๋ฒ•์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ถ„์„ํ•˜์˜€๋‹ค. ์ฆ์ฐฉ๋œ ZTO ๋ฐ•๋ง‰์€ ์ฆ์ฐฉ ์˜จ๋„์™€ ๊ด€๊ณ„์—†์ด ์šฐ์ˆ˜ํ•œ ๊ท ์ผ๋„์™€ ๋‚ฎ์€ ๋ถˆ์ˆœ๋ฌผ ํ•จ๋Ÿ‰์„ ๋‚˜ํƒ€๋‚ด์—ˆ๊ณ , ์ฆ์ฐฉ ์˜จ๋„๊ฐ€ ๋†’์„์ˆ˜๋ก ๋†’์€ ๋ฐ€๋„์˜ ์šฐ์ˆ˜ํ•œ ๋ฐ•๋ง‰์ด ํ˜•์„ฑ๋จ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. 150 โ„ƒ์—์„œ ์ฆ์ฐฉํ•œ ZTO ๋ฐ•๋ง‰์€ ๋งค์šฐ porousํ•œ ๊ตฌ์กฐ๋ฅผ ๊ฐ€์ง์ด XRR ๋ฐ AFM, SEM ์ธก์ •์„ ํ†ตํ•ด ํ™•์ธ๋˜์—ˆ๋‹ค. ๋˜ํ•œ ZTO ๋ฐ•๋ง‰์„ ์ฑ„๋„๋ง‰์œผ๋กœ ํ•˜๋Š” TFT๋ฅผ photo lithography ๊ณต์ •์„ ํ†ตํ•ด ์ œ์ž‘ํ•˜์˜€์œผ๋ฉฐ, ์ฆ์ฐฉ ์˜จ๋„ ๋ฐ ์—ด์ฒ˜๋ฆฌ ์œ ๋ฌด์— ๋”ฐ๋ฅธ TFT์˜ ์ „๋‹ฌ ํŠน์„ฑ์„ ํ‰๊ฐ€ํ•˜์˜€๋‹ค. ์ œ์ž‘๋œ TFT์˜ ์ „๊ธฐ์  ํŠน์„ฑ์€ 250 โ„ƒ์—์„œ ์ฆ์ฐฉํ•˜๊ณ  ์—ด์ฒ˜๋ฆฌ๋ฅผ ๊ฑฐ์นœ ZTO ๋ฐ•๋ง‰์„ ์‚ฌ์šฉํ•˜์˜€์„ ๋•Œ 24.5 cm2/Vs ์˜ ์ „๊ณ„ ์ด๋™๋„๋ฅผ ๋‚˜ํƒ€๋‚ด๋ฉฐ ์šฐ์ˆ˜ํ•œ ํŠน์„ฑ์„ ๋‚˜ํƒ€๋‚ธ ๋ฐ˜๋ฉด, 150 โ„ƒ ์—์„œ ์ฆ์ฐฉํ•˜๊ณ  ์—ด์ฒ˜๋ฆฌํ•œ ZTO ๋ฐ•๋ง‰์„ ์ ์šฉํ•œ TFT๋Š” ~1 cm2/Vs ์˜ ํฌํ™” ์ด๋™๋„๋ฅผ ๋ณด์ด๋ฉฐ ์ข‹์ง€ ์•Š์€ ํŠน์„ฑ์„ ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค. ์ฑ„๋„๋ง‰ ์ฆ์ฐฉ ์˜จ๋„ 150 โ„ƒ ์กฐ๊ฑด์˜ ZTO TFT์˜ ์ด๋™๋„ ์ €ํ•˜ ํ˜„์ƒ์€ ๋ฐ•๋ง‰ ๋‚ด์— ์กด์žฌํ•˜๋Š” pore์— ์˜ํ•œ ์ „๊ธฐ ์ „๋„๋„ ๊ฐ์†Œ์— ๊ธฐ์ธํ•˜๋Š” ๊ฒƒ์œผ๋กœ ๋ถ„์„๋˜์—ˆ์œผ๋ฉฐ, ์ด๋ฅผ percolation ์ด๋ก ์„ ํ†ตํ•ด ์„ค๋ช…ํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค.์ดˆ๋ก i ๋ชฉ์ฐจ iii List of Figures v List of Tables viii 1. ์„œ๋ก  1 2. ๋ฌธํ—Œ์—ฐ๊ตฌ 4 2.1 ๋น„์ •์งˆ ์‚ฐํ™”๋ฌผ ๋ฐ˜๋„์ฒด 4 2.1.1 Zinc Tin Oxide (ZTO) 7 2.1.2 ZTO๋ฅผ ์ฑ„๋„๋ง‰์œผ๋กœ ์‚ฌ์šฉํ•œ TFT ์†Œ์ž 8 2.2 ์›์ž์ธต ์ฆ์ฐฉ๋ฒ• (Atomic Layer Deposition, ALD) 17 2.2.1 ALD ๊ณต์ •์˜ ๋ฐ•๋ง‰ ์„ฑ์žฅ ๋ฉ”์ปค๋‹ˆ์ฆ˜ 18 3. ์‹คํ—˜๋ฐฉ๋ฒ• 26 3.1 ALD ์‹œ์Šคํ…œ 26 3.2 ALD๋ฅผ ์ด์šฉํ•œ ZTO ๋ฐ•๋ง‰์˜ ์ฆ์ฐฉ 29 3.3 ZTO ๋ฐ•๋ง‰์„ ์ฑ„๋„๋ง‰์œผ๋กœ ์ ์šฉํ•œ TFT ์ œ์ž‘ 33 3.4 ZTO ๋ฐ•๋ง‰ ํŠน์„ฑ ๋ฐ ZTO TFT ๋™์ž‘ ํŠน์„ฑ ๋ถ„์„ 37 4. ์‹คํ—˜๊ฒฐ๊ณผ 41 4.1 ALD ๋ฐฉ๋ฒ•์œผ๋กœ ์ฆ์ฐฉํ•œ ZTO ๋ฐ•๋ง‰ ๋ถ„์„ 41 4.1.1 ZTO ๋ฐ•๋ง‰์˜ ALD ์ฆ์ฐฉ ๊ฑฐ๋™ 41 4.1.2 ZTO ๋ฐ•๋ง‰์˜ ํŠน์„ฑ ๋ถ„์„ 48 4.2 ZTO ๋ฐ•๋ง‰์„ ์ฑ„๋„๋ง‰์œผ๋กœ ์ ์šฉํ•œ TFT์˜ ๋™์ž‘ ํŠน์„ฑ 59 5. ๊ฒฐ๋ก  71 6. ์ฐธ๊ณ ๋ฌธํ—Œ 76 Abstract 79Maste

    ์ฐจ์„ธ๋Œ€ 3D ๋ฉ”๋ชจ๋ฆฌ ์†Œ์ž์˜ ์ฑ„๋„ ์žฌ๋ฃŒ๋กœ์„œ ์›์ž์ธต ์ฆ์ฐฉ๋œ ์‚ฐํ™” ์•„์—ฐ ์ฃผ์„ ๋ฐ•๋ง‰

    No full text
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์žฌ๋ฃŒ๊ณตํ•™๋ถ€, 2021. 2. ํ™ฉ์ฒ ์„ฑ.๋ฉ”๋ชจ๋ฆฌ ์…€ ์ŠคํŠธ๋ง์ด 3 ์ฐจ์› ์ˆ˜์ง ๊ตฌ์กฐ๋กœ ๋ฐฐ์—ด ๋œ ์ˆ˜์ง ์ ์ธตํ˜• NAND (V-NAND) ํ”Œ๋ž˜์‹œ ๋ฉ”๋ชจ๋ฆฌ๋Š” 2013 ๋…„์— ์ฒ˜์Œ ์ƒ์šฉํ™”๋˜์—ˆ๋‹ค. ๊ทธ ์ดํ›„ V-NAND ํ”Œ๋ž˜์‹œ ๋ฉ”๋ชจ๋ฆฌ์˜ bit๋Š” ๊พธ์ค€ํžˆ ์ฆ๊ฐ€ํ•˜์˜€์œผ๋‚˜, ๋‚ฎ์€ ์ด๋™์„ฑ์„ ๊ฐ€์ง„ poly-Si ์ฑ„๋„์˜ ์…€ ์ „๋ฅ˜ ๋ถ€์กฑ์œผ๋กœ ์ธํ•ด ๋‹จ์ˆœํžˆ ์ˆ˜์ง ๋ ˆ์ด์–ด์˜ ์ˆ˜๋ฅผ ๋Š˜๋ฆฌ๋Š” ์ „๋žต์€ ํ•œ๊ณ„์— ๋„๋‹ฌ ํ•  ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒ๋œ๋‹ค. ์ด์— ๋”ฐ๋ผ sensing ์ „๋ฅ˜๊ฐ€ ๋„ˆ๋ฌด ์ž‘์•„์ ธ ์ ์ ˆํ•œ ์†๋„๋กœ ์…€์˜ ๋ฐ์ดํ„ฐ๋ฅผ ์ฝ๋Š” ๊ฒƒ์ด ๋ถˆ๊ฐ€๋Šฅํ•ด์ง„๋‹ค. ๋”ฐ๋ผ์„œ 10 cm2/Vs ์ด์ƒ์˜ ๋†’์€ ์ด๋™๋„๋ฅผ ๋ณด์ด๋Š” ๋น„์ •์งˆ ์‚ฐํ™”๋ฌผ ๋ฐ˜๋„์ฒด (AOS)๋Š” ์ฐจ์„ธ๋Œ€ ์ฑ„๋„ ์žฌ๋ฃŒ์˜ ์ž ์žฌ์  ์ธ ํ›„๋ณด๋กœ ํ‰๊ฐ€๋œ๋‹ค. ๋‹จ์ฐจํ”ผ๋ณต์„ฑ์ด ์šฐ์ˆ˜ํ•œ ์›์ž์ธต ์ฆ์ฐฉ๋ฒ•(ALD)์€ ๋†’์€ ์ข…ํšก๋น„์˜ ํ™€ ๊ตฌ์กฐ๋ฅผ ์‚ฌ์šฉํ•˜๋Š” V-NAND ํ”Œ๋ž˜์‹œ ๋ฉ”๋ชจ๋ฆฌ์—์„œ ์ˆ˜์ง ๊ตฌ์กฐ์˜ ์ฑ„๋„ ๋ ˆ์ด์–ด๋ฅผ ์ฆ์ฐฉํ•˜๋Š”๋ฐ ํ•„์ˆ˜์ ์ธ ๊ณต์ •์ด๋‹ค. ์‚ผ์„ฑ๋ถ„๊ณ„ ALD ์•„์—ฐ ์ฃผ์„ ์‚ฐํ™”๋ฌผ (ZTO) ๋ฐ•๋ง‰์€ ์ „๊ธฐ์  ํŠน์„ฑ์ด ์‚ฌ์„ฑ๋ถ„๊ณ„ ์ธ๋“ ๊ฐˆ๋ฅจ ์•„์—ฐ ์‚ฐํ™”๋ฌผ (IGZO) ๋ฐ•๋ง‰๊ณผ ๋น„์Šทํ•˜๋ฉด์„œ๋„, ๊ณต์ •์ด ๋œ ๋ณต์žกํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์ฑ„๋„ ์žฌ๋ฃŒ๋กœ์„œ ๋งค๋ ฅ์ ์ธ ํ›„๋ณด์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋‹ค์„ฑ๋ถ„๊ณ„ ๊ธˆ์† ์‚ฐํ™”๋ฌผ ALD์˜ ๊ฑฐ๋™์— ๋Œ€ํ•œ ์ •ํ™•ํ•œ ์ดํ•ด๋Š” ์ผ๋ฐ˜์ ์œผ๋กœ ์ด์„ฑ๋ถ„๊ณ„ ์‚ฐํ™”๋ฌผ ALD์— ๋น„ํ•ด ๋ณต์žกํ•˜๊ณ  ๋‚œ์ด๋„๊ฐ€ ๋†’๋‹ค. ๋ฐ˜๋„์ฒด ๋ถ„์•ผ์—์„œ ALD์˜ ์ดˆ๊ธฐ ์—ฐ๊ตฌ๋Š” Al2O3, ZrO2 ๋ฐ HfO2์™€ ๊ฐ™์€ ๋‹จ์ˆœํ•œ ์ด์„ฑ๋ถ„๊ณ„ ์‚ฐํ™”๋ฌผ๋กœ ์‹œ์ž‘๋˜์—ˆ์ง€๋งŒ, ์ด ๊ธฐ์ˆ ์€ ๋” ๋ณต์žกํ•œ ๋‹ค์„ฑ๋ถ„๊ณ„ ์‚ฐํ™”๋ฌผ ๋ฐ•๋ง‰์˜ ์ฆ์ฐฉ์—๋„ ์ ์šฉ๋  ์ˆ˜ ์žˆ๋‹ค. ALD ๊ธฐ์ˆ ์„ ์‚ฌ์šฉํ•˜์—ฌ SrTiO3์™€ ๊ฐ™์€ ๋‹ค์„ฑ๋ถ„๊ณ„ ์œ ์ „์ฒด ๋ฐ•๋ง‰ ๋ฐ IGZO์™€ ๊ฐ™์€ ๋ฐ˜๋„์ฒด ๋ฐ•๋ง‰์„ ์„ฑ์žฅ์‹œํ‚ค๊ธฐ ์œ„ํ•œ ๊ด‘๋ฒ”์œ„ํ•œ ์—ฐ๊ตฌ๊ฐ€ ์ˆ˜ํ–‰๋˜๊ณ  ์žˆ๋‹ค. ๋‹ค์„ฑ๋ถ„๊ณ„ ์‚ฐํ™”๋ฌผ์˜ ALD ์Šˆํผ ์‚ฌ์ดํด์€ ์ด์„ฑ๋ถ„๊ณ„ ์‚ฐํ™”๋ฌผ์˜ ์—ฌ๋Ÿฌ ์„œ๋ธŒ์‚ฌ์ดํด๋กœ ๊ตฌ์„ฑ๋œ๋‹ค. ๊ตฌ์„ฑ๋˜๋Š” ๊ฐ ์‚ฐํ™”๋ฌผ์˜ ์„œ๋ธŒ ์‚ฌ์ดํด์„ ๊ฒฐํ•ฉํ•  ๋•Œ, ๊ฐ ๊ตฌ์„ฑ ์‚ฐํ™”๋ฌผ์˜ ๋‹จ์ผ๋ง‰ ์„ฑ์žฅ ๊ฑฐ๋™๊ณผ ๋น„๊ตํ•˜์—ฌ ๋‹ค๋ฅธ ์„ฑ์žฅ ๊ฑฐ๋™์„ ๋ณด์ผ ๊ฐ€๋Šฅ์„ฑ์ด ์žˆ๋‹ค. ์ด๋Š” ์ด์ „์— ์„ฑ์žฅ๋œ ์‚ฐํ™”๋ฌผ ํ‘œ๋ฉด์˜ ํ™”ํ•™ ๊ตฌ์กฐ๊ฐ€ ์ „๊ตฌ์ฒด ํก์ฐฉ์— ์˜ํ–ฅ์„ ์ค„ ๊ฐ€๋Šฅ์„ฑ์ด ๋†’๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ๋˜ํ•œ ๊ธฐ์กด V-NAND ํ”Œ๋ž˜์‹œ ๋ฉ”๋ชจ๋ฆฌ์˜ poly-Si ์ฑ„๋„์„ AOS ์ฑ„๋„๋กœ ๋Œ€์ฒดํ•˜๋ ค๋ฉด AOS ๊ธฐ๋ฐ˜ CTF (Charge-Trap Flash)๊ฐ€ poly-Si ์ฑ„๋„๊ณผ ์œ ์‚ฌํ•œ ํ”„๋กœ๊ทธ๋žจ/์ด๋ ˆ์ด์ฆˆ ํŠน์„ฑ์„ ๋ณด์žฅํ•ด์•ผํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด์ „์˜ ๋ณด๊ณ ๋“ค์— ๋”ฐ๋ฅด๋ฉด AOS CTF ์†Œ์ž๋Š” ๋งค์šฐ ๋น„ํšจ์œจ์ ์ธ ์ด๋ ˆ์ด์ฆˆ ๋™์ž‘์„ ๋ณด์˜€์œผ๋‚˜, ๊ทธ ์›์ธ์€ ์•„์ง ์ž˜ ์•Œ๋ ค์ ธ ์žˆ์ง€ ์•Š๋‹ค. ์ด๋ ˆ์ด์ฆˆ ๋™์ž‘์€ ๋Œ€๋ถ€๋ถ„ ์ „ํ•˜ ํŠธ๋žฉ์ธต(CTL)์œผ๋กœ์˜ ์ •๊ณต ์ฃผ์ž…๊ณผ ๊ด€๋ จ์ด ์žˆ๊ธฐ ๋•Œ๋ฌธ์—, AOS์— ์ •๊ณต์ด ์—†๋‹ค๋Š” ํŠน์ง•์ด ์ด๋ ˆ์ด์ฆˆ๊ฐ€ ๋˜์ง€ ์•Š๋Š” ์ฃผ์š” ์›์ธ ์ผ ์ˆ˜ ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ํ˜„์žฌ V-NAND์˜ ๋„ํ•‘๋˜์ง€ ์•Š์€ poly-Si ์ฑ„๋„ ๋˜ํ•œ ์ถฉ๋ถ„ํ•œ ๋†๋„์˜ ์ •๊ณต์„ ๊ฐ–์ง€ ์•Š์œผ๋ฉฐ, ๋Œ€์‹  ์ •๊ณต์€ p-ํƒ€์ž… Si ๊ธฐํŒ์—์„œ ์ฃผ์ž…๋˜๊ฑฐ๋‚˜ ์ŠคํŠธ๋ง ์„ ํƒ ํŠธ๋žœ์ง€์Šคํ„ฐ์˜ GIDL ์ „๋ฅ˜์— ์˜ํ•ด ์ƒ์„ฑ๋œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋‘ ๋ฐฉ๋ฒ• ๋ชจ๋‘ AOS ๊ธฐ๋ฐ˜ CTF์—์„œ๋Š” ํฐ ๋ฐด๋“œ๊ฐญ์œผ๋กœ ์ธํ•ด ์‚ฌ์‹ค์ƒ ์‚ฌ์šฉํ•  ์ˆ˜ ์—†๋‹ค. ์ฒซ๋ฒˆ์งธ๋กœ, ์ด ์—ฐ๊ตฌ์—์„œ๋Š” O3๋ฅผ ์‚ฐ์†Œ์›์œผ๋กœ ์‚ฌ์šฉํ•˜์—ฌ ZnO, SnO2, ZTO ๋ฐ•๋ง‰์˜ ALD๋ฅผ ๊ฐ๊ฐ ๊ฐœ๋ฐœํ•˜๊ณ , ๊ทธ ์„ฑ์žฅ ๊ฑฐ๋™์„ ์ž์„ธํžˆ ์กฐ์‚ฌํ•˜์˜€๋‹ค. Si ๊ธฐํŒ์—์„œ ์„ฑ์žฅ์‹œํ‚จ, O3์„ ์‚ฌ์šฉํ•œ ALD ZnO๋Š” O3์— ์˜ํ•ด ์ƒ์„ฑ๋œ SiO2 ๊ธฐํŒ์˜ ๋†’์€ ํ‘œ๋ฉด ๋ฐ˜์‘ ์žฅ๋ฒฝ ํŠน์„ฑ์—์„œ ๋น„๋กฏ๋œ ๊ฒƒ์œผ๋กœ ํ™•์ธ๋œ ๋šœ๋ ทํ•œ ๋ฐฐ์–‘ cycle์„ ๋‚˜ํƒ€๋ƒˆ๋‹ค. ๋ฐ˜๋ฉด, ALD SnO2 ๋ฐ•๋ง‰์—์„œ๋Š” ์ด๋Ÿฌํ•œ ๋ฐฐ์–‘ cycle์ด ๊ด€์ฐฐ๋˜์ง€ ์•Š์•˜๋‹ค. ๋ฐฐ์–‘ cycle์˜ ์˜ํ–ฅ์„ ์ œ์™ธํ•œ ZnO ์ธต์˜ ์„ฑ์žฅ ์†๋„(GPC)๋Š” Si ๊ธฐํŒ์—์„œ ~ 4.2ร…/cycle ๋กœ ๋งค์šฐ ๋†’์•˜๋‹ค. ๋˜ํ•œ ZTO ALD์—์„œ, SiO2 ๊ธฐํŒ์ด SnO2 ALD ์‚ฌ์ดํด์— ์˜ํ•ด ํšจ๊ณผ์ ์œผ๋กœ ๋ฎ์ผ ์ˆ˜ ์žˆ๋Š” Zn:Sn ๋น„์œจ ๋ฒ”์œ„์—์„œ ๊ท ์ผํ•œ ZTO ALD ๊ณต์ •์„ ๋‹ฌ์„ฑ ํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. Sn ๋†๋„์— ๋”ฐ๋ฅธ ZTO ๋ฐ•๋ง‰์˜ ์ „๊ธฐ์  ์„ฑ๋Šฅ์ด ๋ฐ•๋ง‰ ํŠธ๋žœ์ง€์Šคํ„ฐ (TFT)๋ฅผ ์ œ์ž‘ํ•˜์—ฌ ์กฐ์‚ฌ๋˜์—ˆ๋‹ค. ์ตœ์ ์˜ ์–‘์ด์˜จ ์กฐ์„ฑ์€ 40at %์˜ Sn ๋†๋„์˜€๊ณ , ์ด๋•Œ 13.6 cm2/Vs ์˜ ๊ฐ€์žฅ ๋†’์€ ์ „๊ณ„ ํšจ๊ณผ ์ด๋™๋„, -0.12 V์˜ Vth ๋ฐ 0.33 V/dec์˜ ๊ฐ€์žฅ ๋‚ฎ์€ SS๊ฐ€ ํ™•์ธ๋˜์—ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์„ฑ๋Šฅ์€ ํ™€ ๊ตฌ์กฐ์—์˜ ์ฆ์ฐฉ์—์„œ ํ™•์ธ๋œ ๋งค์šฐ ์šฐ์ˆ˜ํ•œ ๋‹จ์ฐจํ”ผ๋ณต์„ฑ๊ณผ ํ•จ๊ป˜ V-NAND ํ”Œ๋ž˜์‹œ์šฉ ์ฑ„๋„ ์žฌ๋ฃŒ๋กœ์„œ ALD ZTO ๋ฐ•๋ง‰์˜ ์‹คํ˜„ ๊ฐ€๋Šฅ์„ฑ์„ ๋ณด์—ฌ์ค€๋‹ค. ๋‘๋ฒˆ์งธ๋กœ, AOS ๊ธฐ๋ฐ˜ CTF ์†Œ์ž์—์„œ์˜ ๋น„ํšจ์œจ์ ์ธ ์ด๋ ˆ์ด์ฆˆ ๋ฌธ์ œ์˜ ์›์ธ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ ๋ฐ ์ด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์ด๋ ˆ์ด์ฆˆ ์†๋„๋ฅผ ๊ฐœ์„ ์„ ์œ„ํ•œ ๋ฐฉ๋ฒ•์ด ์ œ์‹œ๋˜์—ˆ๋‹ค. ALD ZTO ๊ธฐ๋ฐ˜ ํ‰๋ฉด CTF ์†Œ์ž๋ฅผ ์ œ์ž‘ํ•˜๊ณ  ํ”„๋กœ๊ทธ๋žจ/์ด๋ ˆ์ด์ฆˆ ํŠน์„ฑ์„ ํ‰๊ฐ€ํ•˜์˜€๋‹ค. AOS ์ฑ„๋„์˜ ๋ฐ˜์ „์ธต ํ˜•์„ฑ๊ณผ ์ด๋ ˆ์ด์ฆˆ ๋™์ž‘ ์‚ฌ์ด์˜ ๊ด€๊ณ„๊ฐ€ TCAD ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ†ตํ•ด ์กฐ์‚ฌ๋˜์—ˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด, AOS ์ฑ„๋„์„ ๋ฐ˜์ „์‹œํ‚ค๊ธฐ ์œ„ํ•ด์„œ๋Š” ์†Œ์Šค ๋ฐ ๋“œ๋ ˆ์ธ์—์„œ ํ™€์„ ์ฃผ์ž…ํ•˜๋Š” ๊ฒƒ์ด ์ด๋ ˆ์ด์ฆˆ ๋™์ž‘์˜ ์ „์ œ ์กฐ๊ฑด์ž„์„ ๋ฐํ˜”๋‹ค. ์ •๊ณต ์ฃผ์ž…์„ ๋‹ฌ์„ฑ ํ•  ์ˆ˜ ์žˆ๋Š” ๊ฐ€๋Šฅํ•œ ๋ฐฉ๋ฒ• ๋˜ํ•œ ์ œ์•ˆ๋˜์—ˆ๋‹ค. ์ข…ํ•ฉํ•˜์—ฌ, ์ด ๋…ผ๋ฌธ์—์„œ๋Š” ๋‹ค์„ฑ๋ถ„๊ณ„ ALD ZTO ํ•„๋ฆ„์˜ ๊ธฐํŒ ์˜์กด์  ์„ฑ์žฅ ๊ฑฐ๋™์„ ์กฐ์‚ฌํ•˜๊ณ , ๊ทธ ํŠน์„ฑ์— ๋Œ€ํ•œ ์ดํ•ด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ALD ZTO ์ฑ„๋„ ๊ธฐ๋ฐ˜์˜ TFT ๋ฐ CTF ์žฅ์น˜๋ฅผ ์ œ์ž‘ํ•˜๊ณ  ํ‰๊ฐ€ํ–ˆ๋‹ค. TCAD ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ†ตํ•ด ZTO CTF์˜ ํ”„๋กœ๊ทธ๋žจ/์ด๋ ˆ์ด์ฆˆ ๋™์ž‘ ํŠน์„ฑ์„ ๋ถ„์„ ํ•œ ๊ฒฐ๊ณผ, ์ถฉ๋ถ„ํ•œ ํ”„๋กœ๊ทธ๋žจ ๋ฐ ์ด๋ ˆ์ด์ฆˆ ์†๋„๋Š” 3 eV ์ด์ƒ์˜ ๋„“์€ ๋ฐด๋“œ ๊ฐญ์„ ๊ฐ€์ง„ AOS ๊ณ ์œ ์˜ ์—๋„ˆ์ง€ ๋ฐด๋“œ ๊ตฌ์กฐ์— ์˜ํ•ด ์ œํ•œ ๋  ์ˆ˜ ์žˆ์Œ์„ ํ™•์ธํ•˜์˜€๋‹ค.The vertically stacked NAND (V-NAND) flash memory in which the memory cell strings are arranged in a three-dimensional vertical structure was first commercially manufactured in 2013. [1,2] Since then, V-NAND flash memory has increased its bit density by increasing the number of stacked layers.[3โ€“5] However, due to the insufficient cell current of a poorly crystallized poly-Si channel with low mobility, the strategy of simply increasing the number of vertical layers is expected to reach its limit soon.[6,7] Under the circumstance, the sensing current becomes too small to read the cell data at a reasonable speed. Therefore, amorphous oxide semiconductor (AOS), which exhibits high mobility of >10 cm2/Vs, is regarded as the potential candidate for the next-generation channel material.[8,9] Atomic layer deposition (ALD) with excellent step coverage is an essential process for the deposition of the vertical channel layer in V-NAND flash memory using a high-aspect-ratio hole structure. The ternary ALD zinc tin oxide (ZTO) thin film is an appealing contender as the channel material because its electrical properties are comparable to the quaternary indium gallium zinc oxide (IGZO) thin film, and the process is less complicated. However, a precise understanding of the behavior of multicomponent metal oxide ALD is generally challenging due to its complexity compared with the ALD of binary component oxides. While the initial applications of ALD in the semiconductor field started with simple oxides, such as Al2O3, ZrO2, and HfO2, this technique can also be applied to more complicated multi-cation oxide films. Extensive researches have been conducted to grow multicomponent dielectric films, such as SrTiO3, and semiconductor films, such as IGZO, using the ALD technique[6โ€“10]. The supercycle of ALD of ternary or quaternary oxides consists of several subcycles of the binary component oxides. When combining the subcycles of the component oxides, it is likely to show different growth behaviors compared to each single component oxide growth. [11โ€“14] This is because the chemical structure of the surfaces of the previously grown component oxides is most likely different from the component layer itself. [15โ€“17] Furthermore, to replace the poly-Si channel of the existing V-NAND flash memory with the AOS channel, an AOS-based charge-trap flash (CTF) must guarantee program/erase characteristics comparable to that of the poly-Si channel. However, according to previous reports, the AOS CTF device exhibited a very inefficient erase operation, of which origin is not well understood yet.[10โ€“13] As the erase operation is mostly related to the hole injection into the charge trap layer (CTL), the lack of holes in AOS could be one of the major reasons.[14] However, the undoped poly-Si channel in the current V-NAND also does not provide the device with a sufficient density of holes; the holes are injected from p-type Si substrate or generated by the gate-induced drain leakage (GIDL) current in the string-select transistors.[1,15] However, both methods are barely available for the AOS-based CTF due to its large bandgap. First, in this work, the ALD of ZnO, SnO2, and ZTO thin films were prepared using O3 as an oxygen source, and their growth behaviors were examined in detail. It was observed that ZnO ALD with O3 on the Si substrate exhibited distinct incubation cycles, which was found to originate from the high surface-reaction-barrier property of the SiO2 substrate produced by O3. On the other hand, no involvement of such incubation cycles was observed on the SnO2 thin film. The thickness growth per cycle (GPC) of the ZnO layer, excluding the influences of the incubation cycles, was as high as ~ 4.2 ร… cycle-1 on the Si substrate, which required an in-depth examination of the ALD mechanism. Overall, a facile and homogenous ZTO ALD process could be achieved over the entire Zn:Sn ratio range when the SiO2 substrate was effectively covered by the SnO2 ALD cycles. The electrical performances of the ZTO films with different Sn-concentrations were also examined by fabricating thin-film transistors (TFTs). The optimum cation composition was found at the Sn-concentration of 40 at% with the highest field-effect mobility of 13.6 cm2 V-1 s-1, the Vth of โˆ’0.12 V, and the lowest subthreshold swing (SS) of 0.33 V decade-1. These performances, along with its excellent step coverage confirmed by conformal deposition on a hole structure, demonstrate the feasibility of ALD ZTO film as the channel material for V-NAND flash or cell-stacked dynamic random access memory (DRAM) with ultra-high-aspect-ratio structures. Second, understanding the origin of the inefficient erase problem and improving the erase speed will be one of the critical tasks for the AOS-based CTF devices. An ALD ZTO-based planar CTF device was fabricated and the program/erase characteristics were evaluated. The relationship between the inversion layer formation of the AOS channel and the erase operation of the ZTO CTF device was investigated through technology computer-aided design (TCAD) simulation. It revealed that the injection of holes from the source and drain to invert the AOS channel is a prerequisite to ensure sufficient erase. A probable method to achieve the hole injection was also suggested. Overall, in this dissertation, substrate-dependent growth behavior of multi-component ALD ZTO films was investigated and based on the understanding of its characteristics, the TFT and CTF devices with AOS channel layers were fabricated and evaluated. By analyzing the program/erase operation characteristics of ZTO CTF with the aid of TCAD simulation, it was revealed that the sufficient program and erase speed would be limited by the inherent energy band structure of AOS with its wide bandgap of over 3 eV.1. Introduction 1 1.1. Overview 1 1.2. References 4 2. Literature review 6 2.1. Characteristics of amorphous oxide semiconductor thin films and their ALD processes 6 2.2. Oxide semiconductor thin-film transistors and charge-trap flash memory devices 10 2. 2. 1. The fabrication process of AOS TFTs 10 2. 2. 2. The operation properties of AOS TFTs 12 2. 2. 3. NAND flash memory with oxide semiconductors 17 2. 2. 4. 3-dimensional vertical stacked flash memory 21 2.3. References 25 3. Substrate-Dependent Growth Behavior of ALD ZnO and ALD ZTO Thin Films for TFTs [1] 30 3.1. Introduction 30 3.2. Experimental 34 3.2.1. Film Growth 34 3.2.2. Characterization 35 3.2.3. Transistor Fabrication and Measurements 36 3.3. Results and Discussions 37 3.4. Conclusion 80 3.5. References 83 4. Erase operation of the CTF memory device with AOS thin-film channel [2] 94 4.1. Introduction 94 4.2. Experimental 97 4.3. Results and Discussions 99 4.4. Conclusion 115 4.5. References 117 5. Conclusion 121 Abstract (in Korean) 124Docto

    The Effect of Acute Exercise Modality on Intradialytic and Interdialytic Blood Pressure in Hemodialysis Patients

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ฒด์œก๊ต์œก๊ณผ, 2015. 8. ๊น€์—ฐ์ˆ˜.๋ณธ ์—ฐ๊ตฌ์˜ ๋ชฉ์ ์€ ์ผํšŒ์„ฑ ์šด๋™์ด ํ˜ˆ์•กํˆฌ์„ ํ™˜์ž์˜ ํˆฌ์„ ์ค‘ ํ˜ˆ์••๋ณ€ํ™”์™€ ํˆฌ์„ ๊ฐ„(ํˆฌ์„ ํ›„ 20์‹œ๊ฐ„) ํ˜ˆ์••์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ์•Œ์•„๋ณด๊ณ , ์šด๋™ ์ค‘์žฌ(์œ ์‚ฐ์†Œ์„ฑ ์šด๋™, ์ €ํ•ญ์„ฑ ์šด๋™, ๋น„์ฒ˜์น˜)๊ฐ„ ์ฐจ์ด๋ฅผ ๊ทœ๋ช…ํ•˜๊ธฐ ์œ„ํ•œ ๊ฒƒ์ด๋‹ค. ๋˜ํ•œ, ํ›„์†์—ฐ๊ตฌ๋กœ ํˆฌ์„ ์ค‘ ์ €ํ˜ˆ์•• ๋ฐœ์ƒํ™˜์ž๋“ค์—๊ฒŒ ์šด๋™์„ ์ ์šฉ์‹œํ‚ค๊ณ  ํ˜ˆ์•• ๋ณ€ํ™”์–‘์ƒ์„ ์กฐ์‚ฌํ•˜๊ธฐ ์œ„ํ•œ ๊ธฐ์ดˆ์ž๋ฃŒ๋ฅผ ์ œ๊ณตํ•˜๋Š”๋ฐ ์žˆ๋‹ค. ์—ฐ๊ตฌ๋Œ€์ƒ์€ ๊ฒฝ๊ธฐ๋„ G์‹œ์— H๋ณ‘์›์—์„œ ์ •๊ธฐ์ ์œผ๋กœ ํ˜ˆ์•กํˆฌ์„์„ ๋ฐ›์œผ๋ฉฐ, ๊ฑด๊ฐ•์ƒ์˜ ์ด์ƒ์ด ์—†๋Š” ๋งŒ 18์„ธ ์ด์ƒ์˜ ํ™˜์ž 11๋ช…์„ ๋Œ€์ƒ์œผ๋กœ ํ•˜์˜€๋‹ค. 11๋ช…์˜ ํ˜ˆ์•กํˆฌ์„ ํ™˜์ž๋“ค์€ ํˆฌ์„ ํ›„ ์ฒซ 2์‹œ๊ฐ„ ์ด๋‚ด์— 2์„ธํŠธ์˜ ์œ ์‚ฐ์†Œ์„ฑ ์šด๋™ ๋˜๋Š” ์ €ํ•ญ์„ฑ ์šด๋™์— ์ฐธ์—ฌํ•˜์˜€์œผ๋ฉฐ, ๊ฐ ์„ธํŠธ ์‚ฌ์ด์—๋Š” 1์‹œ๊ฐ„์˜ ํœด์‹์‹œ๊ฐ„์„ ๋‘์—ˆ๋‹ค. ๋ชจ๋“  ํ™˜์ž๋“ค์€ ์ด 3์ฃผ์— ๊ฑธ์ณ ๊ฐ๊ฐ 3๊ฐ€์ง€ ์ค‘์žฌ(์œ ์‚ฐ์†Œ์„ฑ ์šด๋™, ์ €ํ•ญ์„ฑ ์šด๋™, ๋น„์ฒ˜์น˜)์— ์ฐธ์—ฌํ•˜์˜€๋Š”๋ฐ, ํŠธ๋ ˆ์ด๋‹์˜ ์ž”๋ฅ˜ํšจ๊ณผ๋ฅผ ํ”ผํ•˜๊ธฐ ์œ„ํ•ด ๊ฐ๊ฐ์˜ ์ค‘์žฌ๋งˆ๋‹ค ์ตœ์†Œ ์ผ์ฃผ์ผ๊ฐ„์˜ ๊ฐ„๊ฒฉ์„ ๋‘๊ณ  ์‹ค์‹œํ•˜์˜€๋‹ค. ํˆฌ์„ ์ค‘ ํ˜ˆ์••์˜ ์ธก์ •์€ ๋งค 30๋ถ„๋งˆ๋‹ค ์ธก์ •๋˜์—ˆ์œผ๋ฉฐ, ํˆฌ์„ ์ค‘ ์šด๋™ ์‹œ์—๋Š” 10๋ถ„ ๊ฐ„๊ฒฉ์œผ๋กœ ํ˜ˆ์••์„ ์ธก์ •ํ•˜์˜€๋‹ค. ํˆฌ์„ ๊ฐ„ ํ˜ˆ์••์˜ ์ธก์ •์€ 24์‹œ๊ฐ„ ํ™œ๋™์„ฑ ํ˜ˆ์••๊ณ„๋ฅผ ์ฐฉ์šฉํ•˜์—ฌ ๋งค 30๋ถ„ ๊ฐ„๊ฒฉ์œผ๋กœ ์ด 20์‹œ๊ฐ„ ๋™์•ˆ ์ธก์ •ํ•˜์˜€๋‹ค. ์ž๋ฃŒ์ฒ˜๋ฆฌ๋Š” Window SPSS 18.0 ํ†ต๊ณ„ ํ”„๋กœ๊ทธ๋žจ์„ ์ด์šฉํ•˜์—ฌ ๋Œ€์‘ํ‘œ๋ณธ t ๊ฒ€์ •(Paired t-test)๊ณผ ๋ฐ˜๋ณต์ธก์ • ๋ถ„์‚ฐ๋ถ„์„(Repeated measures ANOVA) ๋ฐ ์‚ฌํ›„๊ฒ€์ฆ(post hoc test)์„ ์‹ค์‹œํ•˜์˜€์œผ๋ฉฐ, ๋ณธ ์—ฐ๊ตฌ์˜ ํ†ต๊ณ„์  ์œ ์˜์ˆ˜์ค€์€ p<.05๋กœ ์„ค์ •ํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•˜์—ฌ ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๊ฒฐ๊ณผ๋ฅผ ์–ป์—ˆ๋‹ค. ์ฒซ์งธ, ์œ ์‚ฐ์†Œ ์šด๋™์—์„œ ์ฒซ ๋ฒˆ์งธ ์šด๋™์‹œ์ ์„ ์ œ์™ธํ•˜๊ณ , ์œ ์‚ฐ์†Œ ์šด๋™๊ณผ ์ €ํ•ญ์„ฑ ์šด๋™ ๋ชจ๋‘ ์šด๋™ ์ค‘์—๋Š” ํ˜ˆ์••์ด ์œ ์˜ํ•˜๊ฒŒ ์ฆ๊ฐ€ํ•˜์˜€์œผ๋ฉฐ, ์šด๋™ ํ›„์—๋Š” ํ˜ˆ์••์„ ์œ ์˜ํ•˜๊ฒŒ ๊ฐ์†Œํ•˜์˜€๋‹ค(p<.05). ๋‘˜์งธ, ๊ฐ ์‹œ์ ์— ๋”ฐ๋ฅธ ์šด๋™ ์ค‘์žฌ ๊ฐ„ ๋น„๊ต์—์„œ ์ €ํ•ญ์„ฑ ์šด๋™๋งŒ์ด ๋น„์ฒ˜์น˜ ์ค‘์žฌ์™€ ๋น„๊ตํ•˜์—ฌ ์ˆ˜์ถ•๊ธฐ ํ˜ˆ์••์„ ์œ ์˜ํ•˜๊ฒŒ ์ฆ๊ฐ€์‹œ์ผฐ์œผ๋ฉฐ(p<.05), ์ด์™„๊ธฐ ํ˜ˆ์••์˜ ์–‘์ƒ์€ ์ˆ˜์ถ•๊ธฐ ํ˜ˆ์••์˜ ์–‘์ƒ๊ณผ ์œ ์‚ฌํ•˜์˜€๋‹ค. ์…‹์งธ, ํˆฌ์„ ํ›„ 20์‹œ๊ฐ„ ํ˜ˆ์••์—์„œ, ์œ ์‚ฐ์†Œ์„ฑ ์šด๋™๊ณผ ์ €ํ•ญ์„ฑ ์šด๋™์€ ๋น„์ฒ˜์น˜ ์ค‘์žฌ์™€ ๋น„๊ตํ•˜์—ฌ ์ฃผ๊ฐ„ ์ˆ˜์ถ•๊ธฐ ํ˜ˆ์••์„ ์œ ์˜ํ•˜๊ฒŒ ๊ฐ์†Œ์‹œ์ผฐ์œผ๋ฉฐ(117.1ยฑ26.5mmHg, 124.8ยฑ27.1mmHg vs 137.5ยฑ30.9mmHg, p<.05), ์ด์™„๊ธฐ ํ˜ˆ์••์˜ ์–‘์ƒ์€ ์ˆ˜์ถ•๊ธฐ ํ˜ˆ์••์˜ ์–‘์ƒ๊ณผ ์œ ์‚ฌํ•˜์˜€๋‹ค.โ… . ์„œ๋ก  1 1. ์—ฐ๊ตฌ์˜ ํ•„์š”์„ฑ 1 2. ์—ฐ๊ตฌ์˜ ๋ชฉ์  4 3. ์—ฐ๊ตฌ์˜ ๊ฐ€์„ค 5 4. ์—ฐ๊ตฌ์˜ ์ œํ•œ์  5 5. ์šฉ์–ด์˜ ์ •์˜ 6 โ…ก. ์ด๋ก ์  ๋ฐฐ๊ฒฝ 7 1. ๋งŒ์„ฑ์ฝฉํŒฅ๋ณ‘๊ณผ ํ˜ˆ์•กํˆฌ์„ 7 (1) ๋งŒ์„ฑ์ฝฉํŒฅ๋ณ‘ 7 1) ๋งŒ์„ฑ์ฝฉํŒฅ๋ณ‘์˜ ์ •์˜ 7 2) ๋งŒ์„ฑ์ฝฉํŒฅ๋ณ‘์˜ ์›์ธ 7 3) ๋ณ‘๊ธฐ์— ๋”ฐ๋ฅธ ์น˜๋ฃŒ 8 (2) ํ˜ˆ์•กํˆฌ์„ 9 1) ํ˜ˆ์•กํˆฌ์„์˜ ๊ฐœ๋… 9 2) ํ˜ˆ์•กํˆฌ์„์˜ ์—ญํ•™ 10 3) ํ˜ˆ์•กํˆฌ์„ ํ™˜์ž์˜ ์ฆ์ƒ ๋ฐ ํ•ฉ๋ณ‘์ฆ 11 4) ํ˜ˆ์•กํˆฌ์„ ํ™˜์ž์˜ ํ•ฉ๋ณ‘์ฆ ์˜ˆ๋ฐฉ์„ ์œ„ํ•œ ๊ด€๋ฆฌ 12 2. ํ˜ˆ์•กํˆฌ์„ ํ™˜์ž์™€ ํ˜ˆ์•• 13 3. ํ˜ˆ์•กํˆฌ์„ ํ™˜์ž์™€ ์šด๋™ 14 โ…ข. ์—ฐ๊ตฌ๋ฐฉ๋ฒ• 16 1. ์—ฐ๊ตฌ๋Œ€์ƒ 16 2. ์—ฐ๊ตฌ์„ค๊ณ„ 18 3. ์ธก์ •๋„๊ตฌ 20 4. ์šด๋™ํ”„๋กœ๊ทธ๋žจ 22 5. ์—ฐ๊ตฌ์ ˆ์ฐจ 27 6. ์ž๋ฃŒ์ฒ˜๋ฆฌ 29 โ…ฃ. ์—ฐ๊ตฌ๊ฒฐ๊ณผ 30 1. ํˆฌ์„ ์ค‘ ์‹œ๊ฐ„์— ๋”ฐ๋ฅธ ์ˆ˜์ถ•๊ธฐ ํ˜ˆ์•• ๋ณ€ํ™” 30 2. ํˆฌ์„ ์ค‘ ์‹œ๊ฐ„์— ๋”ฐ๋ฅธ ์ด์™„๊ธฐ ํ˜ˆ์•• ๋ณ€ํ™” 32 3. ํˆฌ์„ ์ค‘ ๊ฐ ์‹œ์ ์— ๋”ฐ๋ฅธ ์šด๋™์ค‘์žฌ ๊ฐ„ ํ‰๊ท  ์ˆ˜์ถ•๊ธฐ ํ˜ˆ์•• ๋น„๊ต 33 4. ํˆฌ์„ ์ค‘ ๊ฐ ์‹œ์ ์— ๋”ฐ๋ฅธ ์šด๋™์ค‘์žฌ ๊ฐ„ ํ‰๊ท  ์ด์™„๊ธฐ ํ˜ˆ์•• ๋น„๊ต 34 5. ํˆฌ์„ ํ›„ 20์‹œ๊ฐ„ ์ˆ˜์ถ•๊ธฐ ํ˜ˆ์•• 35 6. ํˆฌ์„ ํ›„ 20์‹œ๊ฐ„ ์ด์™„๊ธฐ ํ˜ˆ์•• 36 โ…ค. ๋…ผ์˜ 37 โ…ฅ. ๊ฒฐ๋ก  ๋ฐ ์ œ์–ธ 42 ์ฐธ๊ณ ๋ฌธํ—Œ 44 Abstract 54Maste

    ํ™•์‚ฐ ์ง€๋ฐฐ ์ด๋ถ„์ž ๋ฐ˜์‘์— ๋ฏธ์น˜๋Š” ๋ฐฐ์ œ๋œ ๋ถ€ํ”ผ ํšจ๊ณผ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :ํ™”ํ•™๊ณผ ๋ฌผ๋ฆฌํ™”ํ•™์ „๊ณต,1998.Maste

    ์–ด๋ฆฐ ํฐ์ฅ์—์„œ ๊ฒฝ๊ณจ ๊ณจ์ ˆํ›„ ๋ฐœ์ƒํ•œ ๊ฐ๋ณ€ํ˜•์˜ ๊ต์ •์— ๊ด€ํ•œ ์—ฐ๊ตฌ

    No full text
    ์˜ํ•™๊ณผ/๋ฐ•์‚ฌ[์˜๋ฌธ] [ํ•œ๊ธ€] ์„ฑ์žฅ ์ค‘์— ์žˆ๋Š” ์žฅ๊ด€๊ณจ์—์„œ ๊ณจ์ ˆ ํ›„ ๋ฐœ์ƒํ•œ ๊ฐ๋ณ€ํ˜•์ด ๊ณจ์œ ํ•ฉ ๊ณผ์ •์—์„œ ์ ์ฐจ ๊ต์ •๋œ๋‹ค๋Š” ์‚ฌ์‹ค์€ ์ž„์ƒ์—ฐ๊ตฌ ๋ฐ ๋™๋ฌผ์‹คํ—˜์œผ๋กœ ์ž˜ ์•Œ๋ ค์ ธ ์žˆ๋‹ค. ๊ฐ๋ณ€ํ˜•์˜ ๊ต์ •์€ ์ฃผ๋กœ ๊ณจ๋‹จ์„ฑ์žฅํŒ์—์„œ์˜ ์—ฐ๊ณจ๋‚ด ๊ณจํ˜•์„ฑ(enchondral bone formation)๊ณผ ๊ณจ๋ง‰๋‚ด๊ณจํ˜•์„ฑ(periosteal bone formation)์— ์˜ํ•œ ๊ณจ๋ถ€์ฐฉ(apposition) ๋ฐ ๊ณจํก์ˆ˜(resorpt ion)์— ์˜ํ•ด ์ด๋ฃจ์–ด์ง„๋‹ค. ์ด๋Ÿฌํ•œ ๊ฐ๋ณ€ํ˜•์˜ ๊ต์ •์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋Š” ์†Œ์•„์˜ ์žฅ๊ด€๊ณจ์˜ ๊ฐ๋ณ€ํ˜•์— ์žˆ์–ด์„œ ๊ณจ๋‹จํŒ๊ณผ ๊ณจ๋ง‰ ์˜ ์ƒํƒœ์— ๋”ฐ๋ผ ๊ต์ • ๊ฐ€๋Šฅ์„ฑ์„ ์˜ˆ์ธกํ•˜๊ณ  ์น˜๋ฃŒ์‹œ๊ธฐ ๋ฐ ์น˜๋ฃŒ๋ฐฉ๋ฒ•์„ ๊ฒฐ์ •ํ•˜๋Š”๋ฐ ์ž„์ƒ์ ์œผ๋กœ ์ค‘์š”ํ•˜๋‹ค. ๋ณธ ์‹คํ—˜์—์„œ๋Š” ์‹คํ—˜๊ตฐ์„ ๊ณจ๋‹จํŒ๊ณผ ๊ณจ๋ง‰์˜ ํŒŒ๊ดด์—ฌ๋ถ€์— ๋”ฐ๋ผ ๋ถ„๋ฅ˜ํ•˜์—ฌ, ๊ฐ ์‹คํ—˜๊ตฐ์—์„œ ๊ฐ ๋ณ€ํ˜•์˜ ๊ต์ •์ •๋„๋ฅผ ์ธก์ •ํ•˜๊ณ  ๋น„๊ต๊ด€์ฐฐํ•˜๋ฏ€๋กœ์จ. ๊ณจ๋‹จํŒ๊ณผ ๊ณจ๋ง‰์ด ๊ฐ๋ณ€ํ˜• ๊ต์ •์— ๊ธฐ์—ฌํ•˜๋Š” ๋Šฅ๋ ฅ์„ ์•Œ๊ณ ์ž ํ•˜์˜€๋‹ค. ์‹คํ—˜๋™๋ฌผ๋กœ๋Š” ๋ชธ๋ฌด๊ฒŒ 80โˆผ100gm์˜ Sprague-Dawley๊ณ„์˜ ์•”์ปท ํฐ ์ฅ๋ฅผ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ์‹คํ—˜ ๋ฐฉ๋ฒ•์€ ์ˆ˜์ˆ ์  ์ฐฝ์ƒ์„ ํ†ตํ•ด ์ขŒ์ธก ๊ฒฐ๊ณจ์„ ์ ˆ๊ณจํ•˜๊ณ , ๊ฒฝ๊ณจ ๊ทผ์œ„ ๊ณจ๋‹จํŒ ๋˜๋Š” ๊ณจ์ ˆ ๋ถ€์œ„์˜ ๊ณจ๋ง‰์„ ์„ ํƒ์ ์œผ๋กœ ํŒŒ๊ดดํ•œ ํ›„, ๊ฐ๋ณ€ํ˜•์„ ์œ ๋„ํ•˜์—ฌ ์„๊ณ ๋ถ•๋Œ€ ๋˜๋Š” ์ ‘์ฐฉ์„ฑ ํ…Œ์ดํ”„๋กœ ์™ธ๊ณ ์ • ํ•˜์˜€๋‹ค. ๊ณจ๋‹จํŒ ๋ฐ ๊ณจ๋ง‰์˜ ํŒŒ๊ดด์—ฌ๋ถ€์— ๋”ฐ๋ผ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ๋ถ„๋ฅ˜ํ•˜์˜€๋‹ค. ์ œ1๊ตฐ : ๊ณจ๋‹จํŒ๊ณผ ๊ณจ๋ง‰์ด ๋ชจ๋‘ ๊ฑด์žฌํ•œ ๊ตฐโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ 12๋งˆ๋ฆฌ ์ œ2๊ตฐ : ๊ณจ๋‹จํŒ์€ ๊ฑด์žฌํ•˜๋‚˜ ๊ณจ๋ง‰์ด ํŒŒ๊ดด๋œ ๊ตฐโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ9๋งˆ๋ฆฌ ์ œ3๊ตฐ : ๊ณจ๋‹จํŒ์€ ํŒŒ๊ดด๋˜๊ณ  ๊ณจ๋ง‰์€ ๊ฑด์žฌํ•œ ๊ตฐโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ 14๋งˆ๋ฆฌ ์ œ4๊ตฐ : ๊ณจ๋‹จํŒ๊ณผ ๊ณจ๋ง‰์ด ๋ชจ๋‘ ํŒŒ๊ดด๋œ ๊ตฐโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ7๋งˆ๋ฆฌ ์ˆ˜์ˆ ํ›„ 2์ฃผ๋ถ€ํ„ฐ 12์ฃผ๊นŒ์ง€ 2์ฃผ ๊ฐ„๊ฒฉ์œผ๋กœ ๋ฐฉ์‚ฌ์„  ์ดฌ์˜์„ ํ•˜์—ฌ ๋Œ€์กฐ๊ตฐ๊ณผ ๋น„๊ต ๊ด€์ฐฐํ•˜์˜€์œผ ๋ฉฐ, ์ œ6์ฃผ์™€ 12์ฃผ์—๋Š” ์‹คํ—˜ ๋™๋ฌผ์„ ํฌ์ƒ์‹œ๊ฒจ ๊ฒฝ๊ณจ ๊ทผ์œ„๊ณจ๋‹จํŒ์— ๋Œ€ํ•œ ์กฐ์งํ•™์  ์†Œ๊ฒฌ๋„ ๊ด€ ์ฐฐํ•˜์˜€๋‹ค. ์‹คํ—˜๊ฒฐ๊ณผ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. 1. ๋Œ€์กฐ๊ตฐ์—์„œ ํฐ ์ฅ์˜ ๊ฑด๊ฐ•ํ•œ ๊ฒฝ๊ณจ์€ ๊ด€์ฐฐ๊ธฐ๊ฐ„ ์ค‘ ์„ฑ์žฅํ•จ์— ๋”ฐ๋ผ ์ „๋ฉด๊ฐ ๋ฐ ๋‚ด์ธก๊ฐ์ด ์„œ์„œํžˆ ์ฆ๊ฐ€๋˜๋Š” ์–‘์ƒ์„ ๋ณด์˜€๋‹ค. 2. ์‹คํ—˜๊ตฐ์˜ ๊ฐ๋ณ€ํ˜•์˜ ๊ต์ •์— ์žˆ์–ด์„œ, ์ˆ ํ›„ 2์ฃผ๋ถ€ํ„ฐ 12์ฃผ๊นŒ์ง€ ๊ณจ๋ง‰์ด ํŒŒ๊ดด๋œ ์ œ2๊ตฐ์—์„œ ๋Š” ํ‰๊ท  7.4๋„, ๊ณจ๋‹จํŒ์ด ํŒŒ๊ดด๋œ ์ œ3๊ตฐ์—์„œ๋Š” ํ‰๊ท  4.6๋„๊ฐ€ ๊ต์ •๋˜์—ˆ์œผ๋ฉฐ, ๊ณจ๋‹จํŒ์ด ๊ณจ๋ง‰ ์— ๋น„ํ•ด ๋” ํฐ ์—ญํ• ์„ ํ•˜์˜€๋‹ค. 3. ์‹คํ—˜๊ตฐ์—์„œ ์ˆ ํ›„ 6์ฃผ ๋ฐ 12์ฃผ์— ๊ด€์ฐฐํ•œ ์กฐ์งํ•™์  ์†Œ๊ฒฌ์—์„œ, ๊ฐ๋ณ€ํ˜•์ด ๋ฐœ์ƒํ•œ ์˜ค๋ชฉ๋ฉด (concave side)๊ณผ ๋ณผ๋ก๋ฉด(convex side)์—์„œ์˜ ๊ณจ๋‹จํŒ์˜ ๋‘๊ป˜ ๋ฐ ์„ธํฌ ๋ฐฐ์—ด์ƒํƒœ๋ผ ๋ถ„ํฌ๋Š” ๋Œ€์กฐ๊ตฐ์— ๋น„ํ•˜์—ฌ ๋ณ„ ์ฐจ์ด๊ฐ€ ์—†์—ˆ๋‹ค. 4. ์‹คํ—˜๊ตฐ์—์„œ ๊ณจ์ ˆ์˜ ์œ ํ•ฉ์€ ๊ณจ๋ง‰์˜ ํŒŒ๊ดด์—ฌ๋ถ€์— ๋”ฐ๋ผ ์ฐจ์ด๋ฅผ ๋ณด์—ฌ, ๊ณจ๋ง‰์ด ๊ฑด์žฌํ•œ ์ œ1 , 3๊ตฐ์—์„œ ํ‰๊ท  2.8์ฃผ, ๊ณจ๋ง‰์ด ํŒŒ๊ดด๋œ ์ œ 2, 4๊ตฐ์—์„œ๋Š” ํ‰๊ท  4.2์ฃผ์— ๊ณจ์ ˆ์ด ์œ ํ•ฉ๋˜์—ˆ๋‹ค. 5. ์‹คํ—˜๊ตฐ์˜ ๊ฒฝ๊ณจ ๊ธธ์ด์„ฑ์žฅ์— ์žˆ์–ด์„œ, ์ˆ ํ›„ 2์ฃผ๋ถ€ํ„ฐ 12์ฃผ๊นŒ์ง€ ๊ณจ๋‹จํŒ์ด ํŒŒ๊ดด๋œ ์ œ 3, 4 ๊ตฐ์—์„œ๋Š”ํ‰๊ท  1.1mm, ๊ณจ๋‹จํŒ์ด ๊ฑด์žฌํ•œ ์ œ 1, 2๊ตฐ์—์„œ๋Š” ํ‰๊ท  4.8mm ์„ฑ์žฅํ•˜์—ฌ, ๊ณจ๋‹จํŒ์ด ํŒŒ๊ดด๋œ ์‹คํ—˜๊ตฐ์—์„œ ํ˜„์ €ํ•œ ๊ณจ์„ฑ์žฅ์˜ ์ง€์—ฐ์†Œ๊ฒฌ์„ ๋ณด์˜€๋‹ค. ์ด์ƒ์˜ ๊ฒฐ๊ณผ๋กœ, ์„ฑ์žฅ ์ค‘์˜ ํฐ ์ฅ์—์„œ ๊ฒฝ๊ณจ๊ณจ์ ˆ ํ›„ ๋ฐœ์ƒํ•œ ๊ฐ๋ณ€ํ˜•์˜ ๊ต์ •์—๋Š” ๊ณจ๋ง‰์—์„œ ์˜ ๊ณจ๋ง‰๋‚ด๊ณจํ˜•์„ฑ๋„ ๊ด€์—ฌํ•˜๋‚˜, ๊ณจ๋‹จํŒ์—์„œ์˜ ์—ฐ๊ณจ๋‚ด ๊ณจํ˜•์„ฑ์˜ ์—ญํ• ์ด ๋” ์ค‘์š”ํ•˜๋ฉฐ, ๊ณจ๋‹จํŒ ์—์„œ์˜ ๋น„๋Œ€์นญ์ ์ธ ๋Œ€์ƒ์„ฑ ๊ณจ์„ฑ์žฅ์— ์˜ํ•ด ๊ฐ๋ณ€ํ˜•์ด ๊ต์ •๋œ๋‹ค๊ณ  ์‚ฌ๋ฃŒ๋œ๋‹ค. Remodelling of Angular Deformity Caused by Fracture of Tibia during Growth in Rats Jun Shik Kim Department of medical Sience The Graduate School, Yonsei University (Directed by Professor Jun Seop Jahng, M.D.) Spontaneous correction of angular deformity caused by fractures during growth is a generally recognized phenomenon in clinical practice and experimental study. The ability of growing bone to correct an angular deformity depends on active growth plates and healthy periosteum which induces bone apposition and resorption at the shaft. The purpose of this experiment is to clarify the remodelling capacity by measuring and comparing the correction degree of the angular deformity in each experimental group. Experimental groups were classified according to the destruction in growth plate or periosteum, or both. Correction ability of the angular deformity was compared by measuring the angulation among the experimental groups. Female Sprague-Dawley rats weighing 80โˆผ100 gram were used for the experiment. The classliication is as follows. Group โ… : Both healthy growth plate and periosteum(12 rats) Group โ…ก: Healthy growth plate and destructed periosteum(9 rats) Group โ…ข: Destructed growth plate and healthy periosteum(14 rats) Group โ…ฃ: Both destructed growth plate and periosteum(7 rats) By surgical operation, the left tibia was fractured and the proximal growth plate and/or periosteum was destroyed. After the operation, the tibia was angulated and immobilized with plaster cast. The angulation was measured on every two weeks radiologically until twelve weeks postoperatively. The microscopic observation for the growth plate was made on sixth and twelfth week postoperatively. The results are summarized as follows. 1. In the healthy tibia of the rat, the angulation is gradually increased anteriorly and medially during growth. 2. In the correction of angular deformity, growth plate plays a greater role than periosteum. 3. Microscopically, the thickness of growth plate and distribution of chondrocytes in concave side of the angular deformity was not different from those of the growth plate in convex side. 4. The average period for the union of fracture in the group โ…  and โ…ข that the periosteum is healthy is 2.8 weeks. Also in the group โ…ก and โ…ฃ that the periosteum is destructed, it is 4.2 weeks. 5. The proximal growth plate plays a major role in the longitudinal growth of the tibia in rats. With these results, it is considered that the compersatory asymmetrical growth in growth plate plays more important role than the periosteal bone formation and resorption at the shaft in the correction of angular deformity induced by fracture.restrictio

    Characterization of putative capsaicin syntahse gene promoter in transgenic Arabidopsis

    No full text
    Thesis(masters) --์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์‹๋ฌผ์ƒ์‚ฐ๊ณผํ•™๋ถ€(์›์˜ˆ๊ณผํ•™์ „๊ณต),2008. 2.Maste

    ์„œ์šธ์‹œ ์ฃผ๊ฑฐ์ง€์—ญ ์˜ฅ์™ธ๊ณต๊ฐ„์˜ ๊ฑด์ถ•ํ˜•ํƒœ์™€ ์ฒœ๊ณต๋ฅ ์— ๋”ฐ๋ฅธ ์ฃผ๊ฐ„ ํ‘œ๋ฉด์˜จ๋„ ์˜ํ–ฅ ๋ถ„์„

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ƒํƒœ์กฐ๊ฒฝยท์ง€์—ญ์‹œ์Šคํ…œ๊ณตํ•™๋ถ€ ์ƒํƒœ์กฐ๊ฒฝํ•™, 2016. 8. ์ด๋™๊ทผ.Urbanization causes significant urban climate change, especially with increasing temperatures. This is called the Urban Heat Island (UHI) effect and affects human health and the quality of life. Changes in urban geometry are one of the key factors causing the UHI. Building structures change the urban canyon form that, in turn, changes the thermal condition in the urban canyon. Therefore, a quantitative analysis of the effect of building structures on the thermal conditions in an urban canyon is very important for urban planning. A commonly used indicator to describe the urban geometry is the sky view factor (SVF). This indicator, often denoted by , indicates the ratio of the radiation received (or emitted) by a planar surface from the sky to the radiation emitted (or received) from the entire hemispheric radiating environment. With its important role in radiation balance schemes, the SVF has been widely used by climatologists to investigate the relationships between urban geometry and thermal conditions. Many previous studies using photographic methods use a fish-eye lens to take onsite photographs that project the hemispheric environment onto a circular plane. However, this method is limited as direct sunlight or different cloud types can cause problems in image processing. The photographic method is used to extract some points by taking a picture at specific points. However, some points do not represent the correct values for the site, as SVF can have different values in the same urban canyon because of the distance from the buildings. Because of these limitations, software methods have been developed as computer performance has rapidly increased and digital mapping techniques have become prominent. Recently, software methods have been frequently used in the analysis of the urban thermal condition. The software methods increase processing speeds, while the accuracy of the method depends on the resolution of the raster database in the digital elevation model (DEM). For high accuracy, there needs to be high resolution images of the buildings and a topography database. These methods offer rapid ways of calculating the continuous SVF for large areas based on comprehensive analyses, and studies using this method have increased recently. The collection of temperature data in previous studies has relied on onsite surveys using thermometers to understand the thermal condition. However, since the microclimate has complex characteristics and is affected by many factors, the collection of representative temperatures is challenging in limited sample sites. Therefore, land surface temperatures (LST) obtained by remote sensing, which has been used by many previous studies, has advantages for analyzing the relative thermal condition in large areas simultaneously. With these advantages, some recent studies have analyzed the correlation between the simulated SVF and LST for understanding the thermal condition. However, there are limitations. First, the LST and the temperature pattern characteristic by land use are not controlled and can be very different. Second, since Landsat 8 has a 30 m LST resolution, the measurement of the thermal condition of building outdoor space and the effect of the surface temperature controlled by the roof (building) coverage ratio need to be considered. This is also missing. Third, the distance to a thermal reduction component is an important factor, because mountains, rivers, and green space have a cooling effect. In addition, different types of land cover have unique thermal characteristics. These factors have been disregarded in previous studies. The building arrangement effect on the thermal condition has also been disregarded. Both of these effects are included in this study. The goal of this study is to develop a quantitative measurement for the relationship among building forms, the shape of the urban canyon, and the thermal condition in the urban canyon using a suitable method for large areas considering the limitations of previous studies. Therefore, this study analyzes the correlation among LST obtined by remote sensing, SVF obtained by SVF simulation and building heights by roof (building) coverage ratio group. I analyzed results the mechanisms in previous studies and the green space in residential areas using the normalized difference vegetation index (NDVI) especially for the study site, which is a residential area where there is land use control. I especially focused on residential areas, since the thermal comfort of residential areas directly effects vulnerable people, such as children and the elderly. In this analysis, I attempted to evaluate the components directly affecting thermal reduction, such as mountains, the Hangang River, streams, and green space. In addition, there were efforts to find an organic relationship among building height, the SVF in outdoor space, and the LST by each similar roof (building) coverage ratio group to control the problem. Because there is a limitation in the study caused by LST resolution. To sum up the results of this study, first, low rise buildings, such as detached houses and multi-family housing, result in a high SVF condition, which can be explained by the formation of an urban canyon. A high SVF results in a high LST caused by the increased net radiation near the ground because of increased direct solar radiation. In contrast, high-rise buildings, such as apartments or tower type apartments, result in low SVF in the urban canyon and a low LST environment. Second, there are sections with different SVF values even with similar heights for high rise building, caused by the arrangement of the high rise flat-type apartments. The extracted area with an SVF value under 0.2 in the simulated data is an enclosed type arrangement with shapes such as a C or O. An open type arrangement with an L or I shape has SVF values mostly over 0.2. As the SVF decreases, the LST increases in the zone with SVF values under 0.2, such as in the enclosed arrangements. The enclosed arrangement form of a flat-type apartment has a high LST, and these areas have a poor radiant cooling ability at night caused by the low SVF. Therefore, enclosed type high rise buildings should be avoided in urban planning. This pattern with an SVF under 0.2 is unique. Therefore, I focused on this section and to develop the reasons for these results. The first hypothesis is based on previous studies. An area with a small SVF value leads to a decline in long wave radiation, resulting in increasing counter radiation in the nighttime. Therefore, the limited cooling of the surface in the nighttime influenced the daytime surface. The Landsat 8 LST on site is 11 a.m. At this time, the sun's elevation is not high enough to heat the surface in the low SVF area. Therefore, there is not enough direct solar radiation on the surface and the nighttime pattern still is present in the daytime in the area with the SVF under 0.2. The second hypothesis is that the area with the SVF value under 0.2 has lower green space than the area with SVF over 0.2. In a previous study, Moon (2011) found a pattern showing that the courtyard of enclosed arrangement flat-type apartments has more parking lot and lower green space than the other types. Therefore, the analysis between NDVI and SVF focused on the area with the SVF value under 0.2. The results show that NDVI and SVF have a positive relationship at all SVF values. In sections with the SVF under 0.2, the NDVI ratio increase ratio is higher than in the other sections. In sections with the SVF under 0.2, as SVF increased, NDVI increased while LST decreased, indicating NDVI affects the decrease in LST. In contrast, in sections with SVF values over 0.2, as SVF increased, NDVI increased, and LST increased. This pattern means the mechanism of increasing direct solar radiation is affected by an increase in NDVI. The goal of this study is to find quantitative correlations among building forms, the urban canyon, and the thermal environment using simulated SVF based on high resolution data and remote sensing. This study can use the basic data from urban planning or building architecture. Ultimately, this study can contribute to sustainable development.1. Introduction 1 2. Literature Review 7 2.1. Causes of the urban heat island (UHI) 7 2.2.Land Surface Temperature (LST) 10 2.3. Sky view factors (SVF) 11 2.4. Literature Review Conclusion 16 3. Material and Methods 20 3.1.Scope of the study 20 3.1.1.Temporal scope 20 3.1.2.Spatial scope 21 3.2. Materials 23 3.3. Methods 25 3.3.1.Site selection 26 3.3.2.Building materials 27 3.3.3.Statistical analysis 34 4. Result and Discussion 37 4.1. Site selection results 37 4.2. Building materials results 38 4.2.1.Land surface temperature analysis results 38 4.2.2.Sky view factors simulation analysis results 40 4.2.3.Sky view factors photographic analysis results 43 4.2.4.Roof coverage ratio and building height analysis results 45 4.3. Statistical analysis results 46 4.3.1.Correlation analysis between SVF, Building height 46 4.3.2.Correlation and regression analysis between SVF, LST 49 4.3.3.Correlation analysis among SVF, Building height, LST 54 5. Discussion 56 6. Conclusions 62 7. References 67 8. Appendix 79 ๊ตญ๋ฌธ ์ดˆ๋ก 82Maste
    corecore