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Abstract

Cauchy Combination Test with Thresholding
Under Arbitrary Dependency Structures

Junsik Kim

The Department of Statistics

The Graduate School

Seoul National University

Combining individual p-values to aggregate sparse and weak effects is a substantial

interest in large-scale data analysis. The individual p-values or test statistics are often cor-

related, although many p-values combining methods are developed under i.i.d. assumption.

The Cauchy combination test is a method to combine p-values for arbitrary dependence

structures, but in practice, the type I error increases as the correlation increases. In this

thesis, we propose a global test that extends the Cauchy combination test by thresholding

arbitrarily dependent p-values. Under arbitrary dependence structures, we show that the

tail probability of the proposed method is asymptotically equivalent to that of the Cauchy

distribution. In addition, we show that the power of the proposed test achieves the optimal

detection boundary asymptotically in a strong sparsity condition. Extensive simulation re-

sults show that the power of the proposed test is robust to correlation structures and more
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powerful under a sparse situation. As a case study, we apply the proposed test to GWAS of

Inflammatory bowel disease (IBD).

key words: Combining p-values, Cauchy distribution, Global hypothesis testing, GWAS

Student Number: 2016-30092
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Chapter 1

Introduction

In the field of large scale multiple testing, detecting sparse or/and weak signals is a major

interest problem. Jin (2008) presents following three interconnected topics for testing a

large number of signals of particular interest in this field.

(a) Global testing : Is there any signal at all?

(b) Estimating the proportion of signals: How many signals are there?

(c) Simultaneous testing : Which are signals and which are noises?

For the large scale multiple testing setting, testing of signals, or significant factors, among

many hypotheses, is a well-known topic and the plenty of research is under way. If it is

confirmed that there is a signal through global testing, we need more information on how

many signals there are, which is the second topic. Then, in the third topic, studies can be

conducted on which are the signals and which are the noises. The first topic has been studied

in Tippett (1931), Berk and Jones (1979), Donoho and Jin (2004, 2008) and Hall and Jin

(2010). The second topic has been studied in Meinshausen and Rice (2006), Langaas et al.
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(2005), Jin (2008) and Storey (2002). And the third topic related to FDR methods has been

studied in Benjamini and Hochberg (1995), Efron (2010), Storey (2002) and Genovese and

Wasserman (2004).

In this thesis, we mainly consider the first topic and investigate the second topic inci-

dently. Specifically, we combine p-values as a component for the global testing and use the

combined statistic to verify the existence of weak or/and sparse signals.

For motivating example, in genome-wide association study (GWAS), there are hun-

dreds of thousands of single-nucleotide polymorphisms (SNPs). The SNP is a variation of

a single nucleotide at a specific position in the genome. Although most SNPs do not affect

on diseases or phenotypes, some of these genetic differences have proven to be very signif-

icant in the study of diseases. They can act as biological markers that are associated with

a certain type of disease. The goal in GWAS is to test if any of these SNPs are associate

with some disease or a phenotype of interest. In GWAS, a commonly used method is the

set-based analysis which partitions the SNPs into genes based on the biological information

and then tests associations between the disease and each gene. Each gene consists of sev-

eral SNPs, and the global testing of the SNPs of the gene can be used to determine whether

each gene affects a certain disease.

In this thesis, we use the data of a Crohn’s disease GWAS as in Duerr et al. (2006) for a

real-data application. The goal of the case study is to find genes that have associations with

inflammatory bowel disease (IBD). We test each gene whether each gene itself affects the

IBD.
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1.1 Combining p-values

In this thesis, we address methods combining p-values as a way to solve the problem as-

sociated with the first topic, the global testing. Combining p-values involves an averaging

of transformed p-values by means of specific transformations of p-values, such as the log-

transformation (Fisher, 1934) and the probit transformation (Stouffer et al., 1949), as well

as the minimum p-value (Tippett, 1931), in that they utilize informations of p-values. Com-

bining p-values aggregates non-detecting signals, thus increasing the testing power. There-

fore, methods for combining p-values are ongoing research tasks, and several methods have

been proposed.

First, consider the case where p-values are independent. By denoting p-values obtained

from the null distribution as the null p-values, the null p-values follow the i.i.d. uniform

distribution, U [0, 1]. As a result, it is a relatively easy case and many methods have been

proposed. Methods such as the Higher criticism (Donoho and Jin, 2004, 2008), the Berk-

Jones test (Berk and Jones, 1979) in addition to the minimum p-value (Tippett, 1931) and

averaging type methods (Vovk and Wang, 2020) can combine p-values. The Higher criti-

cism and the Berk-jones test actually measure the distance from the uniform distribution

by using the order statistics of random variables obtained from the uniform distribution.

In contrast, practically, the assumption of independence between p-values is too strong,

since in most real data, p-values are often correlated. The dependence between p-values

keeps p-values from following an independent distribution or the uniform distribution. In-

deed, if p-values are not independent, especially there is a certain type of the dependence in

data from which p-values are generated, the parametrically calculated p-values can not be

uniformly distributed or unknown sometimes, making it particularly difficult to combine
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p-values. If the dimension of the given sample data is not large, the sample can be used to

estimate the dependence structure of the data and we can decorrelate the data to apply the

global testing methods that are developed for an independent case. But in many cases as

in GWAS, the dimension of the data is very large, and in some cases, even worse, only p-

values are provided rather than raw data. The Higher criticism and the Berk-Jones statistics

defined under the independence assumption in which p-values follow the uniform distri-

bution are also disabled. Hence combining the dependent p-values is not easy, and some

methods of combining the p-values have been proposed for cases where the correlation

structure is given as a certain form.

Although the Cauchy combination test that combines arbitrarily dependent p-values is

proposed recently, the Cauchy combination test has the disadvantage for controlling the

type I error when correlations between p-values increase as we can see this in simulation

studies. Therefore, to reduce the effects of correlations, we propose a more robust and

powerful testing method by thresholding null effect signals or equivalently p-values and

using only small p-values.

1.2 Main Contributions

In this thesis, we propose a global test statistic for detecting the signals by combining p-

values when the dependence between p-values exists. Specifically, arbitrarily dependent p-

values are thresholded and then transformed to follow the uniform distribution marginally.

Thereafter the p-values are Cauchy transformed by using the tangent function then com-

bined with weights. We show that the tail probability of the proposed statistic is equivalent

to that of the Cauchy distribution. The equivalence holds non-asymptotically for finite di-
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mension case and also asymptotically for infinite dimension case. To choose the threshold-

ing value, we use 2π̂1, where π̂1 is an estimate of the proportion of non-null hypotheses. To

estimate π̂1, we propose to use the Storey method (Storey, 2002) which uses the fact that

large p-values are obtained from the null distribution. We extend the Storey’s method to

the case of arbitrary dependent p-values. The proposed method is adaptive to the observed

p-values in contrast to the methods that are developed for the theoretical null distribution,

U [0, 1]. Extensive numerical simulations show that the proposed method estimates the pro-

portion of non-null hypotheses more stably than other competing methods.

We propose a more powerful and robust p-value-based testing procedure by thresh-

olding null p-values under arbitrary dependence structure. We prove that the power of the

proposed method achieves the optimality in the asymptotic sense under a strong sparsity

setting. In general, the thresholding method improves the power when high-dimensional al-

ternative hypotheses are tested since it uses only significant data. Moreover, for the highly

correlated case where the effective sample size is small, the thresholding method using a

small amount of data improves the power. Despite these enhancements, test statistics based

on the thresholding are restrictively used in practice, in that the null distribution of thresh-

olded data is hard to find or the convergence rate of the null distribution of thresholded

data is very slow. For example, Fan (1996) uses the adaptive Neyman test by threshold-

ing data, however, its convergence rate of the test statistic under the null is very slow. Fan

(1998) presents a table that shows the finite sample distribution for the adaptive Neyman

test statistic under null hypotheses. On the other hand, the thresholding method proposed in

this thesis has a self-contained null tail probability. The tail probability of null distributions

for the thresholded test statistic is equivalent to that of the un-thresholded test statistic. The

fast convergence rate of null distribution allows the proposed method to be well applied
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even in the high-dimensional setting.

Extensive simulation results in Chapter 5 present that the type I error of the proposed

combining method is well controlled with respect to the correlation between p-values than

the Cauchy combination test of Liu and Xie (2020). Analyzing the testing power of the

proposed method implies that as the dimension of data increases, the power to separate

the null and alternative hypotheses increases. By using a small proportion of significant

p-values, numerical studies show that the proposed method tends to be more powerful than

other p-values combining methods.

1.3 Outline of the Thesis

The remainder of this thesis is organized as follows. In chapter 2, we review the methods

that combine p-values to aggregate information for the global test. Methods developed un-

der an independent case are briefly reviewed as well as those under the dependent case.

The Cauchy combination test under arbitrary dependency structure is reviewed in detail.

The Cauchy combination test with thresholding is presented in chapter 3. In analyzing the

Cauchy combination test with the thresholding method, establishing the threshold value

contains the problem of estimating the proportion of non-null hypotheses, and it is pre-

sented in chapter 4. We present extensive simulations results of type I error and power in

chapter 5. In chapter 6, We use our method to demonstrate the effectiveness by applying

real data of SNPs of Inflammatory bowel disease. We end up this thesis with concluding

remarks in Chapter 7. The proofs of the main theorems are in Appendix.
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Chapter 2

Literature Review

Combining of p-values is a common method in a high-dimensional setting that combines

individual p-values to integrate weak signals that cannot be detected to increase power for a

global test. When the dimension of data is much larger than the number of sample subjects,

such as in the case of GWAS, by combining the information contained in individual p-

values, a powerful testing procedure can be constructed.

Suppose that d-dimensional data follow the normal distribution with a covariance ma-

trix Σ. Define µ = (µ1, . . . , µd)
T as an effect of signal.

X ∼ Nd(µ,Σ). (2.1)

If there are no signals in the data, the mean of each covariate is zero. The main concern

of this setting is to test that if there are any signals in the data. It can be expressed as a

hypothesis testing as follows.

H0 : X ∼ Nd(0,Σ) vs. H1 : X ∼ Nd(µ,Σ) (2.2)

Testing the hypothesis (2.2) is equivalent to test the effect of signals is zero or non-zero
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under the setting (2.1) which is a two-sided hypothesis testing,

H0 : µ = 0 vs. H1 : µ 6= 0. (2.3)

For such a two-sided test procedure, p-values, p1, . . . , pd, are defined by

pi = 2[1− Φ(|Xi|)], i = 1, . . . , d,

where Φ is the cumulative distribution function of the normal distribution.

To alleviate the condition (2.1) which is the normality of data, we assume that the

p-values are obtained from z-scores. For example, if we use a two-sample t-statistic to

compare the means of two samples, the test statistic follows the t distribution with some

degree of freedom, say df . Let ti be the t test statistic for i-th covariate. Then the z-score of

Xi is defined by

Xi = Φ−1(Fdf (ti)),

where Fdf is the cumulative distribution function of the t distribution with df degree of

freedom. In general, for observed data Y of some certain form, let Ti(Y ), i = 1, . . . , d

be the i-th test statistic of Y for testing hypothesis for the mean comparison and F be the

cumulative distribution function of the test statistic. Define

Xi = Φ−1(F (Ti(Y ))), i = 1, . . . , d

as the z-scores. Then by z-scoring the test statistic, under the null, Xi follows the standard

normal distribution. Then we can use the z-score Xi to construct a valid p-value, pi. By the

constructing, the null distribution of the test statistic must have a known distribution. As

a consequence, we can always standardize each test statistic so that Var(Xi) = 1. From

now, without loss of generality, we assume that diagonal elements of Σ in (2.1) is 1, which

implies that Σ is a correlation matrix.
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Combining p1, . . . , pd to test (2.2) is the main topic of this thesis. This chapter provides

the detailed review of methods that combine p-values in the weak and/or sparse signal

setting. In Chapter 2.1, we review methods that combine p-values where the independence

between p-values is assumed and in Chapter 2.2, methods of combninig p-values under an

assumption of the dependence between p-values are reviewed.

2.1 Combining p-values Under Independence Structure

Suppose that p-values are independent that is, Σ = Id in (2.1) and (2.2), where Id is a

d× d identity matrix. In this case, the independent p-values, obtained from null, follow the

independent identically uniform distribution, U [0, 1], that is, under the complete null which

is µ = 0,

p1, . . . , pd
i.i.d.∼ U [0, 1].

This implies that the null p-values follow the i.i.d. uniform distribution. Using the prop-

erty of the uniform distribution, we can combine p-values to proceed with a global testing

procedure by measuring the distance between the null and alternative. In other words, the

effect of alternative can be determined by measuring how far the combining statistic of the

complete null p-values are compared to those of the actual observed p-values.

For that reasons, the combining statistic of the p-values constructed under the null must

be obtained in a form that is easy to use or implement. A common method to combine p-

values when the null p-values follow the i.i.d. uniform is the empirical distribution function,

Fd(u) =
1

d

d∑
i=1

I(pi ≤ u),

where I(A) is an indicator function that is one if the event A is true and zero otherwise. If
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the null p-values follow the i.i.d. uniform distribution, d ·Fd(u) follows a binomial distribu-

tion, B(d, u), which can be used to measure the distance between the null and alternative.

On th other hand, from the fact that the null p-values follow a uniform distribution, we can

consider a method using the ordered statistics of p-values which follow a beta distributions

marginally.

In Chapter 2.1.1, we review methods that use the empricial distribution function of

p-values and in Chapter 2.1.2 we review methods that use the combination of p-values.

2.1.1 Based on Empirical Distribution of p-values

Donoho and Jin (2004) proposed the Higher criticism method that is closely related to func-

tionals of the standard uniform empirical process. Define the uniform empricial process,

Ud(u) =
√
d(Fd(u)− u), 0 < u < 1,

and the normalized uniform empirical process

Wd(u) =
Ud(u)√
u(1− u)

.

Then the Higher criticism statistic, HC∗d is defined by

HC∗d = max
0<u<α0

Wd(u),

for some α0 ∈ (0, 1). If all p-values are the null p-values, for fixed u, Wn(u) follows

the standard normal distribution asymptotically. Accordingly, a limiting behavior under the

alternative is expected to be different to that of the null. Let p(i) be the i-th order statistic of

p-values in the increasing order, HC∗d can be expressed as follows.

HC∗d = max
0<i<α0·d

√
d(i/d− p(i))√
p(i)(1− p(i))

. (2.4)
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Donoho and Jin (2004) proved that for fixed α > 0, under the null,

P (HC∗d > h(d, α)) ≤ α,

where h(d, α) ≈
√

2 log log(d). Donoho and Jin (2004) also proved that the Higher criti-

cism has a full power to detecting signals that is, under the alternative, as d→∞,

P (HC∗d > h(d, αd))→ 1,

where h(d, αd) =
√

2 log log(d)(1 + o(1)).

From the properties of the sorted null p-values including the asymptotic normality,

p(i) ∼approx N(i/d, i/d(1− i/d)),

Donoho and Jin (2008) defined a different type of the Higher criticism such that

HC∗d = max
0<i<α0·d

√
d(i/d− p(i))√
i/d(1− i/d)

.

Similar to (2.4), the large discrepancy between the expected behavior under null and the

observed behavior reflects the distance between the null and alternative.

However, Barnett et al. (2017) pointed out that the Higher criticism which is viewed

as a supremum of the normalized empirical process converges asymptotically to a Gumbel

distribution with a very slow rate. Ditzhaus and Janssen (2017) also showed that the Higher

criticism test has a trivial power that is, no power on the boundary for various settings.

Another global testing procedure is the Berk-Jones statistic (Berk and Jones, 1979)

which is based on the likelihood ratio statistic. For the uniformly distributed null p-values,

the Berk-Jones statistic, BJd, is defined by

BJd = sup
−∞<u<∞

K(Fd(u), u), (2.5)

11



where

K(x, y) = x log
x

y
+ (1− x) log

1− x
1− y

.

Wellner and Koltchinskii (2003) represented the Berk-Jones statistic (2.5) by using the

liklihood ratio statistic. Since d ·Fd(u) ∼ B(d, u), the likelihood ratio statistic is expressed

as follows.

λd(u) =
L(Fd(u))

L(U(u))
=

(
Fd(u)

U(u)

)d·Fd(u)(1− Fd(u)

1− U(u)

)d(1−Fd(u))
, (2.6)

where L is the likelihood function and U(u) = P (U ≤ u) for an uniform distribution

random variable U . By taking the log function to λd, the Berk-Jones statistic (2.5) can be

expressed as follows.

BJd = sup
0≤u≤1

1

d
log λd(u).

Using the sorted p-values as in the Higher criticism (2.4), the Berk-Jones statistic also can

be expressed by

BJd =
∑
1≤i≤d

d ·
{

(i/d) log

(
i/d

p(i)

)
+

(
1− i

d

)
log

(
1− i/d
1− p(i)

)}
.

Wellner and Koltchinskii (2003) proved that, under the null, the Berk-Jones statistic con-

verges to the null distribution Y4, such that

nRd − pd
d→ Y4 ∼ E4

v ,

whereE4
v = P (Y4 ≤ x) = exp(−4 exp(−x)) and pd = log2 d+(1/2) log3 d−(1/2) log(4π).

Li and Siegmund (2015) showed that over a wide range of sample sizes, the Berk-Jones

statistics are much powerful than the Higher criticism to detect a sparse mixture setting.
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2.1.2 Based on Combination Statistic of p-values

For the independent and identically uniformly distributed p-values, we can consider the

order statistic of the p-values. The order statistic uses all informations of p-values in that

it requires orders of each p-value. For p1, . . . , pd
i.i.d∼ U [0, 1], it is known that for each

i = 1, . . . , d,

p(i) ∼ Beta(i, d+ 1− i). (2.7)

Tippett (1931) proposed to use the minimum p-value, that is, p(1). Using the minimum

p-value is equivalent to using only the maximum test statistic. Arias-Castro et al. (2011)

refered to the procedure using the minimum p-value as the Max test and proved the opti-

mality for using the Max test.

Combinating informations by weighted averaging p-values, in general, can be expressed

as follows.

S =
d∑
i=1

wif(pi), (2.8)

where wi’s are weights and f is a certain type of transformation of p-values. This form of

combination statistics include Fisher’s method (Fisher, 1934), Pearson’s method (Pearson,

1933) and Stouffer’s method (Stouffer et al., 1949). The Fisher’s method is defined by

wi = 1 and f(pi) = log(pi) for all i = 1, . . . , d in (2.8). If the p-values follow i.i.d.

uniform distribution, the Fisher’s statistic,

SF = −2
d∑
i=1

log pi

follows the Chi-square distribution with 2d degree of freedom. The Pearson’s statistic and
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Stouffer’s statistic are defined by

SP = −
d∑
i=1

log(1− pi), ST =
d∑
i=1

Φ−1(pi),

following the Chi-square distribution and the normal distribution, respectively.

If the p-values are uniformly distributed, the null distribution of such summation type

statistics is obtained by a known distribution, so the test statistics can be used to proceed

with the global testing procedure. According to Heard and Rubin-Delanchy (2018), the

Fisher’s method and the minimum p-value are sensitive to the smallest p-value, and the

Pearson’s method is sensitive to the largest p-value.

2.2 Combining p-values Under Dependence Structure

Methods reviewed in Chapter 2.1.1 and 2.1.2 are based on the fact that the null p-values

follow the uniform distribution independent and identically. Under a dependence structure,

the assumption of uniform distribution is not valid anymore. Unlike the methods reviewed

in Chapter 2.1, if the p-values are dependent on each other, the null distribution of com-

bined test statistics is hard to obtain so that these methods are difficult to use practically.

Instead, many methods such as decorrelating or estimating the dependence structure meth-

ods are used. In addition, a testing method using the Cauchy combination has recently been

proposed for arbitrary dependency structures, which will be introduced in the following

chapters.
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2.2.1 Based on Decorrelating or Estimating Correlation Structure

Suppose that Σ in (2.1) is known. Hall and Jin (2010) proposed the innovated Higher criti-

cism to test (2.3). Specifically, the goal of the innovated Higher criticism is testing follow-

ing two hypotheses.

H0 : µ = 0 vs. H1 : µ is a sparse vector .

To represent a sprasity of the mean vector µ, the number of nonzero entries of µ can be ex-

pressed as dγ , where γ ∈ (0, 1/2). Denote the inverse matrix of Cholesky factorization of Σ

as U = (ujk)1≤j,k≤d. Then the innovated Higher criticism is a standard Higher criticism for

the decorrelated data by using U with a fixed bandwidth bd depending on the dimension d,

which is used to construct a decorrelating matrix. The resulting innovated Higher criticism

statistic is defined by

iHC =
1√

2bd − 1
sup

j:1/d≤p(j)≤1/2

{
√
d ·

j/d− p(j)√
p(j)(1− p(j))

}
.

The innovated Higher criticism can be viewed as a supremum of the normalized empirical

process as the Higher criticism and Barnett et al. (2017) pointed out that the innovated

Higher criticism converges asymptotically, under the null, to an extreme value distribution

with a very slow rate of O((log d)−1/2).

If Σ is unknown, an estimate of Σ can be used to define the innovated Higher criti-

cism. However, for the setting in this thesis where only z-scores of test statistics are given,

estimating Σ is not possible since we only have 1-sample data.

2.2.2 Based on Merging p-values

Wilson (2019) proposed the harmonic mean of p-values to combine dependent p-values. If

15



p-values are independent and identically distributed, the harmonic mean of p-values,

RH =
1

d

d∑
j=1

1

pj
,

converges to a Landau distribution which is the stable distribution by the generalized central

limit theorem. Wilson (2019) showed that the approximation of the null distribution using

the generalized central limit theorem is robust to dependencies between the p-values. An

average of reciprocals of p-values weights a large value to the small p-value and small

value to the large p-value so that the harmonic mean statistic, RH is a valid global testing

statistic. However, Goeman et al. (2019) pointed out that the harmonic mean statistic loses

controlling type I error under an arbitrary dependence structure.

Vovk and Wang (2020) generalized the combination of p-values using the combining

function given by

Mr,K(p1,...,pd) =

(
pr1 + · · ·+ prd

d

)1/r

, (2.9)

for r ∈ R \ {0} and where K is a combining function. The harmonic mean is a specific

form of (2.9) when r = −1. Limit cases of (2.9) include that

M0,K(p1,...,pd) =
(∏d

j=1 pj

)1/d
, as r → 0

M∞,K(p1,...,pd) = max(p1, . . . , pd), as r →∞

M−∞,K(p1,...,pd) = min(p1, . . . , pd), as r → −∞.

Vovk and Wang (2020) proved that the merging functionsM∞,K(p1,...,pd) and d·M−∞,K(p1,...,pd)

are precise and e ·M0,K(p1,...,pd) is asymptotically precise.

Now, consider a compound symmetry correlation structure,

Cov(Xi, Xj) = ρ, for i 6= j, i, j = 1, . . . , d,
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where−1/(d−1) ≤ ρ ≤ 1. Hartung (1999) proposed the weighted inverse normal statistic

under the null, which is given as follows.

t(ρ) =

∑d
i=1 λiXi√

(1− ρ)
∑d

i=1 λ
2
i + ρ

(∑d
i=1 λi

)2 ∼ N(0, 1) under H0.

Hartung (1999) also defined an estimator of t(ρ) by

t(ρ̂∗, κ) =

∑d
i=1 λiXi√∑d

i=1 λ
2
i +

[(∑d
i=1 λi

)2
−
∑d

i=1 λ
2
i

]
·
{
ρ̂∗ + κ ·

√
2
d+1

(1− ρ̂∗)
} , (2.10)

where ρ̂∗ = max{−1/(d− 1), ρ̂}, κ > 0 and

ρ̂ = 1− 1

d− 1

d∑
i=1

(
Xi −

1

d

d∑
i=1

Xi

)2

,

which is an unbiased estimator of ρ. Then, under the null, t(ρ̂∗, κ) is approximately standard

normally distributed so that it can be used as a global testing procedure.

Demetrescu et al. (2006) extended (2.10) to allow for a certain type of correlation ma-

trix. Let Σ = (Cov(Xi, Xj))i,j=1,...,d = (ρij)i,j=1,...,d and assume that

lim
d→∞

1

d(d− 1)

∑∑
i 6=j

ρij = ρ̃,

where ρ̃ ∈ (0, 1) and that

lim
d→∞

1

d(d− 1)

∑∑
i 6=j

(ρij − ρ̃)2 = 0.

Demetrescu et al. (2006) proved that if λi = λ for all i = 1, . . . , d in (2.10), then t(ρ̂∗, κ)

is still approximately standard normally distributed. When there are a finite number of

outliers and the average of elements of the correlation matrix Σ converges to a constant

as the dimension grows, the Hartung’s weighted inverse normal method can be used as a

global testing procedure.
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2.3 Cauchy Combination Test

Recall that the weighted averaging of transformation of p-values, (2.8),

S =
d∑
i=1

wif(pi).

Weighted averaging methods such as the Fisher’s method, Pearson’s method and Stouffer’s

method reviewed in Chapter 2.1.2 are all the global testing procedures under an indepen-

dence assumption. These methods may not only be difficult to control type I errors but also

hard to obtain the null distribution of test statistics unless the independence assumption

is satisfied. Recently, Liu and Xie (2020) proposed a global testing procedure that uses

a Cauchy transform as f in (2.8) under arbitrary dependency structures. Pillai and Meng

(2016) showed that when Y = (Y1, . . . , Yd)
T and Z = (Z1, . . . , Zd)

T are i.i.d. Nd(0,Σ)

where Σ is an arbitrary correlation matrix, the convex combination of Yi/Zi, that is,

d∑
i=1

wiYi/Zi,

where 0 ≤ wi ≤ 1 for i = 1, . . . , d and
∑d

i=1wi = 1, follows a standard Cauchy distri-

bution. The idea behind the Cauchy combination is that since the Cauchy distribution has

heavy tails, it is robust to arbitrarily dependent random variables. In other words, in that the

tail behavior of Cauchy combination applied to arbitrary dependent p-values is analogous

to that of standard Cauchy distribution, Liu and Xie (2020) proposed the Cauchy combina-

tion test procedure. Despite the robustness of the Cauchy combination, as seen in Chapter

5, it can not control the type I error well for strongly correlated p-values. In the following

chapters, we review, in detail, the Cauchy combination test procedure which is the one of

main ingredients in this thesis.
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2.3.1 Cauchy Combination Test Under Independence Structure

Let Σ = Id to consider the case of independence structure, where Id is an identity matrix

of size d× d. Note that the independence between p-values implies that, under the null,

p1, . . . , pd
i.i.d.∼ U [0, 1].

Define a Cauchy transformation, h : [0, 1]→ R, of each p-value, by

h(pi) = tan{(1/2− pi)π}, i = 1, . . . , d.

By the definition of h, note that each h(pi) follows a standard Cauchy distribution. Williams

(1969) showed that the convex combination of independent h(pi) for i = 1, . . . , d follows

a standard Cauchy distribution exactly.

Lemma 1 (Williams, 1969). Let min1≤i≤dwi ≥ c0/d and
∑d

i=1wi = 1. Then the convex

combination of h(pi) := tan{[1/2 − pi]π}, for i = 1, . . . , d, follows a standard Cauchy

distribution,

T (P ) =
d∑
i=1

wih(pi) ∼ Cauchy(0, 1). (2.11)

Proof. If the ai possess no finite limit-point then for U ∼ Cauchy(0, 1),

d∑
i=1

wi ·
1 + aiU

ai − U
∼ Cauchy(0, 1).

If ai =∞, then
d∑
i=1

wi ·
1 + aiU

ai − U
=

d∑
i=1

wi · U ∼ Cauchy(0, 1).

Using the above lemma 1, the global testing prodecure using T (P ) under the indepen-

dence structure can be applied by rejecting the null hypothesis if

T (P ) > tC(α),
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where tC(α) is the α-quantile of a standard Cauchy distribution.

2.3.2 Cauchy Combination Test Under Arbitrary Dependency Struc-

ture

For arbitrarily dependent p-values, Liu and Xie (2020) studied the behavior of the convex

combination of Cauchy transformations. By the definition of p-values, that is,

pi = 2[1− Φ(|Xi|)], i = 1, . . . , d,

the Cauchy transformation function h(pi) is equivalently expressed in terms ofXi such that

h(pi) = tan{(1/2− pi)π} = tan{(2Φ(|Xi|)− 3/2)π}.

Now we denote hp as the Cauchy transformation function in terms of p-values and hX as

the Cauchy transformation function in terms of statistics X1, . . . , Xd, that is,

hp(pi) = tan{(1/2− pi)π}

hX(Xi) = tan{(2Φ(|Xi|)− 3/2)π}.

Using the Cauchy transformation function hX , let TX be the convex combination of hX(Xi)

for i = 1, . . . , X as follows.

TX(X) =
d∑
i=1

wihX(Xi) =
d∑
i=1

wi tan{(2Φ(|Xi|)− 3/2)π},

where min1≤i≤dwi ≥ c0/d and
∑d

i=1wi = 1.

Liu and Xie (2020) showed the tail probability of a standard Cauchy distribution is

proportional to the reciprocal of a critical value asymptotically.
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Lemma 2 (Liu and Xie, 2020). Let W0 have a standard Cauchy distribution. Then

P (W0 > t) =
1

tπ
+O(t−3).

Under the arbitrary depdendency structures, Liu and Xie (2020) proved that the tail

probability of TX , which is P (TX(X) > t) for large t, is equivalent to that of a standard

Cauchy distribution if the bivariate normality assumption holds.

Definition 1 (Bivariate normality).

For any 1 ≤ i < j ≤ d, (Xi, Xj)
T follows a bivariate normal distribution.

Theorem 1 (Liu and Xie, 2020). Under the bivariate normality assumption, if the correla-

tion matrix of X is positive semi-definite, then

lim
t→∞

P (TX(X) > t)

P (W0 > t)
= 1,

where W0 denotes a generic standard Cauchy random variable.

Liu and Xie (2020) also proved that as the dimension d increases, the tail probability of

TX is equivalent to that of a standard Cauchy distribution asymptotically.

Theorem 2 (Liu and Xie, 2020). Under the bivariate normality assumption and additional

regular conditions of the arbitrary correlation structure, for d = o(tc) for any constant

0 < c < 1/2,

lim
t→∞

P (TX(X) > t)

P (W0 > t)
= 1,

where W0 denotes a generic standard Cauchy random variable.

While the Cauchy combination test is somewhat robust to arbitrary dependence struc-

tures, simulation results in Chpater 5 show that the Cauchy combination test fails to control
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the type I error when p-values are strongly correlated. In addition, although, under the

sparse alternative, the asymptotic power of the Cuacy combination test converges to 1 for

any significance level, for highly correlated case with a finite sample, the power is shown

to decrease. Therefore, in the next chapter, we propose a more robust and powerful method

than the Cauchy combination test by adaptively thersholding p-values.
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Chapter 3

Cauchy Combination Test with

Threshold Under Arbitrary Dependency

Structures

Again, consider a hypothesis testing problem such that

H0 : X ∼ Nd(0,Σ) vs. H1 : X ∼ Nd(µ,Σ).

As mentioned in Chapter ??, we consider X as a normally distributed data or z-scored test

statistic

Xi = Φ−1(F (Ti(Y ))), i = 1, . . . , d

where Ti(Y ) is a test stastistic standardized to have variance 1 and F is the cumulative

distribution function of the test statistic. Based on Xi, define p-values as follows.

pi = 2[1− Φ(|Xi|)], i = 1, . . . , d.

Suppose that sparse signals are concentrated in few locations, say first m covariates
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are signals and let m be much smaller than the dimension d. The Cauchy combnation test,

which is defiend by

TX(X) =
d∑
j=1

wjh(Xj),

can be decomposed into a signal part, S, and noise part, N , as follows.

TX(X) =
m∑
j=1

wjhX(Xj) +
d∑

j=m+1

wjhX(Xj) =: S +N.

In the noise part N , Xj’s follow a normal distribution so that p-values are uniformly dis-

tributed marginally. Without a priori information about weights wi’s, let the weights be

equal, that is, wi = 1/d for i = 1, . . . , d. For small m, since the test statistic TX is an

average of the noise part and the signal part, the noise part N that has a negative effect on

TX tends to dominate the signal part S, which implies that the power of TX for detecting

the signals would decrease as m decreases. Moreover, if Xi’s are highly correlated, the

effective sample size decreases and using all Xi’s is not conducive to the statistical power.

Therefore, by thresholding Xi or equivalently pi, we can enhance the power of the Cauchy

combination test. This is a main motivation of the proposed method.

In general, there are different types of the thresholding method. The first type is thresh-

olding data or statistics Xi’s which are larger than some critical value. The second type is

thresholding first few sorted data. The former thresholding is called the hard thresholding

and the latter type is called the Neyman’s truncation (Neyman, 1937). Fan (1996) showed

that hard thresholding Xi’s ourperforms the Neyman’s truncation method and proved the

stastistic constructed by hard thresholding converges to a standard normal distribution.

However, the convergence is so slow and it is hard to practically used.

We use, in this thesis, the hard thresholding type of p-values and propose a test statistic

combining the thresholded p-values with an easily obtainable null distribution of the test
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statistic. Let

M = {i ∈ {1, . . . , d} : pj ∈ [0, δ]},

where 0 < δ ≤ 1 is given. Define

qj =
pj
δ
, j ∈M, (3.1)

so that qj ∈ [0, 1] for any j ∈ M. Since all pj’s follow the uniform distribution marginally

under the null, each qj is also uniformly distributed under the null. By using such qj’s for

j ∈M, define the proposed test statistic as follows.

T ∗q (q) =
∑
j∈M

wjhq(qj) =
∑
j∈M

wj tan{(1/2− qj)π}, (3.2)

where the weigths wj ≥ 0, j = 1, . . . , d. By the duality relation between data X and p-

values pj’s, we can define the statistic with respect to the data X which is equivalent to

T ∗q .

T ∗X(X) =
∑
j∈M

wjhX(Xj) =
∑
j∈M

wj tan{(2Φ(|Xj|)− 3/2)π}, (3.3)

where the weights wj ≥ 0, j = 1, . . . , d.

3.1 Null Distribution

Obtaining the null distribution of test statistics plays an important role in controlling the

type I error. That the null distribution of a test statistic converges to a known distribution at

a fast rate is one of the necessary conditions of the test statistic. In general, testing proce-

dures that are constructed when there is an arbitrary dependency structure assume that the

dependency structure is known in advance, or can be estimated from the data to decorre-

late the test statistic (Hall and Jin, 2010). However, estimating the dependency structure is
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not easily implemented, especially in high dimensional settings, and sometimes estimating

the arbitrary dependency structure requires many constraints. In addition, there are cases

where the null distribution constructed under a dependency structure is different from that

of the independent situation, or the null distribution does not converge to a known distri-

bution. For example, the null distribution of the minimum p-value (Tippett, 1931) under

an arbitrary dependency structure is hard to obtain without knowledge of the dependency

structure, although the null distribution under independence is the beta distribution. Gener-

ally, the null distribution depending on correlations between variates requires information

about the dependency structure, and it is not easy to use in that it is unknown in advance.

On the other hand, the convergence rate of the null distribution constructed by using a

threshold method is known to be very slow. The null distribution of a thresholding method

often converges to a normal distribution rather than other known distribution (Fan, 1996,

Kim and Akritas, 2010). This convergence rate is very slow, making it difficult to the control

type I error in practice. In addition, it is often different from the original un-thresholded null

distribution, which also requires additional information about the dependency structure.

3.1.1 Approximation of Tail Probability for The Null Distribution in

Finite Dimension

When we use the threshold method in constructing the Cauchy combination test statistic,

the convergence rate of the null distribution is still fast, especially non-asymptotic. More-

over, the null distribution of the thresholded combined test statistic still has the similar

behavior of the Cauchy distribution. In other words, the null distribution of the proposed

test statistic can be obtained with robustness to the dependency structure.
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The following theorem presents the tail behavior of the proposed test statistic under

the null, in the finite dimensional setting. Specifically, theorem 3 shows that under the

bivariate normality condition defined in the definition 1 in Chapter 2.1.2, the tail probability

of the null distribution of Tq with arbitrary dependency structures is equivalent to the tail

probability of a standard Cauchy distribution non-asymptotically.

Theorem 3. Let X = (X1, . . . , Xd)
T ∼ N(0,Σ). Suppose that X is bivariate normally

distributed, i.e., for any 1 ≤ i 6= j ≤ d, (Xi, Xj)
T ∼ N(0,Σij) where diagonal elements

of Σij are 1 and off-diagonals are σij . Let qj be the transformed p-value defined in (3.1)

and T ∗q (q) be the test statistc defined in (3.2). Denote C(a,b) as a random variable following

the Cauchy distribution with the location paramater a and the scale parameter b. Then we

have

lim
t→∞

P (T ∗q (q) > t)

P (C(0,w∗δ) > t)
= 1,

where w∗ =
∑d

j=1wj .

Proof. See Appendix.

Theorem 3 implies that the tail probability of the null distribution of the proposed

method is robust to the impact of the dependency structures in p-values or marginal test

statistics. As each Cauchy transformation of p-values are weighted averaged, the effect of

dependencies between p-values on the convergence of the null distribution is reduced. In

fact, the tail probability of a Cauchy distribution obtained asymptotically to be propor-

tional to the reciprocal of t, as in lemma 2, appears to be a polynomial order inducing a

very heavy form of the tail probability. This heavy tail probability causes the impact of

dependency structures to converge to zero asymptotically in the null distribution.
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3.1.2 Approximation of Tail Probability for The Null Distribution in

Infinite Dimension

When the dimension d grows infinitely, the tail probability of the null distribution of the

proposed test statistic is asymptotically equivalent to that of a Cauchy distribution. Before

we state the theorem, first consider the following assumptions on Σ.

(A.1) λmax(Σ) ≤ C0 for a constant C0 where λmax(Σ) is the largest eigenvalue of Σ.

(A.2) Let Σ = (σij)
d
i,j=1 and max1≤i<j≤d σ

2
ij ≤ σ2

max < 1 for some constant σ2
max ∈

(0, 1).

The first assumption (A.1) implies that the largest eigenvalue of Σ is bounded by a con-

stant. The second assumption (A.2) guarantees that Σ is a well-defined correlation matrix.

If σs,t = 1 for 1 ≤ s 6= t ≤ d, the correlation matrix becomes ill-conditioned. Condition

(A.1) and (A.2) are commomly used assumptions in the high-dimensional setting. Now,

we state the theorem that show the tail probabilities of the proposed method and a Cauchy

distribution are asymptoticall equivalent, as d→∞.

Theorem 4. Let X = (X1, . . . , Xd)
T ∼ N(0,Σ). Suppose that X is bivariate normally

distributed, i.e., for any 1 ≤ i 6= j ≤ d, (Xi, Xj)
T ∼ N(0,Σij) where diagonal elements of

Σij are 1 and off-diagonals are σij . Let qj be the transformed p-value defined in (3.1) and

T ∗q (q) be the test statistc defined in (3.2). Denote C(a,b) as a random variable following the

Cauchy distribution with the location paramater a and the scale parameter b. For d = o(tγ)

where 0 < γ < 1/2, under the conditions (A.1) and (A.2), we have,

lim
d→∞

P (T ∗q (q) > t)

P (C(0,w∗δ) > t)
= 1,

where w∗ =
∑d

j=1wj .
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Proof. See Appendix.

Remark 1. We defined δ∗j such that δ < δ∗j < 1 in the proof. By using the symmetry

property of the sine function, sin(x) = sin(π − x), we can define

δ∗∗j =
1

qj
− δ∗j ,

so that sin(δ∗j qjπ) = sin(π − δ∗∗j ) = sin(δ∗∗j qjπ) and 0 < δ∗∗j < δ. In this re-defining, we

obtain

sin(δ∗∗j qjπ) = δ∗∗j qjπ +O
(
(δ∗∗j qj)

2
)
.

As the dimenstion d increases, δ → 0. Then

sin(δ∗∗j qjπ)

δ∗∗j qjπ
→ 1.

Therefore we have

lim
t→∞

P (T ∗(X) > t)

P (C(0,w∗) > t)
= 1.

Sketch of proof for theorem 3 and 4.

Step 1. The random setM can be expressed as random weights w̃j’s :

T ∗q =
∑
j∈M

wjhq(qj) =
∑

j∈{j:pj≤δ}

wjhq(qj) =
d∑
j=1

wjI(qj ≤ 1)hq(qj) =:
d∑
j=1

w̃jhq(qj)

Step 2. Decompose the joint distribution with arbitrary dependence structure to marginal

case by using Bonferroni inequality :

P

(
d∑
j=1

w̃jhq(qj) > t

)
= P

(
d∑
j=1

w̃jhq(qj) > t,
d⋃
j=1

{w̃jhq(qj) > t}

)

+P

(
d∑
j=1

w̃jhq(qj) > t,

d⋂
j=1

{w̃jhq(qj) ≤ t}

)
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= P

(
d⋃
j=1

{
w̃jhq(qj) > t,

d∑
j=1

w̃jhq(qj) > t

})

+P

(
d⋂
j=1

{
w̃jhq(qj) ≤ t,

d∑
j=1

w̃jhq(qj) > t

})

=: P

(
d⋃
j=1

Aj

)
+ P

(
d⋂
j=1

Bj

)

d∑
j=1

P (Aj)−
∑∑

j 6=i

P (Aj ∩ Ai) ≤ P (Aj) ≤
d∑
j=1

P

(
d⋃
j=1

Aj

)

Step 3. Calculate order each decomposition parts

3.1.3 Approximation of Tail Probability for The Null Distribution with

Random Weights

Note that if we set w−1j = dδ for all j = 1, . . . , d, the tail probability of the proposed

test statistic is still equivalent to that of the standard Cauchy distribution asymptotically.

However, sinceM is a random set, the number of summands in the test statistic is a random

number as well, although the weights are fixed number 1/dδ. So, practically a correction

is needed to obtain the appropriate tail probability of the null distribution and improve the

power.

To handle the correction, we can set the weight wi as a random variable. Indeed, instead

of w−1j = dδ, we define w−1j = |M| to reflect the number of p-values contained in M.

When there are many observed p-values inM, we assign more weights to the thresholded

p-values. To this end, consider specific types of dependencies between p-values which are

contained inM, that is, pj ≤ δ.
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Definition 2 (Type of Dependencies).

1. Heyde (2004)

P (pk ≤ δ | Fk) = (1− θ)δ + θSk/k,

where θ is a depdendence parameter with 0 ≤ θ < 1 and Fk = σ(p1, . . . , pk) is the

σ-field generated by {X1, . . . , Xk}.

2. Gava and Rezende (2021)

P (pk ≤ δ | Fk) = δ + dkSk/k,

where Sk = I(p1 ≤ δ) + · · ·+ I(pk−1 ≤ δ) and Fk = σ(p1, . . . , pk) is the filtration,

0 ≤ δ + dk < 1 for k ≥ 1.

3. Exponentially decaying dependency

Cov(I(pi ≤ δ), I(pj ≤ δ)) ≤ c|i−j|,

for i, j ≤ d and |c| < 1.

Consider the case where there is a special dependency structure defined in the definition

2 between the p-values included in M. Then, random weights can be used as shown in

corollary 1 below.

Corollary 1. If p-values are weak dependent to each other or there is a specific correlation

structure in p-values as in definition 2, we can set w−1j = #{j : pj ≤ δ} to obatin the

result in Theorem 4.

Proof. Under correlation structures in definition 2, it follows that

lim
d→∞

#{j : pj ≤ δ}
dδ

= 1.
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Hence we have

T ∗q (q) =
∑
j∈M

1

dδ
(1 + o(1))hq(qj).

It follows from Theorem 4 that

lim
d→∞

P (T ∗q (q) > t)

P (C(0,1) > t)
= 1.

As corollary 1, for large d with a specific dependence structure, #{i : pi ≤ δ} = w−1j

for any j = 1, . . . , d. On the other hand, for the finite dimension d, the law of large number

in corollary 1 contains an approximation error. Practically, we are given only observed p-

values andM is also given. To reduce the approximation error, we use instead a finiteness

correction such that,

T ∗∗q (q) =
∑
j∈M

1

#{j : pj ≤ δ}
hq(qj).

Then the null tail probability of T ∗∗q can be adjusted. If #{j : pj ≤ δ} is given, then from

the proof of Theorem 4, for large t,

P (T ∗∗q (q) > t) = E
[
P (T ∗∗q (q) > t | #{j : pj ≤ δ})

]
= E

[
P

(∑
j∈M

1

#{j : pj ≤ δ}
hq(qj) > t

∣∣∣ #{j : pj ≤ δ}

)]

= E

[
P

(∑
j∈M

1

dδ
hq(qj) >

#{j : pj ≤ δ} · t
dδ

∣∣∣ #{j : pj ≤ δ}

)]

= E

[
dδ

#{j : pj ≤ δ}
· 1

tπ
+ o(1/t)

]
.

If we let

w∗∗ =
dδ

#{j : pj ≤ δ}
,

we have that

lim
t→∞

P (T ∗∗q (q) > t)

P (C(0,w∗∗) > t)
= 1.
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3.2 Power Analysis of Cauchy Combination Test with Thresh-

olding

In this section, we analyze the power of the proposed test statistic. Recall the null and

alternative hypotheses.

H0 : X ∼ Nd(0,Σ) vs. H1 : X ∼ Nd(µ,Σ). (3.4)

We consider a sparse mean vector as an alternative. Let S = {j ∈ {1, . . . , d} : µj 6= 0} be

an index set of nonzero mean elements and |S| be the cardinality of S, that is, the number

of signals. Assume that |S| = dγ where 0 < γ < 1. The sparsity of the mean vector µ is

defined by the parameter γ. If 0 < γ < 1/2, we call the mean vector µ = (µ1, . . . , µd)
T

a sparse mean vector. To test the sparse alternative, suppose that X ∼ Nd(µ,Σ). Then we

can consider the following hypotheses as in Hall and Jin (2010), instead of (3.4).

H0 : µ = 0 vs. H1 : µ is a sparse vector . (3.5)

Assume that signals have the same magnitude and let µi =
√

2r log d for i ∈ S where r is

a constant. The form of the signal magnitude is decided to consider the optimal detection

boundary in Donoho and Jin (2004). The following theorem shows that the power of the

proposed adaptive thresholding Cauchy combination test statistic to test hypothesis (3.5)

converges to 1.

Theorem 5. Denote S = {j ∈ {1, . . . , d} : µj 6= 0} as the set of signals. Suppose that the

number of signals |S| = dγ , where 0 < γ < 1/2. Assume that µj =
√

2r log d for all j ∈ S,

where r > (1 − √γ)2. Consider the Cauchy combination test statistic by thresholding at

value δ ∈ (0, 1). Then, for α-quantile tα of Cauchy(0, w∗δ) where w∗ is the sum of all
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weights, as d→∞,

PH1

(
T ∗q (q) ≥ tα

)
→ 1,

where PH1 is a probability measure under the alternative.

Theorem 5 shows that the power of the proposed method converges to 1 as the dimen-

sion d increases. This means that the summation of the type I error and the type II error

converges to 0 equivalently. The condition 0 < γ < 1/2 in theorem 5 implies the sparsity

of the mean vector. Hence, for the sparse signal, by using the proposed method, H0 and H1

of (3.5) can be separated asymptotically. We can also show that, with the result in theorem

5, the proposed method attains the optimal detection boundary defined in Donoho and Jin

(2004). Note that the detection boundary is defined as follows.

ρ∗(γ) =

 (1−√γ)2, 0 < γ < 1
4
,

1
2
− γ, 1

4
< γ ≤ 1

2

,

where r and γ are given in theorem 5. Since we have the condition r > (1 − √γ)2, the

proposed method achieves the optimal detection boundary when 0 < γ < 1/4, which is

the strong sparsity situation. Note that

(1−√γ)2 >
1

2
− γ ⇔ 2

(
√
γ − 1

2

)2

> 0.

For 1/4 < γ < 1/2, we have r > (1 − √γ)2 > 1/2 − γ so that the proposed method

also attains the optimal detection boundary. Therefore the proposed method achieves the

optimal detection boundary for the sparse signal, which is represented by 0 < γ < 1/2.

Sketch of proof for theorem 5.

Step 1. Decompose T ∗q into two parts, a null part and a signal part :

T ∗q =
∑
j∈M

wjhq(qj) =
∑

j∈M∩N

wjhq(qj) +
∑

j∈M∩S

wjhq(qj)
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Step 2. Claim that the null part is lower bounded by a finite constant with probability tending

to 1: ∑
j∈M∩N

wjhq(qj) > −∞

Step 3. Claim that the maximum of signal part is transformed by using the mean value theo-

rem (lemma 5) and is lower bounded by an increasing order:

∑
j∈M∩S

wjhq(qj) =
∑

j∈M∩S

w∗jhX(Xj) ≥ w∗i∗hX(Xi∗)+(|M∩S|−1)·w∗k∗hX(Xk∗)→∞,

where i∗ = arg maxj∈M∩S hX(Xj) and k∗ = arg minj∈M∩S hX(Xj).

3.3 Choosing the thresholding value δ

In this section, we propose a plug-in estimator δ̂ for the thresholding value δ. First, decom-

pose the test statistic, T ∗q (q), into the null part N and the signal part S as follows.

T ∗q (q) =
∑
j∈M

wjhq(qj) =
∑

j∈M∩N

wjhq(qj) +
∑

j∈M∩S

wjhq(qj)

Suppose that the weights are equal that is, for all i = 1, . . . , d, w−1i = dδ for convenience.

From the results and proofs of theorem ?? and ??, the tail behavior of the null part statistic,

∑
j∈M∩N

wjhq(qj)

is asymptotically equivalent to that of a Cauchy distribution, regardless of δ. Indeed, we

have

lim
t→∞

P (
∑

j∈M∩N(1/dδ)hq(qj) > t)

P (C(0,|N |/d) > t)
= 1.
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On the other hand, we can show that the signal part statistic is an increasing function with

respect to δ.

∑
j∈M∩S

wjhq(qj) =
∑

j∈M∩S

1

dδ
tan

{(
1

2
− pj

δ

)
π

}
=

∑
j∈M∩S

1

dδ

cos
(pjπ

δ

)
sin
(pjπ

δ

) . (3.6)

By lemma 3, note that the right hand side of (3.6) increases as δ increases.

Lemma 3. The signal part of t∗q is an increasing function of δ.

Proof. Define

f(δ) :=
1

δ
h
(p
δ

)
,

where

h
(p
δ

)
= tan

((
1

2
− p

δ

)
π

)
=

sin
(
π
2
− pjπ

δ

)
cos
(
π
2
− pjπ

δ

) =
cos
(pjπ

δ

)
sin
(pjπ

δ

) .
Then, we have

f ′(δ) =
pπ
δ2

sin2
(
pπ
δ

)
δ −

[
sin
(
pπ
δ

)
− pπ

δ
cos
(
pπ
δ

)]
cos
(
pπ
δ

)
(δ sin

(
pπ
δ

)
)2

=
pπ
δ
− sin

(
pπ
δ

)
cos
(
pπ
δ

)
(δ sin

(
pπ
δ

)
)2

.

Since x > sin(x) cos(x) for 0 < x < 1, we can show that f ′(δ) > 0 for 0 < δ < 1.

Therefore, as δ increases,M contains more p-values corresponding to the signals and

the signal statistic increases. At the same time, if

1

2
>
pj
δ
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in the middle equation of (3.6) is greater than 0, we have

tan

{(
1

2
− pj

δ

)
π

}
> 0,

which can make the signal part of the statistic larger. In other words, it can be concluded

that setting the δ = 2|S|/d is a trivial way to increase the power. We choose δ such that

M = {j : pj ≤ δ} contains as many as signal p-values with pj/δ ≤ 1/2 or equivalently

pj ≤ δ/2. Then we use a plug-in estimator δ̂ = 2π̂1, where π1 is the proportion of signals

and π̂1 is an estimator. We propose a method to estimate the proportion of signals, π1, in

the next chapter.
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Chapter 4

Estimating The Proportion of Non-null

Hypotheses

In Chapter ??, we proposed the estimator of the proportion of signals as an critical value in

thresholding p-values. In this chapter, we propose an estimator of the proportion of signals

when arbitrarily dependent p-values are given. In terms of the hypotheses testing procedure,

the proportion of signals is consistent with the proportion of non-null hypotheses so that

we can approach the problem in the form of a mixture from the perspective of estimating

the proportion of the non-null or alternative hypotheses.

When p-values obtained from the null H0 and alternative H1 hypotheses are distin-

guished into the null p-values and alternative p-values, respectively, the distribution of p-

values in the following mixture of p-values can be considered.

f(p) = π0f0(p) + π1f1(p), (4.1)

where f is a marginal density function of observed p-values and f0 and f1 are density func-

tions of null and alternative p-values, respectively. π0 and π1 are the mixing coefficients that
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is, the proportions of the null and alternative with π0 + π1 = 1. Estimating the proportion

of signals is then equivalent to estimating the mixing coefficient, π1, in (4.1).

To estimate the proportion of signals, there are conditions usually assumed. First, it

is assumed that the p-values are independent. If the p-values are independent, then the p-

values obtained from the null follow an uniform distribution identically. In the notations in

(4.1), we can assume that under the null,

f0 ∼ U(0, 1).

As in Efron (2010), we also assume that the zero-assumption that any p-value greater than

some λ is assumed to be the null p-value, that is, for large λ ∈ (0, 1),

p|{p > λ} ∼ f0.

The alternative density f1 is assumed to be a decreasing function, so that if p-values are

close to 1, then the value of f1 is close to 0 which means that f1(p) ≈ 0 for p ≈ 1.

In the following section, we briefly review existing methods estimating π1 or π0. There-

after, we propose a method to estimating π1 for the case that an arbitrary dependency struc-

ture between p-values exists.

4.1 Literature Reviews

In this section, we review methods estimating the proportion of signals, π1, or that of null,

π0 = 1−π1. First we review methods that estimate π1 under the independence assumption.

And then we review methods estimating π1 under the arbitrary dependency structures in

Chapter 4.1.2.
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4.1.1 Methods That Estimating The Proportion of Signals for Inde-

pendent p-values

Suppose that p-values are independent. Estimating π1 is equivalent to estimating the mixing

coefficient of a mixture model of p-values as mentioned in the previous section.

f(p) = π0f0(p) + π1f1(p), (4.2)

Since π1 = 1− π0, estimating π0 is equivalent to estimating π1. The observed p-values are

independent and identically distributed and we have

p1, . . . , pd
i.i.d.∼ f.

The independence between p-values implies that the null density of p-values, f0 in (4.2),

is the density function of the uniform distribution so that

f0(p) = 1, for any p ∈ (0, 1)

Then (4.2) can be expressed as follows.

f(p) = π0 + (1− π0)f1(p). (4.3)

Storey (2002) assumed that the density function f1 of the alternative p-values is a decreas-

ing function with f1(1) = 0. He further assumed the zero-assumption, that is, if p-values

are close to 1, then the value of f1 is close to 0 which means that f1(p) ≈ 0 for p ≈ 1.

Integrating the both sides of (4.3) with respect to p from λ to 1 implies that∫ 1

λ

f(p)dp ≈ π0(1− λ),

where λ ∈ (0, 1) is a given constant which is close to 1. Storey (2002) proposed an estima-

tor of π0 as follows.

π̂0(λ) =
#{pj > λ}
d(1− λ)

,
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where λ can be chosen to minimize the mean square error, MSE, by using a bootstrap

method.

Let p(1) ≤ · · · ≤ p(d) be the ordered observed p-values from the d hypothesis tests.

Langaas et al. (2005) proposed an estimator of π0 based on the ordered p-values.

π̂p0 = min
l≤d−1

{
1− l/d
1− p(l)

}
.

With an additional stronger assumption that f1 is a decreasing and convex function, Lan-

gaas et al. (2005) used an iterative method based on the steepest descent algorithm. In (4.3),

the assumption that f1 is a decreasing and convex function implies that f is also a decreas-

ing and convex function. From the fact that any twice continuously differentiable convex

decreasing density f on [0, 1] can be represented as a mixture

f(p) =

∫ 1

0

fθ(p)µ(dθ),

where fθ is a triangular density. Let f̂ be the nonparametric maximum likelihood estimate

of f . Langaas et al. (2005) proposed a method estimating π0 by

π̂0 = f̂(1).

Genovese and Wasserman (2004) converted the mixture setting into a stochastic process

setting:

F (t) = π0F0(t) + π1F1(t), (4.4)

where F0 is an uniform distribution, that is, F0(t) = t. To estimate π1, Genovese and

Wasserman (2004) assumed that F is concave and hence f = F ′ is a decreasing func-

tion. For a finite sample confidence envelope [γ−(·), γ+(·)] for a density f , Genovese and

Wasserman (2004) proposed an estimator of π1 by

π̂1 = 1−min{h(1) : γ− ≤ h ≤ γ+},
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and proved that π̂1 converges to π1.

Meinshausen and Rice (2006) considered a lower confidence bound of π1. The goal is,

then, to construct a lower bound of

π̂1 =
1

d

d∑
i=1

1{µi 6= 0}

with the property of

P (π̂1 ≤ π1) ≥ 1− α, (4.5)

for a specified confidence level 1− α. From the stochastic process (4.4), Meinshausen and

Rice (2006) defined an estimate of π1 as follows.

π̂1 = sup
t∈(0,1)

Fn(t)− t− βn,αδ(t)
1− t

,

where βn,α is a bounding sequence for δ(t) at level α, δ(t) is a bounding function and Fn is

the empirical distribution of p-values. Then Meinshausen and Rice (2006) proved the (4.5).

In addition to using the mixture model of p-values, methods using observed p-values

also had been proposed. Under the assumption that p-values are independent so that null

p-values are uniformly distributed, Schweder and Spjøtvoll (1982) proposed a method to

estimate π0 by using the approximation such that

E

[
d∑
i=1

I(pi > t)

]
≈ π0(1− t).

By plotting the number of p-values greater than t against 1 − t, Schweder and Spjøtvoll

(1982) estimated π0 based on p-values deviating from a straight line.
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Figure 1: Historgrams for p-values obtained for Σ = (0.5)500i=1 with diagonal elements 1.

4.1.2 Methods That Estimating The Proportion of Signals for Arbi-

trarily Dependent p-values

If p-values are arbitrarily dependent, then the assumptions that observed p-values follow the

mixture model (4.1) and null p-values follow independently uniform distribution can not

be used to estimate the proportion of signals. Indeed, observed p-values are not uniformly

distributed but increasingly or decreasingly distributed. Even worse there are no visible

patterns for p-values. Figure 1 shows that histograms of null p-values obtained from

X ∼ Nd(0,Σ),

where d = 500 and

Σ = (σij)
d
i,j=1 =

 1 i = j

0.5 i 6= j.

Recall the hypotheses testing procedure.

XH0 ∼ N(0,Σ), XH1 ∼ N(θ,Σ)

Meinshausen and Bühlmann (2005) estimated π1 by

π̂1 = sup
γ∈[0,1]

{R(γ)−Gα(γ)},
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where R(γ) is the number of p-values which are less than γ ∈ (0, 1) and Gα is a bounding

function and the quantile function of the number of false rejections under permutation.

Tong, Feng, Hilton and Zhao (2013) used a linear fitting under the assumption that the

pattern of true null p-values is linear or unimodal. For example, only p-values in the middle

and right plots in Figure 1 are observed. Let W0(λ) be the total number of the true null

p-values in (λ, 1] and

f(λ) =
W0(λ)

dπ0

be the proportion of the true null p-values in (λ, 1]. From the idea of Storey (2002), that is,

for W (λ) =
∑d

j=1 I(pj > λ),

π̂0(λ) =
W (λ)

d(1− λ)
,

we have W0(λ) ≈ W (λ) and

π0 =
W0(λ)

df(λ)
≈ W (λ)

df(λ)
.

Tong, Feng, Hilton and Zhao (2013) chose λ by using a bootstrap algorithm to minimize

the mean square error.

However the linear fitting of f denoting the proportion of true null p-values in (λ, 1] too

simplify the patterns of observed p-values. As shown in numerical studies in chapter 5, the

estimate p̂i1 has greater variations.

4.2 Proposed Method

As Storey (2002), from the independence assumption point of view, the mixture of p-values

considers

f(p) = π0 + (1− π0)f1(p),
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where f1(p) ≈ 0 if p is close to 1. In contrast to the independent case, we adapt the null

density of p-values, f0 to accommodate patterns of null p-values when dependency between

p-values exits. Hence we consider instead that

f(p) = π0f0(p) + (1− π0)f1(p).

Tong et al. (2013) pointed out that althoguh regardless of the dependence of p-values, the

marginal distribution of the null p-values remains a standard uniform distribution, varia-

tions of the expected frequency of observed p-values increase as correlations of p-values

are increase. Hence they concluded that if we handle the pattern of the observed p-values,

we can improve the estimation of the proportion of true nulls.

From this motivation, we propose an estimation of proportion of null hypotheses, based

on Storey (2002) and Tong et al. (2013), such that

π̂0(λ) =
W (λ)

d(1− F̂0(λ))
, (4.6)

where F0(λ) =
∫ λ
0
f0(x)dx and f0(x) is a density of null p-values. Then F̂0 is a estimated

F0 by using the kernel density estimation. Indeed, we have

π̂0(λ) =

∫ 1

λ
f̂(p)dp∫ 1

λ
f̂0(p)dp

=
1− F̂ (λ)

1− F̂0(λ)
=

∑d
j=1 I(pj ≤ λ)

1− F̂0(λ)
, (4.7)

where F̂0 is estimated by the using kernel density estimation. We call it “dependence-

corrected Storey method”. Storey (2002) proposed the bootstrap method that optimal λ is

chosen as follows.

1. SetR = {0, 0.05, . . . , 0.95} to be the grid of λ.

2. For each λ ∈ R, generate the bootstrap copies π̂b0, b = 1, . . . , B for predetermined B

from (4.6).
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3. Estimate MSE(λ) by

M̂SE(λ) =
B∑
b=1

(π̂b0(λ)− π̂p0)2

B
,

where π̂p0 = minλ∈R π̂0.

4. Define λ̂ = arg minλ∈R M̂SE(λ) and estimate π̂0 = π̂0(λ̂).

In the next section, extensive simulation studies support the accuracy of the proposed

method.
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Chapter 5

Numerical Studies

In this chapter, we evaluate the performances of the proposed method comparing other

competitive methods. To investigate the robustness to dependency structures, we construct

p-values from various dependency structures including the compound symmetry, exponen-

tially decaying and polynomially decaying dependency structures. Specifically, data or the

normalized test statistic X are constructed from

H0 : X ∼ Nd(0,Σ) vs. H1 : X ∼ Nd(µ,Σ).

The dimension d has a different range from 20 to 500 through simulations in this chap-

ter. All the signals for an alternative have the same strength µi := µ0 =
√

3 log(d)/s1/5

for i = 1, . . . , d, where s is the number of signals. The magnitude of signals is defined

to consider the settings of the sparse signal. The dependency structure or the correlation

matrix Σ = (σij)i,j=1,...,d is defined as follows.

1. Compound Symmetry: For 0 < ρ < 1,

σij =

 ρ i 6= j

1 i = j
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2. Polynomial decay: For ρ > 0,

σij =


1

0.7+|i−j|ρ i 6= j

1 i = j

3. Exponential decay, AR(1): For 0 < ρ < 1,

σij = ρ|i−j|.

For each dependency structure, values of the correlation coefficient ρ decide the strength

of the dependency. Thus we vary the correlation coefficient ρ to investigate effects of the

dependencies through following simulations.

In Chapter 5.1, we compare the proposed method to other methods of estimating the

proportion of signals. Methods of Storey (2002), Langaas et al. (2005) and Tong et al.

(2013) are used for the comparison. In Chapter 5.2, we evaluate the type I error of the

proposed method. For convenience, we use the equal weights, that is, w−1i = dδ for

i = 1, . . . , d. Since the tail probability of the proposed method converges to that of a stan-

dard Cauchy distribution, we use a level α-quantile of the standard Cauchy distribution. In

Chapter 5.3, under different dependency structures, we investigate the power of the pro-

posed method compared to other global testing procedures, the Higher criticism (Donoho

and Jin, 2004), the Berk-Jones (Berk and Jones, 1979), the minimum p-value (Tippett,

1931) as well as the Cauchy combination test (Liu and Xie, 2020).
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5.1 Simulation Studies of Estimating the proportion of non-

null hypotheses

In this section, we investigate the accuarcy of the proposed method for estimating the pro-

portion of signals which is analyzed in Chapter 4. To constuct the test statistic, we define

p-values by

pi = 2(1− Φ(|Xi|)), i = 1, . . . , d

where Xi is i-th element of X ∼ Nd(µ,Σ). The dimension considered in this simulation is

d = 100. Suppose that all the signals have the same strength µ0 =
√

3 log(d)/s1/5, where

s is the number of signals and 1 ≤ s ≤ d. Thus we denote π1 = s/d. To examine the

dependency structures, we impose the compound symmetry structure on Σ = (σij)i,j=1,...,d

with different values of σij = 0, 0.1, . . . , 0.5 for all i 6= j = 1, . . . , d and σij = 1 for i = j.

The proportion of signals varies π1 = 0.05, 0.1, 0.15 to apply both sparse and dense signal

settings. Numerical studies for different settings are similar to the following results and are

presented in the appendix.

For the case of different proportions of signals and compound symmetry correlation

matrices with different correlation coefficients, Figure 2, Figure 3 and Figure 4 show the

boxplots of the proportions 0.05, 0.1 and 0.15, respectively. As shown in Figure 2, 3 and 4

the dependence-corrected Storey method has a much smaller standard error with accurate

estimation, while the method of Langaas et al. (2005) is accurate only for the independent

case but standard errors increase as correlation coefficients increase, as mentioned in their

Figure 5.
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Figure 2: Simulation results of the case of compound symmetry dependence structure with

different correlaation coeeficients. The proportion of signals is 0.05 and dimension is 100.

Blue horizontal lines indicate 0.05.
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Figure 3: Simulation results of the case of compound symmetry dependence structure with

different correlation coeeficients. The proportion of signals is 0.1 and dimension is 100.

Blue horizontal lines indicate 0.1.
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Figure 4: Simulation results of the case of compound symmetry dependence structure with

different correlation coeeficients. The proportion of signals is 0.15 and dimension is 100.

Blue horizontal lines indicate 0.15.
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5.2 Simulation Studies of Type I Error

In this section, we examine the type I error of the proposed method and compare the empir-

ical type I error to that of the Cauchy combination test (Liu and Xie, 2020) as a benchmark.

We compare the type I error at a given significance level for different dependency struc-

tures, the compound symmetry structure, the polynomially decaying structure and the expo-

nentially decaying structure. The dimension is fixed to d = 300. Define Σ = (σij)
d
i,j=1. For

the compound symmetry dependency structure, which is the case that p-values are highly

correlated, the correlation coefficient σ := σij varies from 0 (independent p-values) to 0.5.

For the polynomially decaying dependency structure, consider

σij = I(i = j) + {1/(0.7 + |i− j|ρ)} · I(i 6= j), (5.1)

and conduct simulations with ρ = 0, 0.1, . . . , 0.9. Lastly, for the exponentially decaying

dependency structure, we set σij = ρ|i−j| with ρ = 0.4, 0.5, . . . , 0.9. Since the type I error

is defined by the number of false rejections under the null, thresholding value δ can not be

defined by the proportion of signals. So we use δ = 0.1 in this simulation.

Figure 7 shows boxplots of the type I error for the proposed method and the Cauchy

distribution test at level α = 0.05, under the exponentially decaying dependency structure.

The boxplot shows that the Cauchy combination test fails to control the type I error as the

correlation coefficient increases. On the other hand, we can see that the type I error of the

proposed method is controlled quite well especially in the highly correlated case.

For a more strong dependency structure, the polynomially decaying correlation, Figure

6 shows that the Cauchy distribution test can not control the type I error and it is much

larger than 0.05 for highly correlated p-values. When ρ = 0.1 in (5.1) which reflects the

highly correlated case, the type I error of the Cauchy combination test is larger than 0.07,
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that is, above level α = 0.05 for as much as 40%. This result implies that if p-values are

highly correlated, the tail probability of the Cauchy combination test is severely affected

on the correlation unlike the proposed method that thresholds large p-values.

The failure of the Cauchy combination test to control type I error under highly corre-

lated cases also can be found in Figure 7 where p-values are obtained from the compound

symmetry structure. On the contrary, the proposed method can control the type I error well

even under the highly correlated case. Since controlling type I error guarantees the relia-

bility of the test statistics, simulation results in Figure 7, 6 and 5 indicate that the power of

our proposed method is more reliable than that of the Cauchy combination test. We present

results of the power comparison in the next section.

5.3 Simulation Studies of Power Analysis

In this section, we investigate the powers of the proposed method compared to other global

testing procedures, the Higher criticism (Donoho and Jin, 2004), the Berk-Jones (Berk and

Jones, 1979), the minimum p-value (Tippett, 1931) as well as the Cauchy combination

test (Liu and Xie, 2020) under different dependency structures. We compare the power

with varying dimension d = 20, 40, 60, 100, 200, 300, 500. All the signals have the same

amplitude µi =
√

3 log(d)/s1/5 for all i ∈ S = {j ∈ {1, . . . , d} : µi 6= 0} and |S| =

s. We use a different range of the correlation coefficient ρ. For the compound symmetry

dependency structure, we use ρ = 0, 0.05, 0.1, . . . , 0.55, 0.6. For the polynomially decaying

case, ρ = 0, 0.05, 0.1, . . . , 0.55, 0.6 are used to compare the powers. And we use ρ =

0.4, 0.45, 0.5, . . . , 0.95, 0.99 for the AR(1) structure. Figure 8, 9 and 10 show the powers of

the proposed method and other global testing procedures. Rows of the power plots indicate
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Figure 5: Box plots of type I error at level 0.05 for dimension d = 300 and Exponentially

decaying with correlation range 0.4 to 0.9. Red boxes are Adaptive thresholding CCT with

thresholding 0.1 and blue boxes are CCT.

the proportion of signals, 0.01, 0.05, 0.1, and 0.15. Columns of the plots indicate varying

dimensions d = 20, 40, 60, 100, 200, 300, 500. For sparse signal settings, π1 = 0.01, there

are no signals if d = 20, 40 and 60. Hence we assume that there is only one signal for

d = 20, 40 and 60. For each dependency structure, we simulate by using the Monte Carlo

sampling methods to calculate the critical values of each test procedures at the significance

level of 0.05.

Since constructing the test statistic of the Higher criticism and the Berk-Jones method

is based on independent p-values, the powers of those methods are expected to decrease
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Figure 6: Box plots of type I error at level 0.05 for dimension d = 300 and Polynomially

decaying with correlation range 0.1 to 0.9. Red boxes are Adaptive thresholding CCT with

thresholding 0.1 and blue boxes are CCT.

as correlations between p-values increase. Figure 8, 9 and 10 support this expectation. The

minimum p-value method is robust to the magnitude of correlation coefficients although it

loses the power when dependency is weak or p-values are independent as shown in Figure

9 and 10.

The Cauchy combination test has a comparable power compared to other tests. How-

ever, we have seen in Chapter 5.2 that the Cauchy combination test fails to control the type I

error. By thresholding p-values, the proposed method has a comparable power compared to

all other methods and the proposed method is robust to the magnitude of correlation coeffi-
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Figure 7: Box plots of type I error at level 0.05 for dimension d = 300 and CS with

correlation range 0 to 0.5. Red boxes are Adaptive thresholding CCT with thresholding 0.1

and blue boxes are CCT.

cients and the proportion of signals as well as dimensions. Therefore we can conclude that

the proposed method outperforms all other competing methods, in that it has a comparable

power even if there is no prior information about dependency structures or the proportion

of signals.
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Chapter 6

Case Studies

We apply the Cauchy combination with thresholding test procedure to the Inflammatory

bowel disease (IBD) genome-wide association study (GWAS) for the real data analysis.

Crohn’s disease is a type of IBD and the goal of Crohn’s disease GWAS is to find genes

associated with the IBD. The data consists of p-values of each SNP analyzed to test the

case and control association among both the Jewish and non-Jewish cohorts. p-values are

constructed by using a Cochran-Mantel Haenszel chi-square test computed separately for

each SNP. The dataset is downloaded from the Genotypes and Phenotypes (dbGaP).

The dataset contains 968 IBD-affected cases and 995 unrelated controls by using the

Illumina HumanHap300 Genotyping BeadChip. The cases were selected to have Crohn’s

disease with ileal involvements, and controls were matched to the cases based on sex and

year of birth. Subjects were drawn from two cohorts:

1. persons with non-Jewish, European ancestry (561 cases and 563 controls)

2. persons with Jewish ancestry (407 cases and 432 controls)

To analyze the association between genes and IBD, we group SNPs to genes via GBiB of
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UCSC. Each SNP can be contained in multiple genes. As a result, all 242,535 SNPs are

grouped into 19,769 genes. The number of SNPs in each gene ranges from 1 to 676. Among

all genes, only 4,969 genes having more than 10 SNPs are used to improve the accuracy of

estimating the proportion of signals in each gene.

Figure 6 shows histograms of p-values of SNPs in two genes, “NLGN1” gene and

“CDH4” gene. As shown in Figure 6, p-values in each gene deviate from the uniform

distribution which means that the p-values are highly correlated. Since the dataset consists

of only p-values, estimating the dependency structure can not be applied so that global

testing procedures constructed under an independence assumption or based on an estimate

of dependency structure can not be applied.

Table 1 presents 10 smallest global p-values obtained by the proposed Cauchy combi-

nation test with thresholding. We first estimate the proportion of signals in each gene and

then use the twice estimate of the proportion of signals as the thresholding value. The gene

with the smallest global p-value, “C1orf141”, is identified to have an association with IBD

in Dinu et al. (2012) and the gene with the second smallest p-value, “IL23R” is identified

in Duerr et al. (2006).

Table 2 shows genes that are significant at the level of 0.05 by using the proposed

method but not significant by using the Cauchy combination test. There are no genes iden-

tified by using the Cauchy combination test while unidentified by the proposed method.

This result indicates that our proposed method can find more significant genes and is more

powerful, although further biological research is required.

Figure 12 and 13 show histograms of the global p-values of genes identified by our

method. From the figures, we can confirm that if there is are strong and spase signals, as a

global testing procedure, our method can identify such genes.
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Figure 11: Histogram of p-values of SNPs for the “NLGN1” gene and “CDH4” gene
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GENE d Test Statistics p-values

C1orf141 20 5.35× 1010 5.95× 10−12

IL23R 23 4.79× 1010 6.65× 10−12

ZNF532 18 6.24× 103 3.39× 10−5

CACNA1C 100 1.84× 103 1.04× 10−4

AC067751.1 16 1.63× 103 1.95× 10−4

NCF4 14 1.34× 103 2.39× 10−4

NCF4-AS1 17 1.10× 103 2.89× 10−4

CLSTN2 108 1.03× 103 3.09× 10−4

STXBP4 12 7.91× 102 4.02× 10−4

SULF2 22 7.67× 102 4.15× 10−4

Table 1: 10 smallest p-values for the Cauchy combination Test with thresholding.
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GENE adaptive Cauchy Cauchy d

SORBS2 0.04308 0.99142 72

FRMD6-AS2 0.03371 0.98582 34

TANC2 0.02523 0.97815 17

AC008591.1 0.02951 0.96717 28

AC026369.1 0.01263 0.94029 13

IQSEC3 0.02623 0.93082 27

AC008691.1 0.04671 0.78029 59

USH1C 0.04447 0.73130 15

AC114311.1 0.02907 0.48239 12

AC026765.3 0.03911 0.41990 17

TEX26-AS1 0.04919 0.17864 14

SSBP3 0.04629 0.05536 31

Table 2: Genes that are significant at a level of 0.05 by using the Cauchy combination test

with thresholding but not the Cauchy combination test.
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Chapter 7

Conclusions

In this thesis, we proposed a global testing procedure for detecting a sparse mean vector

under arbitrary dependency structures based on observed p-values. By thresholding the p-

values, we extend the Cauchy combination test to a more powerful and robust method for

the dependency structures without any prior information of data structures. We proved the

tail probability of the proposed test statistic is equivalent to that of a Cauchy distribution

under the null. The equivalence is proved both asymptotically or non asymptotically. We

also proved that the power of the proposed method converges to 1. In addition, we found

that the proposed method achieves the optimal detection boundary for sparse settings. Ex-

tensive numerical studies support the proposed method. Simulation results showed that the

type I error of the proposed method is well controlled at a given significance level for a wide

range of dependencies, although the type I error of the un-thresholded Cauchy combination

methods increases as the correlation coefficient increases. And the power of the proposed

method outperforms other competing global testing methods, especially under the sparse

and highly correlated case.

68



For practical usage of the proposed method, we showed that the thresholding value

can be chosen as twice the proportion of the signals. To estimate the proportion of the

signals, we extended Storey’s method to accommodate the arbitrary dependency structures

and denote the method as the “dependence-corrected Storey method”. Arbitrary patterns

of the observed p-values are estimated by the kernel estimation. Numerical studies showed

that the proposed estimate of the proportion of signals outperforms other methods. The

standard error of the proposed method is much smaller and the accuracy of the estimation

is comparable.

We applied the proposed method to IBD genome-wide association study. The dataset

consists of only arbitrarily dependent p-values of SNPs. We used the proposed method

to find genes, which are grouped by SNPs, associated with Crohn’s disease. We found

significant genes among 5,000 genes.

Future work will generalize the Cauchy combination with thresholding to the heavy-

tailed distribution. Error rates of convergence rates of the null distribution and the power

depending on dependency structures will establish a more robust testing procedure.
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Appendix A

Proof of Theorems and Lemmas

A.1 Proof of Theorem 4

For given δ ∈ [0, 1], letM = {i ∈ [1, d] : pj ∈ [0, δ]}. From the equivalence of (3.2) and

(3.3), T ∗q can be considered.

P

(∑
j∈M

wjhq(qj) > t

)
= P

(
d∑
j=1

wjI(pj ≤ δ)hq(qj) > t

)
. (A.1)

Since pj’s follow marginally uniform distribution for all j = 1, . . . , d, for j ∈ M, trivially

note that qj = pj/δ ∼ U [0, 1]. Let w̃j = wjI(pj ≤ δ). Then we can decompose (A.1) as

follows.

P

(
d∑
j=1

w̃jhq(qj) > t

)
(A.2)

= P

(
d∑
j=1

w̃jhq(qj) > t,

d⋃
j=1

{w̃jhq(qj) > (1 + δt)t}

)
(A.3)

+ P

(
d∑
j=1

w̃jhq(qj) > t,

d⋂
j=1

{w̃jhq(qj) ≤ (1 + δt)t}

)
, (A.4)

70



where δt is a constant only depends on t satisfying δt > 0, δt → 0 and δtt→∞ as t→∞.

Letting

A =
d⋃
j=1

Aj =
d⋃
j=1

{
w̃jhq(qj) > (1 + δt)t,

d∑
j=1

w̃jhq(qj) > t

}
,

the probability in the right hand side of (A.3) can be expressed by P (∪dj=1Aj). By the

Bonferroni inequality,

d∑
j=1

P (Aj)−
∑

1≤i<j≤d

P (Ai ∩ Aj) ≤ P

(
d⋃
j=1

Aj

)
≤

d∑
j=1

P (Aj). (A.5)

First consider P (Aj) in (A.5). It can be decomposed as follows.

P (Aj) = P (w̃jhq(qj) > (1 + δt)t)− P

(
w̃jhq(qj) > (1 + δt)t,

d∑
j=1

w̃jhq(qj) ≤ t

)
.

Then

P (w̃jhq(qj) > (1 + δt)t) = P (wjI(pj ≤ δ)hq(qj) > (1 + δt)t)

= P (wjhq(qj) > (1 + δt)t | pj ≤ δ) · P (pj ≤ δ)

=
wjδ

(1 + δt)tπ
+ o(1/t). (A.6)

The last equality holds from lemma 2 and the fact that pj follows the uniform distribution

marginally. To conclude that P (Aj) = (wjδ)/((1 + δt)tπ) + o(1/t), it suffices to show that

P (w̃jhq(qj) > (1 + δt)t,
∑d

j=1 w̃jhq(qj) ≤ t) = o(1/t). Note that

P

(
w̃jhq(qj) > (1 + δt)t,

d∑
j=1

w̃jhq(qj) ≤ t

)
≤ P

(
w̃jhq(qj) > (1 + δt)t,

∑
i 6=j

w̃ihq(qi) ≤ −δtt

)
.

Recall the condition that the largest eigenvalue of Σ is bounded by C0. Let Jj = {i 6= j :

σ2
ij ≥ σ2

0} for some constant 0 < σ0 < 1. Then the cardinality of Jj should be less than or

equal to C0/σ
2
0 . Define δt = (1 + C0/σ

2
0)t−ε for 0 < ε < 1. Then
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{∑
i 6=j

w̃ihq(qi) ≤ −δtt

}

=

∑
i∈Jj

w̃ihq(qi) +
∑
i∈J cj

w̃ihq(qi) ≤ −δtt


⊆


∑
i∈Jj

w̃ihq(qi) ≤ −
(
C0

σ2
0

)
t1−ε

 ∪
∑
i∈J cj

w̃ihq(qi) ≤ −δtt+

(
C0

σ2
0

)
t1−ε


⊆


⋃
i∈Jj

{
w̃ihq(qi) ≤ −

(
C0

σ2
0

)
t1−ε

|Jj|

} ∪
⋃
i∈J cj

{
w̃ihq(qi) ≤

−t1−ε

|J c
j |

}
This implies that

P

(
w̃jhq(qj) > (1 + δt)t,

d∑
j=1

w̃jhq(qj) ≤ t

)

≤
∑
i∈Jj

P

(
w̃jhq(qj) > (1 + δt)t, w̃ihq(qi) ≤ −

(
C0

σ2
0

)
t1−ε

|Jj|

)

+
∑
i∈J cj

P

(
w̃jhq(qj) > (1 + δt)t, w̃ihq(qi) ≤

−t1−ε

|J c
j |

)
≤
∑
i∈Jj

P
(
w̃jhq(qj) > (1 + δt)t, w̃ihq(qi) ≤ −t1−ε

)
+
∑
i∈J cj

P

(
w̃jhq(qj) > (1 + δt)t, w̃ihq(qi) ≤

−t−ε

d

)
= T1 + T2.

First consider T1. By lemma 2, we obtain that for any i ∈ Jj ,

P
(
w̃jhq(qj) > (1 + δt)t, w̃ihq(qi) ≤ −t1−ε

)
= P

(
wjhq(qj) > (1 + δt)t, wihq(qi) ≤ −t1−ε | pj ≤ δ, pi ≤ δ

)
· p(pj ≤ δ, pi ≤ δ)

≤ P
(
wjhq(qj) > (1 + δt)t, wihq(qi) ≤ −t1−ε | pj ≤ δ, pi ≤ δ

)
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The equivalence between hq and hX yields that when pj ≤ δ and pi ≤ δ,

P
(
wjhq(qj) > (1 + δt)t, wihq(qi) ≤ −t1−ε

)
= P

(
pj < δh−1q

(
(1 + δt)t

wj

)
, pi ≥ δh−1q

(
−t1−ε

wi

))
= P

(
hq(pj) > hq

(
δh−1q

(
(1 + δt)t

wj

))
, hq(pi) ≤ hq

(
δh−1q

(
−t1−ε

wi

)))
= P

(
hX(Xj) > hq

(
δh−1q

(
(1 + δt)t

wj

))
, hX(Xi) ≤ hq

(
δh−1q

(
−t1−ε

wi

)))
. (A.7)

The bivariate normality assumption ofX implies thatXi = σijXj+γijZij , where γ2ij = 1−

σ2
ij and Zij is a random variable following a standard normal distribution and independent

of Xj .{
hX(Xi) ≤ hq

(
δh−1q

(
−t1−ε

wi

))}
=

{
hX(σijXj + γijZij) ≤ hq

(
δh−1q

(
−t1−ε

wi

))}
=

{
Zij ≤

1

γij

[
h−1X

[
hq

(
δh−1q

(
−t1−ε

wi

))]
− σijXj

]}
.

Since hX(X) is monotonic increasing in X and hq(q) is monotonic decreasing in q, the Xj

in the event (A.7) can be lower bounded such that

Xj > h−1X

[
hq

(
δh−1q

(
(1 + δt)t

wj

))]
≥ h−1X

[
hq

(
h−1q

(
(1 + δt)t

wj

))]
= h−1X

(
(1 + δt)t

wj

)
.

Hence {
hX(Xi) ≤ hq

(
δh−1q

(
−t1−ε

wi

))}
⊆
{
Zij ≤

1

γij

[
h−1X

[
hq

(
δh−1q

(
−t1−ε

wi

))]
− σijh−1X

(
(1 + δt)t

wj

)]}
. (A.8)

It can be shown that h−1q (−t1−ε/(wi))→ 1 so that for some δ̃,

hq

(
δh−1q

(
−t1−ε

wi

))
= hq(δ(1 + o(1))) ≤ hq(δ̃).
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From properties of trigonometric functions and Mill’s inequality, for |x| > Φ−1(3/4+τ/π)

where 0 < τ < π/4,

hX(x) = tan([2Φ(|x|)− 3/2]π) = tan((p(x)− 1/2)π) =
1

tan(p(x)π)
=

cos(p(x)π)

sin(p(x)π)

≥ cos(p(x)π)

p(x)π
=

cos(p(x)π)

2π(1− Φ(|x|))

≥ cos(π/2− τ)

2π

|x|
φ(x)

≥ cos(π/2− τ)

2π
Φ−1(3/4 + τ/π)ex

2/2

= Cτe
x2/2,

where we denote Cτ = cos(π/2− τ)Φ−1(3/4 + τ/π)/2π. The inverse function of hX can

be bounded by

√
2 log y ≤ h−1X (y) ≤

√
2 log(y/Cτ ) ≤ (1 + o(1))

√
2 log y. (A.9)

Therefore (A.7) can be bounded as follows.

P

(
hX(Xj) > hq

(
δh−1q

(
(1 + δt)t

wj

))
, hX(Xi) ≤ hq

(
δh−1q

(
−t1−ε

wi

)))
≤ P

(
hq(pj) > hq

(
δh−1q

(
(1 + δt)t

wj

))
,

|Zij| ≤
1

γij

[
h−1X (hq(δ̃))− (1 + o(1))σij

√
2 log

(
(1 + δt)t

wj

)])

= P

(
hq(qj) >

(1 + δt)t

wj

)
· P

|Zij| ≤ −(1 + o(1))σij√
1− σ2

ij

√
2 log

(
(1 + δt)t

wj

)
= P

(
hq(qj) >

(1 + δt)t

wj

)
· P

|Zij| ≥ (1 + o(1))σij√
1− σ2

ij

√
2 log

(
(1 + δt)t

wj

)
≤ P

(
hq(qj) >

(1 + δt)t

wj

)
· P

(
|Zij| ≥

(1 + o(1))σ0√
1− σ2

0

√
2 log

(
(1 + δt)t

wj

))
. (A.10)

The last inequality holds since for i ∈ Jj , σ2
ij ≥ σ2

0 . By Mill’s inequality,

P

(
|Zij| ≥

(1 + o(1))σ0√
1− σ2

0

√
2 log

(
(1 + δt)t

wj

))
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= 2

(
1− Φ

(
(1 + o(1))σ0√

1− σ2
0

√
2 log

(
(1 + δt)t

wj

)))

≤ 2

φ

(
(1+o(1))σ0√

1−σ2
0

√
2 log

(
(1+δt)t
wj

))
(

(1+o(1))σ0√
1−σ2

0

√
2 log

(
(1+δt)t
wj

)) .

=
2√
2π

1

f(σ0)
(

(1+δt)t
wj

)f(σ0)2√
2 log

(
(1+δt)t
wj

) .
where we denote f(σ0) = (1 + o(1))σ0/

√
1− σ2

0 . For sufficiently large t, it can be shown

that

P

(
|Zij| ≥

(1 + o(1))σ0√
1− σ2

0

√
2 log

(
(1 + δt)t

wj

))
≤ o(1).

Then (A.10) can be bounded by

P

(
hq(qj) >

(1 + δt)t

wj

)
·P

(
|Zij| ≥

(1 + o(1))σ0√
1− σ2

0

√
2 log

(
(1 + δt)t

wj

))
≤
(wj
tπ

+ o(1/t)
)
·o(1).

Therefore

T1 =

(∑
i∈Jj wj

tπ
+ o(1/t)

)
· o(1). (A.11)

Next, consider T2. By using a similar steps in T1, when pj ≤ δ and pi ≤ δ,

P

(
wjhq(qj) > (1 + δt)t, wihq(qi) ≤

−t1−ε

d

)
= P

(
pj > δh−1q

(
(1 + δt)t

wj

)
, pi ≤ δh−1q

(
−t1−ε

dwi

))
= P

(
hq(pj) > hq

(
δh−1q

(
(1 + δt)t

wj

))
, hq(pi) ≤ hq

(
δh−1q

(
−t1−ε

dwi

)))
= P

(
hX(Xj) > hq

(
δh−1q

(
(1 + δt)t

wj

))
, hX(Xi) ≤ hq

(
δh−1q

(
−t1−ε

dwi

)))
.

The bivariate normality of X also implies that
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{
hX(Xi) ≤ hq

(
δh−1q

(
−t1−ε

dwi

))}
=

{
hX(σijXj + γijZij) ≤ hq

(
δh−1q

(
−t1−ε

dwi

))}
=

{
Zij ≤

1

γij

[
h−1X

[
hq

(
δh−1q

(
−t1−ε

dwi

))]
− σijXj

]}
.

For some δ̄,

hq

(
δh−1q

(
−t1−ε

dwi

))
= hq(δ(1 + o(1))) ≤ hq(δ̄).

Then the same arguments in T1 implies

T2 =

(∑
i∈J cj

wj

tπ
+ o(1/t)

)
· o(1). (A.12)

(A.11) and (A.12) imply that
d∑
j=1

P (Aj) =

(
w∗

tπ
+ o(1/t)

)
· o(1) = o(1/t),

where w∗ =
∑d

j=1wj . Using a similar steps of proving the case of P (Aj), it is easy to

show that for 1 ≤ i 6= j ≤ d, ∑
1≤i<j≤d

P (Ai ∩ Aj) = o(1/t).

Therefore (A.3) can be expressed by

P

(
d∑
j=1

w̃jhq(qj) > t,
d⋃
j=1

{w̃jhq(qj) > (1 + δt)t}

)
=
w∗δ

tπ
+ o(1/t). (A.13)

It remains to show that (A.4) = o(1/t). The proof below is based on Liu and Xie (2020).

Let

B =

{
d∑
j=1

w̃jhq(qj) > t,

d⋂
j=1

{w̃jhq(qj) ≤ (1 + δt)t}

}
.

The event {
∑d

j=1 w̃jhq(qj) > t} implies that there exists at least one j such that w̃jhq(qj) >

t/d. Then it can be shown that

B =
d⋂
j=1

{
d∑
j=1

w̃jhq(qj) > t, w̃jhq(qj) ≤ (1 + δt)t

}
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⊆
d⋂
j=1

{
d∑
j=1

w̃jhq(qj) > t, w̃jhq(qj) ≤ (1 + δt)t,
d⋃
j=1

{
w̃jhq(qj) >

t

d

}}

=
d⋃
j=1

{
d∑
j=1

w̃jhq(qj) > t, w̃jhq(qj) ≤ (1 + δt)t, w̃jhq(qj) >
t

d

}

=
d⋃
j=1

{
d∑
j=1

w̃jhq(qj) > t,
t

d
< w̃jhq(qj) ≤ (1 + δt)t

}
.

Then we have

P (B) ≤
d∑
j=1

P

(
d∑
j=1

w̃jhq(qj) > t,
t

d
< w̃jhq(qj) ≤ (1 + δt)t

)

≤
d∑
j=1

P

(
d∑
j=1

w̃jhq(qj) > t,
t

d
< w̃jhq(qj) ≤ (1− δt)t

)

+
d∑
j=1

P ((1− δt)t < w̃jhq(qj) ≤ (1 + δt)t)

=
d∑
j=1

B1j +
d∑
j=1

B2j.

For j = 1, . . . , d,

B2j = P ((1− δt)t < wjhq(qj) ≤ (1 + δt)t | pj ≤ δ) · P (pj ≤ δ).

If pj ≤ δ, by lemma 2,

P

(
(1− δt)t
wj

< hq(qj) ≤
(1 + δt)t

wj

)
= wj

[
1

(1− δt)t
− 1

(1 + δt)t

]
+O(1/t3).

Hence by letting δt → 0,

d∑
j=1

B2j = w∗δ

[
1

(1− δt)t
− 1

(1 + δt)t

]
+ o(1/t) = o(1/t). (A.14)

Now consider B1j .

P

(
d∑
j=1

w̃jhq(qj) > t,
t

d
< w̃jhq(qj) ≤ (1− δt)t

)
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≤ P

(
d∑
i 6=j

w̃ihq(qi) > δtt,
t

d
< w̃jhq(qj) ≤ (1− δt)t

)
.

As the case of At, define Jj = {i 6= j : σ2
ij ≥ σ2

0} where 0 < σ2
0 < 1. For 1 ≤ j ≤ d, the

cardinality of Jj , |Jj| ≤ C0/σ
2
0 . Letting δt = (1 + C0/σ

2
0)t−ε for constant 0 < ε < 1,{∑

i 6=j

w̃ihq(qi) > δtt

}
=

∑
i∈Jj

w̃ihq(qi) +
∑
i∈J cj

w̃ihq(qi) > δtt


⊆


∑
i∈Jj

w̃ihq(qi) >

(
C0

σ2
0

)
t1−ε

 ∪
∑
i∈J cj

w̃ihq(qi) > δtt−
(
C0

σ2
0

)
t1−ε


⊆


⋃
i∈Jj

{
w̃ihq(qi) >

(
C0

σ2
0

)
t1−ε

|Jj|

} ∪
⋃
i∈J cj

{
w̃ihq(qi) >

t1−ε

|J c
j |

}
Then we have, since |Jj| ≤ C0/σ

2
0 and |J c

j | ≤ d,

P

(
d∑
i 6=j

w̃ihq(qi) > δtt,
t

d
< w̃jhq(qj) ≤ (1− δt)t

)

≤
∑
i∈Jj

P

(
t

d
< w̃jhq(qj) ≤ (1− δt)t, w̃ihq(qi) >

(
C0

σ2
0

)
t1−ε

|Jj|

)

+
∑
i∈J cj

P

(
t

d
< w̃jhq(qj) ≤ (1− δt)t, w̃ihq(qi) >

t1−ε

|J c
j |

)

≤
∑
i∈Jj

P

(
t

d
< w̃jhq(qj) ≤ (1− δt)t, w̃ihq(qi) > t1−ε

)
+
∑
i∈J cj

P

(
t

d
< w̃jhq(qj) ≤ (1− δt)t, w̃ihq(qi) >

t−ε

d

)
= R1 +R2.

For any i ∈ Jj , note that

P

(
t

d
< w̃jhq(qj) ≤ (1− δt)t, w̃ihq(qi) > t1−ε

)
= P

(
t

d
< w̃jhq(qj) ≤ (1− δt)t, w̃ihq(qi) > t1−ε|pj ≤ δ, pi ≤ δ

)
· P (pj ≤ δ, pi ≤ δ)
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≤ P

(
t

d
< wjhq(qj) ≤ (1− δt)t, wihq(qi) > t1−ε|pj ≤ δ, pi ≤ δ

)
. (A.15)

Equivalence relation between hq and hX implies that, when pi ≤ δ and pj ≤ δ,

(A.15)

≤ P

(
hX(Xi) > hq

[
δh−1q

(
t1−ε

wi

)]
, hq

[
δh−1q

(
t

wjd

)]
< hX(Xj) ≤ hq

[
δh−1q

(
(1− δt)t
wj

)])
.

(A.16)

The bivariate normality assumption can be used to bound (A.16). Specifically, it can be

expressed that Xi = σijXj + γijZij where γ2ij = 1− σ2
ij and Zij follows a standard normal

distribution and is independent of Xi. Since we have, in the event (A.16),{
hX(Xi) > hq

[
δh−1q

(
t1−ε

wi

)]}
=

{
|σijXj + γijZij| > h−1X

(
hq

[
δh−1q

(
t1−ε

wi

)])}
⊆
{
|Zij| >

1

γij

[
h−1X

(
hq

[
δh−1q

(
t1−ε

wi

)])
− σij|Xj|

]}
⊆
{
|Zij| >

1

γij

[
h−1X

(
hq

[
δh−1q

(
t1−ε

wi

)])
− σijh−1X

(
hq

[
δh−1q

(
(1− δt)t
wj

)])]}
.

By using bounds of the inverse function h−1X , (A.9),

h−1X

(
hq

[
δh−1q

(
t1−ε

wi

)])
− σijh−1X

(
hq

[
δh−1q

(
(1− δt)t
wj

)])
≤
√

2 log(hq(δh−1q (t1−ε/wi)))− (1 + o(1))σij

√
2 log(hq(δh−1q ((1− δt)t/wj)))

≤ {κt − (1 + o(1))σij} ·
√

2 log(hq(δh−1q ((1− δt)t/wj))),

where κt is a constant depending t and δ. Specifically, as t goes to infinity,√
2 log(hq(δh−1q (t1−ε/wi)))√

2 log(hq(δh−1q ((1− δt)t/wj)))
→ 0,
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which implies that there is a constant κt such that for sufficiently large t,√
2 log(hq(δh−1q (t1−ε/wi)))√

2 log(hq(δh−1q ((1− δt)t/wj)))
≤ κt and κt > (1 + o(1))σij.

Hence we have that

P

(
|Zij| >

1

γij

[
h−1X

(
hq

[
δh−1q

(
t1−ε

wi

)])
− σijh−1X

(
hq

[
δh−1q

(
(1− δt)t
wj

)])])
= o(1).

Then (A.16) can be bounded as follows.

(A.16)

≤ P

(
hq

[
δh−1q

(
t

wjd

)]
< hX(Xj)

)
× P

(
|Zij| >

1

γij

[
h−1X

(
hq

[
δh−1q

(
t1−ε

wi

)])
− σijh−1X

(
hq

[
δh−1q

(
(1− δt)t
wj

)])])
≤
(
wjd

tπ
+O(1/t3)

)
· o(1).

Therefore we have

R1 ≤
∑
i∈Jj

(
wjd

tπ
+O(1/t3)

)
· o(1) ≤ max

i∈Jj

{(
C0

σ2
0

)(
wjd

tπ
+O(1/t3)

)}
· o(1) = o(1/t).

As the same way, we can obtain R2 ≤ o(1/t). With (A.14), we can conclude that P (B) =

o(1/t) and from (A.13), P (A) = w∗δ
tπ

+ o(1/t) so that

lim
d→∞

P (T ∗X(X) > t)

P (C(0,w∗δ) > t)
= 1.

A.2 Proof of Theorem 3

In the proof of theorem 4, it has been shown that for given δ ∈ [0, 1],

P

(∑
j∈M

wjhq(qj) > t

)
= P

(
d∑
j=1

wjI(pj ≤ δ)hq(qj) > t

)
=: P

(
d∑
j=1

w̃jhq(qj) > t

)
,
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where w̃j = wjI(pj ≤ δ). We have shown that it is decomposed as follows.

P

(
d∑
j=1

w̃jhq(qj) > t

)
= P

(
d∑
j=1

w̃jhq(qj) > t,

d⋃
j=1

{w̃jhq(qj) > (1 + δt)t}

)
(A.17)

+ P

(
d∑
j=1

w̃jhq(qj) > t,

d⋂
j=1

{w̃jhq(qj) ≤ (1 + δt)t}

)
, (A.18)

=: P (A) + P (B),

where δt is a constant only depends on t satisfying δt > 0, δt → 0 and δtt→∞ as t→∞.

For the P (A), by using the bonferroni inequality, if we let

A =
d⋃
j=1

Aj =
d⋃
j=1

{
w̃jhq(qj) > (1 + δt)t,

d∑
j=1

w̃jhq(qj) > t

}
,

we have
d∑
j=1

P (Aj)−
∑

1≤i<j≤d

P (Ai ∩ Aj) ≤ P

(
d⋃
j=1

Aj

)
≤

d∑
j=1

P (Aj).

First consider P (Aj). It can be decomposed as follows.

P (Aj) = P (w̃jhq(qj) > (1 + δt)t)− P

(
w̃jhq(qj) > (1 + δt)t,

d∑
j=1

w̃jhq(qj) ≤ t

)
.

And we proved that

P (w̃jhq(qj) > (1 + δt)t) =
wjδ

(1 + δt)tπ
+ o(1/t).

To conclude that P (Aj) = (wjδ)/((1+δt)tπ)+o(1/t), it suffices to show that P (w̃jhq(qj) >

(1 + δt)t,
∑d

j=1 w̃jhq(qj) ≤ t) = o(1/t). Note that

P

(
w̃jhq(qj) > (1 + δt)t,

d∑
j=1

w̃jhq(qj) ≤ t

)
≤ P

(
w̃jhq(qj) > (1 + δt)t,

∑
i 6=j

w̃ihq(qi) ≤ −δtt

)
.

Note that since {∑
i 6=j

w̃ihq(qi) ≤ −δtt

}
⊆
⋃
i 6=j

{
w̃ihq(qi) ≤ −

δtt

d− 1

}
,
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we have,

P

(
w̃jhq(qj) > (1 + δt)t,

∑
i 6=j

w̃ihq(qi) ≤ −δtt

)

≤
∑
i 6=j

P

(
w̃jhq(qj) > (1 + δt)t, w̃ihq(qi) ≤ −

δtt

d− 1

)
.

It can be shown that

P

(
w̃jhq(qj) > (1 + δt)t, w̃ihq(qi) ≤ −

δtt

d− 1

)
= P

(
wjhq(qj) > (1 + δt)t, wihq(qi) ≤ −

δtt

d− 1
| pj ≤ δ, pi ≤ δ

)
· p(pj ≤ δ, pi ≤ δ)

≤ P

(
wjhq(qj) > (1 + δt)t, wihq(qi) ≤ −

δtt

d− 1
| pj ≤ δ, pi ≤ δ

)
.

The equivalence between hq and hX yields that when pj ≤ δ and pi ≤ δ,

P

(
wjhq(qj) > (1 + δt)t, wihq(qi) ≤ −

δtt

d− 1

)
= P

(
pj < δh−1q

(
(1 + δt)t

wj

)
, pi ≥ δh−1q

(
−δtt

(d− 1)wi

))
= P

(
hq(pj) > hq

(
δh−1q

(
(1 + δt)t

wj

))
, hq(pi) ≤ hq

(
δh−1q

(
−δtt

(d− 1)wi

)))
= P

(
hX(Xj) > hq

(
δh−1q

(
(1 + δt)t

wj

))
, hX(Xi) ≤ hq

(
δh−1q

(
−δtt

(d− 1)wi

)))
.

(A.19)

The bivariate normality assumption ofX implies thatXi = σijXj+γijZij , where γ2ij = 1−

σ2
ij and Zij is a random variable following a standard normal distribution and independent

of Xj .

{
hX(Xi) ≤ hq

(
δh−1q

(
−δtt

(d−1)wi

))}
=

{
hX(σijXj + γijZij) ≤ hq

(
δh−1q

(
−δtt

(d− 1)wi

))}
=

{
Zij ≤

1

γij

[
h−1X

[
hq

(
δh−1q

(
−δtt

(d− 1)wi

))]
− σijXj

]}
.
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By the monitonicities of hX and hq, the Xj in the event (A.19) can be lower bounded

as follows.

Xj > h−1X

[
hq

(
δh−1q

(
(1 + δt)t

wj

))]
≥ h−1X

[
hq

(
h−1q

(
(1 + δt)t

wj

))]
= h−1X

(
(1 + δt)t

wj

)
.

Hence we have,{
hX(Xi) ≤ hq

(
δh−1q

(
−δtt

(d− 1)wi

))}
⊆
{
Zij ≤

1

γij

[
h−1X

[
hq

(
δh−1q

(
−δtt

(d− 1)wi

))]
− σijh−1X

(
(1 + δt)t

wj

)]}
. (A.20)

As δtt→∞, it can be shown that

h−1q

(
−δtt

(d− 1)wi

)
→ 1,

so that for some δ̌,

hq

(
δh−1q

(
−δtt

(d− 1)wi

))
≤ hq(δ̌).

On the other hand, as δtt→∞, (1 + δt)t/wj →∞ implies that

h−1X

(
(1 + δt)t

wj

)
→∞.

Therefore the probability of the event in (A.20) can be bounded by o(1). By the bivariate

normality assumption, (A.19) can be bounded as follows.

P

(
hX(Xj) > hq

(
δh−1q

(
(1 + δt)t

wj

))
, hX(Xi) ≤ hq

(
δh−1q

(
−δtt

(d− 1)wi

)))
≤ P

(
hq(pj) > hq

(
δh−1q

(
(1 + δt)t

wj

))
, Zij ≤

1

γij

[
h−1X

[
hq(δ̌)

]
− σijh−1X

(
(1 + δt)t

wj

)])
= P

(
hq(qj) >

(1 + δt)t

wj

)
· P
(
Zij ≤

1

γij

[
h−1X

[
hq(δ̌)

]
− σijh−1X

(
(1 + δt)t

wj

)])
= o(1/t) · o(1)

= o(1/t).
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Now, we can conclude that

d∑
j=1

P (Aj) =
w∗δ

tπ
+ o(1/t),

where w∗ =
∑d

j=1wj . By using a similar stpes, it can be shown that

∑
1≤i<j≤d

P (Ai ∩ Aj) = o(1/t).

Therefore

P (A) =
w∗δ

tπ
+ o(1/t).

It remains to show that P (B) = o(1/t). Recall that, in (A.18),

B =

{
d∑
j=1

w̃jhq(qj) > t,
d⋂
j=1

{w̃jhq(qj) ≤ (1 + δt)t}

}
.

As in the proof of theorem 4, the event B can be expressed as follows.

B =
d⋂
j=1

{
d∑
j=1

w̃jhq(qj) > t, w̃jhq(qj) ≤ (1 + δt)t

}

⊆
d⋂
j=1

{
d∑
j=1

w̃jhq(qj) > t, w̃jhq(qj) ≤ (1 + δt)t,
d⋃
j=1

{
w̃jhq(qj) >

t

d

}}

=
d⋃
j=1

{
d∑
j=1

w̃jhq(qj) > t, w̃jhq(qj) ≤ (1 + δt)t, w̃jhq(qj) >
t

d

}

=
d⋃
j=1

{
d∑
j=1

w̃jhq(qj) > t,
t

d
< w̃jhq(qj) ≤ (1 + δt)t

}
.

Then we have

P (B) ≤
d∑
j=1

P

(
d∑
j=1

w̃jhq(qj) > t,
t

d
< w̃jhq(qj) ≤ (1 + δt)t

)

≤
d∑
j=1

P

(
d∑
j=1

w̃jhq(qj) > t,
t

d
< w̃jhq(qj) ≤ (1− δt)t

)

+
d∑
j=1

P ((1− δt)t < w̃jhq(qj) ≤ (1 + δt)t)
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=
d∑
j=1

B1j +
d∑
j=1

B2j.

We have shown that
d∑
j=1

B2j = o(1/t)

in the proof of theorem 4, and it does not depend on d. It means that for fixed d, it also can

be shown
d∑
j=1

B2j = o(1/t).

Now consider B1j .

P

(
d∑
j=1

w̃jhq(qj) > t,
t

d
< w̃jhq(qj) ≤ (1− δt)t

)

≤ P

(
d∑
i 6=j

w̃ihq(qi) > δtt,
t

d
< w̃jhq(qj) ≤ (1− δt)t

)

≤ P

(
d⋃
i 6=j

{
w̃ihq(qi) >

δtt

d− 1
,
t

d
< w̃jhq(qj) ≤ (1− δt)t

})

≤
d∑
i 6=j

P

(
w̃ihq(qi) >

δtt

d− 1
,
t

d
< w̃jhq(qj) ≤ (1− δt)t

)

=
d∑
i 6=j

P1,ij.

Note that

P1,ij = P

(
w̃ihq(qi) >

δtt

d− 1
,
t

d
< w̃jhq(qj) ≤ (1− δt)t

∣∣∣∣ pj ≤ δ, pi ≤ δ

)
· P (pj ≤ δ, pi ≤ δ)

≤ P

(
wihq(qi) >

δtt

d− 1
,
t

d
< wjhq(qj) ≤ (1− δt)t

∣∣∣∣ pj ≤ δ, pi ≤ δ

)
.

Now we consider only the case that pi ≤ δ and pj ≤ δ for 1 ≤ i 6= j ≤ d. The equivalence

relation between hq and hX implies that,
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P1,ij

≤ P
(
hX(Xi) > hq

[
δh−1q

(
δtt

wi(d−1)

)]
, hq

[
δh−1q

(
t

wjd

)]
< hX(Xj) ≤ hq

[
δh−1q

(
(1−δt)t
wj

)])
.

(A.21)

By the assumption of bivariate normality, Xi = σijXj +γijZij where σ2
ij +γ2ij = 1 and Zij

follows a standard normal distribution and is independent of Xi. If σij = 0, then Xi and Xj

are independent so that

(A.21) ≤ P

(
hX(Xi) > hq

[
δh−1q

(
δtt

wi(d− 1)

)])
· P
(
hq

[
δh−1q

(
t

wjd

)]
< hX(Xj)

)
= P

(
hq(qi) >

δtt

wi(d− 1)

)
· P
(
hq(qj) >

t

wjd

)
= o(1/t).

Hence, suppose that 0 < |σij| < 1. In the event in (A.21),{
hX(Xi) > hq

[
δh−1q

(
δtt

wi(d− 1)

)]}
=

{
|σijXj + γijZij| > h−1X

(
hq

[
δh−1q

(
δtt

wi(d− 1)

)])}
⊆
{
|Zij| >

1

γij

[
h−1X

(
hq

[
δh−1q

(
δtt

wi(d− 1)

)])
− σij|Xj|

]}
⊆
{
|Zij| >

1

γij

[
h−1X

(
hq

[
δh−1q

(
δtt

wi(d− 1)

)])
− σijh−1X

(
hq

[
δh−1q

(
(1− δt)t
wj

)])]}
.

(A.22)

As t→∞, by choosing δt such that δtt→∞, since

h−1q

(
δtt

wi(d− 1)

)
→ 0,

we have

h−1X

(
hq

[
δh−1q

(
δtt

wi(d− 1)

)])
→∞.
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By lemma 4 below, as t→∞,

hX

(
σijh

−1
X

(
hq

[
δh−1q

(
(1− δt)t
wj

)]))
≤

hX

(
h−1X

(
hq

[
δh−1q

(
(1−δt)t
wj

)]))
ca

(
h−1X

(
hq

[
δh−1q

(
(1−δt)t
wj

)]))2
=

hq

[
δh−1q

(
(1−δt)t
wj

)]
ca

(
h−1X

(
hq

[
δh−1q

(
(1−δt)t
wj

)]))2 .
We can consider an additional condition of δt in addition to δtt→∞ such that

hq

[
δh−1q

(
(1−δt)t
wj

)]
ca

(
h−1X

(
hq

[
δh−1q

(
(1−δt)t
wj

)]))2
hq

[
δh−1q

(
δtt

wi(d−1)

)] → 0,

which implies that

hX

(
σijh

−1
X

(
hq

[
δh−1q

(
(1− δt)t
wj

)]))
≤ o

(
hq

[
δh−1q

(
δtt

wi(d− 1)

)])
.

Then we have that

(A.22) ⊆
{
|Zij| >

1

γij

[
h−1X

(
hq

[
δh−1q

(
δtt

wi(d− 1)

)])
− h−1X

(
o

(
hq

[
δh−1q

(
δtt

wi(d− 1)

)]))]}
.

Therefore we can conclude that

P1,ij

≤ P

(
hX(Xi) > hq

[
δh−1q

(
δtt

wi(d− 1)

)])
× P

(
|Zij| >

1

γij

[
h−1X

(
hq

[
δh−1q

(
δtt

wi(d− 1)

)])
− h−1X

(
o

(
hq

[
δh−1q

(
δtt

wi(d− 1)

)]))])
= o(1/t).

Hence we can obtain that

d∑
j=1

B1j =
d∑
j=1

d∑
i 6=j

P1,ij = o(1/t),
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which implies that

P (B) = o(1/t),

and the theorem is proved.

Lemma 4 (Liu and Xie, 2020). For any constant 0 < |a| < 1,

lim
x→∞

hX(x)

x2hX(ax)
> ca > 0,

where ca is a constant only depend on a.

A.3 Proof of Theorem 5

Let N = Sc be a set of null hypotheses.

T ∗q (q) =
∑
j∈M

wjhq(qj)

=
∑

j∈M∩S

wjhq(qj) +
∑

j∈M∩N

wjhq(qj)

=
∑

j∈M∩S

wjhq(qj) +
∑

j∈M∩N

wjhq(qj).

It suffices to show that under H1,

∑
j∈M∩S

wjhq(qj)→∞ (A.23)

and ∑
j∈M∩N

wjhq(qj) > −∞. (A.24)
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By lemma 5, it can be expressed that

∑
j∈M∩S

wjhq(qj) =
∑

j∈M∩S

w∗jhq(pj) =
∑

j∈M∩S

w∗jhX(Xj)

and ∑
j∈M∩N

wjhq(qj) =
∑

j∈M∩N

w∗jhq(pj) =
∑

j∈M∩N

w∗jhX(Xj).

It follows from lemma 6 that (A.24) holds.

For j ∈M, pj < δ implies that

|Xj| > 1− δ

2
.

Using the fact, we have

∑
j∈M∩S

w∗jhX(Xj) ≥ w∗j′hX (max|Xj|) + (|M ∩ S| − 1)w∗i′hX(min|Xj|),

where j′ is an index with |Xj′ | = maxj∈M∩S |Xj| and i′ is an index with |Xi′ | = minj∈M∩S |Xj|.

Lemma 5 (Mean Value Theorem).

T ∗q (q) =
m∑
j=1

w∗jh(pj),

where for constants δ < δ∗j < 1, j = 1, . . . ,m and 1 ≤ c ≤ 8,

w∗j =
1

m

[
1− c(1− δ)δ

(δ∗j )
2

]
.

Proof.

T ∗X(X) = T ∗p (q) =
1

m

m∑
j=1

hp(qj)

Note that by the mean value theorem, there are constants δ∗j for j = 1, . . . ,m, with δ <

δ∗j < 1 such that

h′(q∗j ) =
h(qj)− h(pj)

qj − pj
=
h(qj)− h(pj)

(1− δ)qj
,
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so that h(qj) = h(pj) + (1− δ)qjh′(q∗j ). We can find δ∗j satisfying q∗j = δ∗j qj . Since

h(δ∗j qj) =
sin((1/2− δ∗j qj)π)

cos((1/2− δ∗j qj)π)

and its derivative implies that

h′(δ∗j qj) = − π

cos2((1/2− δ∗j qj)π)
,

we obatin

T ∗p (q) =
1

m

m∑
j=1

hp(pj)−
m∑
j=1

(1− δ)qjπ
m sin2(δ∗j qjπ)

.

Also specific values of δ∗j , j = 1, . . . ,m can be calculated as follows.

δ∗j =
1

qjπ
arcsin

(√
π(qj − pj)

h(pj)− h(qj)

)
=

1

qjπ
arcsin

(√
π(pj/δ − pj)

h(pj)− h(pj/δ)

)
.

Here we use notations T ∗ and h instead of T ∗p and hp for notational convenience. By using

properties of trigonometric functions,

T ∗(q) =
1

m

∑
j∈M

h(qj)

=
1

m

∑
j∈M

h(pj)−
1

m

∑
j∈M

(1− δ)qjπ
sin2(δ∗j qjπ)

≤ 1

m

∑
j∈M

h(pj)−
1

m

∑
j∈M

(1− δ)qjπ
(δ∗j qjπ)2

=
1

m

∑
j∈M

h(pj)−
1

m

∑
j∈M

1− δ
(δ∗j )

2qjπ

=
1

m

∑
j∈M

h(pj)−
1

m

∑
j∈M

(1− δ)δ
(δ∗j )

2pjπ

≤ 1

m

∑
j∈M

h(pj)−
1

m

∑
j∈M

(1− δ)δ
(δ∗j )

2 tan(pjπ)

=
1

m

∑
j∈M

h(pj)−
1

m

∑
j∈M

(1− δ)δ
(δ∗j )

2
h(pj)
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=
1

m

∑
j∈M

[
1− (1− δ)δ

(δ∗j )
2

]
h(pj)

The lower bound of T ∗(q) can be obtained similary as follows.

T ∗(q) =
1

m

∑
j∈M

h(pj)−
1

m

∑
j∈M

(1− δ)qjπ
sin2(δ∗j qjπ)

≥ 1

m

∑
j∈M

h(pj)−
1

m

∑
j∈M

(1− δ)qjπ
tan(δ∗j qjπ/2) sin(δ∗j qjπ)

≥ 1

m

∑
j∈M

h(pj)−
1

m

∑
j∈M

2(1− δ)qjπ
(δ∗j qjπ) sin(δ∗j qjπ)

=
1

m

∑
j∈M

h(pj)−
1

m

∑
j∈M

2(1− δ)
δ∗j sin(δ∗j qjπ)

≥ 1

m

∑
j∈M

h(pj)−
1

m

∑
j∈M

4(1− δ)
δ∗j (δ

∗
j qjπ)

=
1

m

∑
j∈M

h(pj)−
1

m

∑
j∈M

4(1− δ)δ
(δ∗j )

2pjπ

=
1

m

∑
j∈M

h(pj)−
1

m

∑
j∈M

8(1− δ)δ
(δ∗j )

2 sin(2pjπ)

≥ 1

m

∑
j∈M

h(pj)−
1

m

∑
j∈M

8(1− δ)δ
(δ∗j )

2 tan(pjπ)

=
1

m

∑
j∈M

h(pj)−
1

m

∑
j∈M

8(1− δ)δ
(δ∗j )

2
h(pj)

=
1

m

∑
j∈M

[
1− 8(1− δ)δ

(δ∗j )
2

]
h(pj)

Hence we obtain
m∑
j=1

(
1

m
− 8(1− δ)δ

m(δ∗j )
2

)
h(pj) ≤ T ∗(q) ≤

m∑
j=1

(
1

m
− (1− δ)δ

m(δ∗j )
2

)
h(pj).

Lemma 6. Let S = {i ∈ [d] : µi 6= 0} with |S| = dγ for γ ∈ (0, 1/2). Let N = Sc. Then

with probability tending to 1, ∑
j∈M∩N

w∗jhX(Xj) > −∞.
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Proof. Note that |N | = d− dγ .

∑
j∈M∩N

w∗jh(Xj) ≥ |M∩N| · w∗i′hX
(

min
j∈M∩N

|Xj|
)
,

where i′′ is an index with |Xi′′ | = minj∈M∩N |Xj|. To obtain the lower bound, we have

P

(
min
i∈Sc
|Xi| < εd

)
≤

∑
i∈Sc

P (|Xi| < εd)

= (d− dγ)P (|Xi| < εd)

= (d− dγ) {Φ(εd)− Φ(−εd)}

≤ 2φ(−εd)(d− dγ)εd

≤ 2φ(0)dγεd

≤ dγεd.

By letting εd = dγ0 with γ0 < −1/2,

P

(
min
i∈Sc
|Xi| < εd

)
= o(1).

Hence with probability tending to 1,

h

(
min
i∈Sc
|Xi|

)
> −∞,

which implies

|M ∩N| · w∗i′hX
(

min
j∈M∩N

|Xj|
)
> −∞.
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Appendix B

Supplementary Analysis

B.1 t-Distribution

To investigate the null distribution and the power of the proposed method when the nor-

mality assumption is violated, suppose that X ∼ td(µ,Σ). The vector X following the

multivariate t-distribution is defined as follows.

X − µ :=
Y√
χ2
d/d

,

where Y ∼ Nd(0,Σ) and χ2
d is a random variable following χ2 distribution with d degree of

freedom. For the multivariate distribution, corresponding p-values are defined as follows.

pi = 2[1− Td(|Xi|)], i = 1, . . . , d,

where Td is the cumulative distribution function of t-distribution.

Figure 14 presents the type I error of the proposed method and the Cauchy combination

test where Σ is a compound symmetry with d = 300. Similar to Figure 7, the type I error of

the proposed method is well controlled, although the Cauchy combination test fails to con-
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trol the type I error. The pattern of boxplots that the type I error of the Cauchy combination

test increases as the correlation increases is similar to that of figure 7.

Figure 15 shows the power of the proposed method compared to other global testing

procedures. Under the t-distribution assumption, the power of the proposed method is also

similar to that under the normal distribution assumption. The proposed method has the

comparable power compared to all other methods.

cct_rho_0 adapcct_rho_0 cct_rho_01 adapcct_rho_01 cct_rho_02 adapcct_rho_02 cct_rho_03 adapcct_rho_03

0.
04

5
0.

05
0

0.
05

5
0.

06
0

0.
06

5
0.

07
0

0.
07
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Figure 14: Box plots of type I error at level 0.05 for dimension d = 300 and CS with

correlation range 0 to 0.5. Red boxes are Adaptive thresholding CCT with thresholding 0.1

and blue boxes are CCT.
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B.2 Comparison with Hartung’s method

Recall the weighted inverse normal statistic proposed by Hartung (1999), which is defined

in (2.10),

t(ρ̂∗, κ) =

∑d
i=1 λiXi√∑d

i=1 λ
2
i +

[(∑d
i=1 λi

)2
−
∑d

i=1 λ
2
i

]
·
{
ρ̂∗ + κ ·

√
2
d+1

(1− ρ̂∗)
} ,

where ρ̂∗ = max{−1/(d− 1), ρ̂}, κ > 0 and

ρ̂ = 1− 1

d− 1

d∑
i=1

(
Xi −

1

d

d∑
i=1

Xi

)2

,

which is an unbiased estimator of ρ. For the compound symmetry dependence structure,

we mentioned that t(ρ̂∗, κ) follows the standard normal distribution approximately, under

the null.

Demetrescu et al. (2006) extended Hartung’s method to allow for a relaxed type of

correlation matrix. They showed that if the average of elements of the correlation matrix

converges to a constant and deviations from the convergence value are small, Hartung’s

method also can be applied. Indeed, for Σ = (Cov(Xi, Xj))i,j=1,...,d = (ρij)i,j=1,...,d, assume

that

lim
d→∞

1

d(d− 1)

∑∑
i 6=j

ρij = ρ̃, (B.1)

where ρ̃ ∈ (0, 1) and that

lim
d→∞

1

d(d− 1)

∑∑
i 6=j

(ρij − ρ̃)2 = 0. (B.2)

Then if λi = λ for all i = 1, . . . , d in t(ρ̂∗, κ), then t(ρ̂∗, κ) is still approximately standard

normally distributed.

Figure 16 shows the type I errors of the Cauchy combination test, Hartung’s method and

the proposed method at confidence level 0.05 for d = 300. The correlation coefficient, ρ,
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of the compound symmetry structure varies from 0 to 0.4. Unlike the Cauchy combination

test, Hartung’s method is expected to work well for an highly correlated case than the weak

dependent case in that it uses the estimated dependence structure. Figure 16 supports this

expectation. As ρ increases, Hartung’s method control the type I error well, although it fails

to control the type I error for small ρ.

Figures 17, 18 and 19 show comparisons of the power of Hartung’s method and other

methods, under the compound symmetry, polynomially decaying and exponentially decay-

ing dependence structures, respectively. For the compound symmetry structure, the power

of Hartung’s method is robust to the correlation coefficient. On the other hand, as it uses

all data, Hartung’s method is powerful on the dense signals setting, although as the sparsity

of signals increases, it is less powerful than other methods. By definition, the polynomially

and exponentially decaying dependence structures cannot satisfy two conditions, (B.1) and

(B.2). So it is expected that Hartung’s method cannot detect signals in two dependence

structures and Figures 18 and 19 support this speculation.
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Figure 16: Box plots of type I error at level 0.05 for dimension d = 300 and CS with

correlation range 0 to 0.5. Yellow boxes are Adaptive thresholding CCT with thresholding

0.1 and blue boxes are CCT. Red boxes indicate Hartung’s method
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국문초록

크기가약하고희박한신호들을집합하기위해개별적으로구해진유의확률들을결

합하는방법은고차원대규모자료분석에있어매우중요한주제중하나이다.개별적으

로구해진유의확률또는검정통계량은때때로밀접하게연관되어있는경우가많은데,

많은 경우의 유의확률 결합 방법들은 이러한 연관성을 고려하지 않고 동일하며 독립적

이라는 가정하에서 개발된 경우가 많다. 코쉬 결합 검정은 이러한 방법들과는 다르게

임의의 연관성 구조에 영향을 받지 않고 개별 유의확률들을 결합할 수 있게끔 개발된

방법이지만 실제로는 변수들 사이의 연관성이 증가함에 따라 여전히 제1종 오류가 증

가한다는 단점이 있다. 본 학위논문은 임의의 연관성 구조하에서 얻어진 유의확률들의

분계점을이용하여코쉬결합검정을확장한새로운전역가설검정방법을제안한다.임

의의연관성구조하에서,본학위논문에서제안된방법의꼬리확률이점근적으로코쉬

분포의꼬리확률과일치함을보인다.또한강한희박성조건하에서제안된방법의검정

력이점근적으로최적의신호탐지경계를달성할수있음을보인다.대규모의모의실험

결과를통해제안된방법의검정력이실제로변수들사이의상관구조에강건하며,신호

가희박한상황에서다른방법들에비해검정력이높다는사실을제시한다.마지막으로

사례연구로서,제안된방법을염증성장질환 (Inflammatory bowel disease, IBD)전체유

전체상관분석연구에적용한다.

주요어:유의확률결합,코쉬분포,전역가설검정,전체유전체상관분석연구

학번: 2016-30092
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