184 research outputs found

    ์•„์ด์†Œ์‚ฌ์ด์•„๋‚˜์ด๋“œ์™€ ์•Œ๋ฆด ํ™”ํ•ฉ๋ฌผ์˜ ์ด‰๋งค์  ๋ณ€ํ™˜ ๊ฐœ๋ฐœ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ž์—ฐ๊ณผํ•™๋Œ€ํ•™ ํ™”ํ•™๋ถ€, 2020. 8. ์ดํ™๊ทผ.Catalytic transformations of the organic compounds provide useful strategies to produce valuable structures efficiently. The control of catalytic conditions, based on the chemical property of the substrate and the previously established strategies, is the key to achieving the unprecedented and novel organic transformations. This thesis covers the discovery of an array of catalytic transformations of isocyanides and allylic compounds toward the synthetically meaningful chemical structures. In Part 1, the chemistry and the catalytic utilization of isocyanides will be discussed. The ability of the terminal carbon of the isocyanide as both a nucleophile and an electrophile has enabled the various types of activation modes in the catalysis. Chapter 1 describes the detailed mechanistic strategies for the activation of the terminal carbon of isocyanides, together with the representative examples reported so far. Chapters 2 and 3 introduce a new approach for the catalytic nucleophilic activation of the isocyanides. Especially, the utilization of N-heterocyclic carbene (NHC) as an organocatalyst for the transformations of isocyanides will be demonstrated. The reactions with ketones provide several types of enaminones in high efficiency (Chapter 2), and the novel formamidine structure is accessible through the reaction between indoles and isocyanides using the developed activation strategy (Chapter 3). Part 2 discusses the achievement of the catalytic C(sp3)โ€“H bond functionalizations via visible light photoredox catalysis. The use of visible light as an energy source to conduct a challenging C(sp3)โ€“H bond activation reaction has been widely investigated in the organic synthesis. Chapter 4 reviews the currently established approaches for the C(sp3)โ€“H bond functionalizations with visible light photoredox catalysis, based on the categorized strategies and the representative transformations. Chapter 5 discloses a new method to synthesize allyl thioethers from simple allylic compounds and disulfides via visible light photoredox catalysis. The design of the target catalytic cycle for the prevention of the side reaction (hydrothiolation) enabled the selective allylic C(sp3)โ€“H bond thiolation, and the in-depth mechanistic studies expanded the substrate scope through the introduction of tailored unsymmetrical disulfides.์œ ๊ธฐ ํ™”ํ•ฉ๋ฌผ์˜ ์ด‰๋งค์  ๋ณ€ํ™˜์€ ๊ฐ€์น˜๊ฐ€ ๋†’์€ ๊ตฌ์กฐ๋ฅผ ํ•ฉ์„ฑํ•  ์ˆ˜ ์žˆ๋Š” ์œ ์šฉํ•œ ์ „๋žต์ด๋‹ค. ๊ธฐ์งˆ์˜ ํ™”ํ•™์  ํŠน์„ฑ๊ณผ ์ด์ „์— ๊ตฌ์ถ•๋˜์–ด ์˜จ ์ „๋žต๋“ค์„ ๊ธฐ๋ฐ˜์œผ๋กœ ์ด‰๋งค ์กฐ๊ฑด์„ ๊ตฌ์„ฑํ•˜์—ฌ, ์ƒˆ๋กญ๊ณ  ๋…์ฐฝ์ ์ธ ์œ ๊ธฐ ๋ณ€ํ™˜๋“ค์„ ๊ฐœ๋ฐœํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์•„์ด์†Œ์‚ฌ์ด์•„๋‚˜์ด๋“œ์™€ ์•Œ๋ฆด ํ™”ํ•ฉ๋ฌผ์˜ ์ƒˆ๋กœ์šด ์ด‰๋งค์  ๋ณ€ํ™˜์˜ ๊ฐœ๋ฐœ์„ ํ†ตํ•ด ํ•ฉ์„ฑ์ ์œผ๋กœ ์œ ์šฉํ•œ ํ™”ํ•™ ๊ตฌ์กฐ๋ฅผ ์–ป๊ธฐ ์œ„ํ•œ ๊ณผ์ •์— ๋Œ€ํ•ด ๋…ผ์˜ํ•œ๋‹ค. ๋…ผ๋ฌธ์˜ ์ฒซ ๋ถ€๋ถ„์—์„œ๋Š” ์•„์ด์†Œ์‚ฌ์ด์•„๋‚˜์ด๋“œ์˜ ํ™”ํ•™์  ํŠน์„ฑ๊ณผ ์ด‰๋งค์  ํ™œ์šฉ์— ๋Œ€ํ•ด ๋…ผ์˜ํ•œ๋‹ค. ์นœํ•ต์ฒด์™€ ์นœ์ „์ž์ฒด ์–‘์ชฝ์˜ ์„ฑ์งˆ์„ ๋ชจ๋‘ ๊ฐ€์ง€๋Š” ์•„์ด์†Œ์‚ฌ์ด์•„๋‚˜์ด๋“œ์˜ ๋ง๋‹จ ํƒ„์†Œ๋Š” ์ด‰๋งค์  ๋ณ€ํ™˜์—์„œ ๋‹ค์–‘ํ•œ ๋ฐฉ์‹์œผ๋กœ ํ™œ์„ฑํ™”๋  ์ˆ˜ ์žˆ๋‹ค. ์ œ1์žฅ์—์„œ๋Š” ์•„์ด์†Œ์‚ฌ์ด์•„๋‚˜์ด๋“œ์˜ ๋ง๋‹จ ํƒ„์†Œ์˜ ํ™œ์„ฑํ™”๋ฅผ ์œ ๋„ํ•˜๋Š” ์ž์„ธํ•œ ๊ธฐ์ž‘๋“ค์„ ๋Œ€ํ‘œ์ ์ธ ์˜ˆ์‹œ ๋ฐ˜์‘๋“ค๊ณผ ํ•จ๊ป˜ ์†Œ๊ฐœํ•œ๋‹ค. ์ œ2์žฅ๊ณผ ์ œ3์žฅ์—์„œ๋Š” ์•„์ด์†Œ์‚ฌ์ด์•„๋‚˜์ด๋“œ์˜ ์ด‰๋งค์  ์นœํ•ต์ฒด ํ™œ์„ฑํ™”๋ฅผ ์œ„ํ•œ ์ƒˆ๋กœ์šด ์ ‘๊ทผ๋ฒ•์„ ์†Œ๊ฐœํ•œ๋‹ค. ํŠนํžˆ, ์งˆ์†Œ๊ณ ๋ฆฌํ™”์นด๋ฒค (NHC)์„ ์œ ๊ธฐ์ด‰๋งค๋กœ ํ™œ์šฉํ•˜์—ฌ ์•„์ด์†Œ์‚ฌ์ด์•„๋‚˜์ด๋“œ์˜ ์ƒˆ๋กœ์šด ๋ณ€ํ™˜ ๋ฐฉ์‹๋“ค์„ ์ œ์‹œํ•œ๋‹ค. ์ผ€ํ†ค๊ณผ์˜ ๋ฐ˜์‘์„ ํ†ตํ•ด ๋‹ค์–‘ํ•œ ์ข…๋ฅ˜์˜ ์—”์•„๋ฏผ์˜จ์„ ๋†’์€ ์ˆ˜์œจ๋กœ ํ•ฉ์„ฑํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ (2์žฅ), ์ธ๋Œ๊ณผ ์•„์ด์†Œ์‚ฌ์ด๋‚˜์ด๋“œ ์‚ฌ์ด์˜ ๋ฐ˜์‘์„ ํ†ตํ•ด ๋…ํŠนํ•œ ๊ตฌ์กฐ์˜ ํผ์•„๋ฏธ๋”˜์„ ํ•ฉ์„ฑํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค (3์žฅ). ๋…ผ๋ฌธ์˜ ๋‘ ๋ฒˆ์งธ ๋ถ€๋ถ„์—์„œ๋Š” ๊ฐ€์‹œ๊ด‘ ๊ด‘์‚ฐํ™”ํ™˜์› ์ด‰๋งค ์ฒด๊ณ„์—์„œ sp3 ํ˜ผ์„ฑ ํƒ„์†Œ-์ˆ˜์†Œ ๊ฒฐํ•ฉ์˜ ์ž‘์šฉ๊ธฐํ™”๋ฅผ ๋…ผํ•œ๋‹ค. ๊ฐ€์‹œ๊ด‘์„ ์„ ์—๋„ˆ์ง€์›์œผ๋กœ ๋„์ „์ ์ธ ํƒ„์†Œ-์ˆ˜์†Œ ๊ฒฐํ•ฉ์„ ํ™œ์„ฑํ™”ํ•˜๋Š” ์ „๋žต์€ ์œ ๊ธฐ ํ•ฉ์„ฑ์—์„œ ๋„๋ฆฌ ์—ฐ๊ตฌ๋˜๊ณ  ์žˆ๋‹ค. ์ œ4์žฅ ์—์„œ๋Š” sp3 ํ˜ผ์„ฑ ํƒ„์†Œ-์ˆ˜์†Œ ๊ฒฐํ•ฉ ์ž‘์šฉ๊ธฐํ™” ๋ฐ˜์‘์„ ์œ„ํ•ด ํ˜„์žฌ๊นŒ์ง€ ๊ฐœ๋ฐœ๋œ ๊ฐ€์‹œ๊ด‘ ๊ด‘์‚ฐํ™”ํ™˜์› ์ด‰๋งค ์ฒด๊ณ„๋ฅผ ์ „๋žต๋ณ„๋กœ ๊ตฌ๋ถ„ํ•˜์—ฌ ๋Œ€ํ‘œ์ ์ธ ์˜ˆ์‹œ๋“ค๊ณผ ํ•จ๊ป˜ ์†Œ๊ฐœํ•œ๋‹ค. ์ œ5์žฅ ์—์„œ๋Š” ๊ฐ€์‹œ๊ด‘ ๊ด‘์‚ฐํ™”ํ™˜์› ์ด‰๋งค ์ฒด๊ณ„๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๊ฐ„๋‹จํ•œ ์•Œ๋ฆด ํ™”ํ•ฉ๋ฌผ๊ณผ ๋‹ค์ด์„คํŒŒ์ด๋“œ๋กœ๋ถ€ํ„ฐ ์•Œ๋ฆด ํ‹ฐ์˜ค์—ํ„ฐ๋ฅผ ํ•ฉ์„ฑํ•˜๋Š” ์ƒˆ๋กœ์šด ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์‹œํ•œ๋‹ค. ์˜ˆ์ƒ๋˜๋Š” ๋ถ€๋ฐ˜์‘ (ํ•˜์ด๋“œ๋กœํ‹ฐ์˜ฌ๋ ˆ์ด์…˜)์„ ์–ต์ œํ•˜๋Š” ์ด‰๋งค ์ˆœํ™˜์„ ๊ตฌ์„ฑํ•˜์—ฌ ์•Œ๋ฆด ์ž๋ฆฌ ํƒ„์†Œ-์ˆ˜์†Œ ํ‹ฐ์˜คํ™” ๋ฐ˜์‘์„ ์„ ํƒ์ ์œผ๋กœ ์ง„ํ–‰ํ•˜์˜€๊ณ , ๊นŠ์ด ์žˆ๋Š” ๋ฐ˜์‘ ๊ธฐ์ž‘ ์—ฐ๊ตฌ๋กœ๋ถ€ํ„ฐ ์ œ์‹œ๋œ ๋น„๋Œ€์นญํ˜• ๋‹ค์ด์„คํŒŒ์ด๋“œ๋ฅผ ๋„์ž…ํ•˜์—ฌ ๋ฐ˜์‘ ๊ธฐ์งˆ์˜ ํญ์„ ๋„“ํž ์ˆ˜ ์žˆ์—ˆ๋‹ค.Part 1. Catalytic Transformations of Isocyanides 1 Chapter 1. Utilization of Isocyanides in Organic Transformations 1 1.1 Introduction 1 1.2 Activation of the isocyanides with electrophilic component 2 1.2.1 Passerini and Ugi multicomponent reaction (MCR) 2 1.2.2 Activation of isocyanides by other electrophilic partners 5 1.2.3 Activation of isocyanides by transition-metal catalysts 12 1.3 Activation of the isocyanides with nucleophilic component 21 1.3.1 Intermolecular reactions 21 1.3.2 Intramolecular reactions 23 1.4 Activation of the isocyanides with radical components 26 1.4.1 Radical cyclization 26 1.4.2 Intermolecular radical coupling. 30 1.4.3 Reactions initiated by visible light photoredox catalysis 32 1.5 Other utilization strategies 34 1.5.1 Activation of ฮฑ-proton of isocyanides 34 1.5.2 Reactions with carbenoid species 35 1.6 Summary and outlook 37 1.7 References 38 Chapter 2. Organocatalytic Activation of Isocyanides: N-Heterocyclic Carbene-Catalyzed Enaminone Synthesis from Ketones 46 2.1 Introduction 46 2.2 Result and discussion 50 2.2.1 Optimization 50 2.2.2 Substrate scope evaluation 52 2.2.3 Mechanistic investigation 58 2.3 Conclusion 61 2.4 Experimental section 62 2.4.1 General information 62 2.4.2 Initial experiment of (Z)-enaminone synthesis 63 2.4.3 General procedure for the synthesis of enaminone (3) 63 2.4.4 Optimization tables . 64 2.4.5 Experimental procedures for the control experiments 68 2.4.6 Experimental procedures for the gram-scale reaction 71 2.4.7 Crystallographic data of 3sa 72 2.4.8 Spectroscopic data. 74 2.5 References 88 Chapter 3. Dual Activation of Nucleophiles and Electrophiles by NHeterocyclic Carbene Organocatalysis: Chemoselective NImination of Indoles with Isocyanides 92 3.1 Introduction 92 3.2 Result and discussion 95 3.2.1 Optimization 95 3.2.2 Substrate scope evaluation 97 3.2.3 Mechanistic investigation 100 3.3 Conclusion 105 3.4 Experimental section 106 3.4.1 General information 106 3.4.2 Initial experiment of formamidine 4aa synthesis 107 3.4.3 Characterization of formamidine 4aa 108 3.4.3.1 Crystallographic data 108 3.4.3.2 2D-ROESY spectra 110 3.4.4 Optimization tables 112 3.4.5 Experimental procedure for the synthesis of 4aa via indole anion. 115 3.4.6 Experimental procedures for the control experiments. 116 3.4.7 Experimental procedures for deuterium incorporation experiments 118 3.4.8 Experimental procedures for trials for the detection of formimidate intermediate 121 3.4.9 General procedures for the synthesis of new compounds and characterization data 123 3.4.9.1 Synthetic procedures and characterization of new isocyanides 123 3.4.9.2 Synthetic procedures and characterization of formamidines (4) 125 3.5 References 141 Part 2. Catalytic C(sp3)H Bond Functionalizations of Allylic Compounds 144 Chapter 4. C(sp3)H Bond Functionalizations via Visible Light Photoredox Catalysis 144 4.1 Introduction 144 4.2 C(sp3)H bond activation via single-electron transfer (SET) 146 4.2.1 SET of amines . 147 4.2.2 SET of ฯ€-systems 158 4.2.3 SET of conjugated heteroatoms 160 4.3 C(sp3)H bond activation via hydrogen atom transfer (HAT) 161 4.3.1 HAT with oxygen-centered radicals 163 4.3.2 HAT with nitrogen-centered radicals. 175 4.3.3 HAT with sulfur-centered radicals 183 4.3.4 HAT with halogen-centered radicals 185 4.3.5 HAT with carbon-centered radicals. 191 4.4 C(sp3)H bond activation via proton-coupled electron transfer (PCET) 193 4.5 Summary and outlook 195 4.6 References 196 Chapter 5. Direct Allylic C(sp3)H Thiolation with Disulfides via Visible Light Photoredox Catalysis 207 5.1 Introduction 207 5.2 Result and discussion 210 5.2.1 Optimization 210 5.2.2 Substrate scope evaluation 212 5.2.3 Further utilization of allyl thioethers 215 5.2.4 Mechanistic investigations 217 5.2.5 Expansion of the substrate scope toward alkyl allyl sulfides 227 5.3 Conclusion 233 5.4 Experimental section 234 5.4.1 General information 234 5.4.2 Substrate preparation. 236 5.4.3 Screening experiments 244 5.4.4 Sensitivity assessment of the reaction. 247 5.4.5 General procedure for the synthesis of allyl thioethers (3) 249 5.4.5.1 Synthesis of allyl thioethers from symmetric disulfides 249 5.4.5.2 Synthesis of allyl thioethers from unsymmetrical disulfides 250 5.4.5.3 Scaled-up reaction for the synthesis of allyl thioether 3aa 251 5.4.6 Characterization of allyl thioethers (3) 252 5.4.7 Post modifications of allyl thioethers 267 5.4.7.1 Synthesis of allyl sulfoxide (3ahsulfoxide) 267 5.4.7.2 Synthesis of allyl sulfone (3oasulfone) 268 5.4.7.3 Interrupted Pummerer coupling/[3,3]-sigmatropic rearrangement with N-methylindole 269 5.4.7.4 Doyle-Kirmse reaction with allyl thioether 3aa 270 5.4.7.5 Modified Julia olefination with hydrocinnamaldehyde 271 5.4.8 General procedures for single-electron oxidant additive studies 272 5.4.9 DFT calculation 274 5.4.9.1 DFT calculation of redox potentials 274 5.4.9.1.1 The redox potential of 2a-rad 275 5.4.9.1.2 The redox potential of 2h-rad 276 5.4.9.1.3 The redox potential of 3ah-rad 277 5.4.9.2 DFT calculation of the reaction pathway 278 5.4.10 Stern-Volmer quenching experiment 280 5.4.11 Quantum yield measurement 283 5.4.11.1 Actinometry. 283 5.4.11.2 Absorption spectrum of Ir(CF3ppy)3 in DMA/olefin 2a 285 5.4.11.3 Quantum yield measurement 286 5.4.12 Kinetic isotope effect 287 5.4.13 CV experiments 289 5.4.13.1 Calibration of the reference electrode 289 5.4.13.2 Disulfide 1q. 290 5.4.13.3 Disulfide 1qBzt. 291 5.4.13.4 Disulfide 1qClBzt 292 5.4.13.5 Disulfide 1qNO2Ph 293 5.5 References 294 Appendix 302 NMR Spectra 302 Chapter 2 302 Chapter 3 338 Chapter 5 365 Cartesian Coordinates for DFT Calculation 429 Chapter 5 429 Acknowledgement 436 Abstract in Koreans 440Docto

    ์ด์ข… ํด๋Ÿฌ์Šคํ„ฐ๋ฅผ ์œ„ํ•œ OpenCL ํ”„๋ ˆ์ž„์›Œํฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2013. 8. ์ด์žฌ์ง„.OpenCL์€ ์ด์ข… ์ปดํ“จํŒ… ์‹œ์Šคํ…œ์˜ ๋‹ค์–‘ํ•œ ๊ณ„์‚ฐ ์žฅ์น˜๋ฅผ ์œ„ํ•œ ํ†ตํ•ฉ ํ”„๋กœ๊ทธ๋ž˜๋ฐ ๋ชจ๋ธ์ด๋‹ค. OpenCL์€ ๋‹ค์–‘ํ•œ ์ด๊ธฐ์ข…์˜ ๊ณ„์‚ฐ ์žฅ์น˜์— ๋Œ€ํ•œ ๊ณตํ†ต๋œ ํ•˜๋“œ์›จ์–ด ์ถ”์ƒํ™” ๋ ˆ์ด์–ด๋ฅผ ํ”„๋กœ๊ทธ๋ž˜๋จธ์—๊ฒŒ ์ œ๊ณตํ•œ๋‹ค. ํ”„๋กœ๊ทธ๋ž˜๋จธ๊ฐ€ ์ด ์ถ”์ƒํ™” ๋ ˆ์ด์–ด๋ฅผ ํƒ€๊นƒ์œผ๋กœ OpenCL ์–ดํ”Œ๋ฆฌ์ผ€์ด์…˜์„ ์ž‘์„ฑํ•˜๋ฉด, ์ด ์–ดํ”Œ๋ฆฌ์ผ€์ด์…˜์€ OpenCL์„ ์ง€์›ํ•˜๋Š” ๋ชจ๋“  ํ•˜๋“œ์›จ์–ด์—์„œ ์‹คํ–‰ ๊ฐ€๋Šฅํ•˜๋‹ค. ํ•˜์ง€๋งŒ ํ˜„์žฌ OpenCL์€ ๋‹จ์ผ ์šด์˜์ฒด์ œ ์‹œ์Šคํ…œ์„ ์œ„ํ•œ ํ”„๋กœ๊ทธ๋ž˜๋ฐ ๋ชจ๋ธ๋กœ ํ•œ์ •๋œ๋‹ค. ํ”„๋กœ๊ทธ๋ž˜๋จธ๊ฐ€ ๋ช…์‹œ์ ์œผ๋กœ MPI์™€ ๊ฐ™์€ ํ†ต์‹  ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ๋ฅผ ์‚ฌ์šฉํ•˜์ง€ ์•Š์œผ๋ฉด OpenCL ์–ดํ”Œ๋ฆฌ์ผ€์ด์…˜์€ ๋ณต์ˆ˜๊ฐœ์˜ ๋…ธ๋“œ๋กœ ์ด๋ฃจ์–ด์ง„ ํด๋Ÿฌ์Šคํ„ฐ์—์„œ ๋™์ž‘ํ•˜์ง€ ์•Š๋Š”๋‹ค. ์š”์ฆ˜ ๋“ค์–ด ์—ฌ๋Ÿฌ ๊ฐœ์˜ ๋ฉ€ํ‹ฐ์ฝ”์–ด CPU์™€ ๊ฐ€์†๊ธฐ๋ฅผ ๊ฐ–์ถ˜ ์ด์ข… ํด๋Ÿฌ์Šคํ„ฐ๋Š” ๊ทธ ์‚ฌ์šฉ์ž ๊ธฐ๋ฐ˜์„ ๋„“ํ˜€๊ฐ€๊ณ  ์žˆ๋‹ค. ์ด์— ํ•ด๋‹น ์ด์ข… ํด๋Ÿฌ์Šคํ„ฐ๋ฅผ ํƒ€๊นƒ์œผ๋กœ ํ”„๋กœ๊ทธ๋ž˜๋ฐ ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ํ”„๋กœ๊ทธ๋ž˜๋จธ๋Š” MPI-OpenCL ๊ฐ™์ด ์—ฌ๋Ÿฌ ํ”„๋กœ๊ทธ๋ž˜๋ฐ ๋ชจ๋ธ์„ ํ˜ผํ•ฉํ•˜์—ฌ ์–ดํ”Œ๋ฆฌ์ผ€์ด์…˜์„ ์ž‘์„ฑํ•ด์•ผ ํ•œ๋‹ค. ์ด๋Š” ์–ดํ”Œ๋ฆฌ์ผ€์ด์…˜์„ ๋ณต์žกํ•˜๊ฒŒ ๋งŒ๋“ค์–ด ์œ ์ง€๋ณด์ˆ˜๊ฐ€ ์–ด๋ ต๊ฒŒ ๋˜๋ฉฐ ์ด์‹์„ฑ์ด ๋‚ฎ์•„์ง„๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ด์ข… ํด๋Ÿฌ์Šคํ„ฐ๋ฅผ ์œ„ํ•œ OpenCL ํ”„๋ ˆ์ž„์›Œํฌ, SnuCL์„ ์ œ์•ˆํ•œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ OpenCL ๋ชจ๋ธ์ด ์ด์ข… ํด๋Ÿฌ์Šคํ„ฐ ํ”„๋กœ๊ทธ๋ž˜๋ฐ ํ™˜๊ฒฝ์— ์ ํ•ฉํ•˜๋‹ค๋Š” ๊ฒƒ์„ ๋ณด์ธ๋‹ค. ์ด์™€ ๋™์‹œ์— SnuCL์ด ๊ณ ์„ฑ๋Šฅ๊ณผ ์‰ฌ์šด ํ”„๋กœ๊ทธ๋ž˜๋ฐ์„ ๋™์‹œ์— ๋‹ฌ์„ฑํ•  ์ˆ˜ ์žˆ์Œ์„ ๋ณด์ธ๋‹ค. SnuCL์€ ํƒ€๊นƒ ์ด์ข… ํด๋Ÿฌ์Šคํ„ฐ์— ๋Œ€ํ•ด์„œ ๋‹จ์ผ ์šด์˜์ฒด์ œ๊ฐ€ ๋Œ์•„๊ฐ€๋Š” ํ•˜๋‚˜์˜ ์‹œ์Šคํ…œ ์ด๋ฏธ์ง€๋ฅผ ์‚ฌ์šฉ์ž์—๊ฒŒ ์ œ๊ณตํ•œ๋‹ค. OpenCL ์–ดํ”Œ๋ฆฌ์ผ€์ด์…˜์€ ํด๋Ÿฌ์Šคํ„ฐ์˜ ๋ชจ๋“  ๊ณ„์‚ฐ ๋…ธ๋“œ์— ์กด์žฌํ•˜๋Š” ๋ชจ๋“  ๊ณ„์‚ฐ ์žฅ์น˜๊ฐ€ ํ˜ธ์ŠคํŠธ ๋…ธ๋“œ์— ์žˆ๋‹ค๋Š” ํ™˜์ƒ์„ ๊ฐ–๊ฒŒ ๋œ๋‹ค. ๋”ฐ๋ผ์„œ ํ”„๋กœ๊ทธ๋ž˜๋จธ๋Š” MPI ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ์™€ ๊ฐ™์€ ์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜ API๋ฅผ ์‚ฌ์šฉํ•˜์ง€ ์•Š๊ณ  OpenCL ๋งŒ์„ ์‚ฌ์šฉํ•˜์—ฌ ์ด์ข… ํด๋Ÿฌ์Šคํ„ฐ๋ฅผ ํƒ€๊นƒ์œผ๋กœ ์–ดํ”Œ๋ฆฌ์ผ€์ด์…˜์„ ์ž‘์„ฑํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋œ๋‹ค. SnuCL์˜ ๋„์›€์œผ๋กœ OpenCL ์–ดํ”Œ๋ฆฌ์ผ€์ด์…˜์€ ๋‹จ์ผ ๋…ธ๋“œ์—์„œ ์ด์ข… ๋””๋ฐ”์ด์Šค๊ฐ„ ์ด์‹์„ฑ์„ ๊ฐ€์งˆ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์ด์ข… ํด๋Ÿฌ์Šคํ„ฐ ํ™˜๊ฒฝ์—์„œ๋„ ๋””๋ฐ”์ด์Šค๊ฐ„ ์ด์‹์„ฑ์„ ๊ฐ€์งˆ ์ˆ˜ ์žˆ๊ฒŒ ๋œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ด ์—ดํ•œ ๊ฐœ์˜ OpenCL ๋ฒค์น˜๋งˆํฌ ์–ดํ”Œ๋ฆฌ์ผ€์ด์…˜์˜ ์‹คํ—˜์„ ํ†ตํ•˜์—ฌ SnuCL์˜ ์„ฑ๋Šฅ์„ ๋ณด์ธ๋‹ค.OpenCL is a unified programming model for different types of computational units in a single heterogeneous computing system. OpenCL provides a common hardware abstraction layer across different computational units. Programmers can write OpenCL applications once and run them on any OpenCL-compliant hardware. However, one of the limitations of current OpenCL is that it is restricted to a programming model on a single operating system image. It does not work for a cluster of multiple nodes unless the programmer explicitly uses communication libraries, such as MPI. A heterogeneous cluster contains multiple general-purpose multicore CPUs and multiple accelerators to solve bigger problems within an acceptable time frame. As such clusters widen their user base, application developers for the clusters are being forced to turn to an unattractive mix of programming models, such as MPI-OpenCL. This makes the application more complex, hard to maintain, and less portable. In this thesis, we propose SnuCL, an OpenCL framework for heterogeneous clusters. We show that the original OpenCL semantics naturally fits to the heterogeneous cluster programming environment, and the framework achieves high performance and ease of programming. SnuCL provides a system image running a single operating system instance for heterogeneous clusters to the user. It allows the application to utilize compute devices in a compute node as if they were in the host node. No communication API, such as the MPI library, is required in the application source. With SnuCL, an OpenCL application becomes portable not only between heterogeneous devices in a single node, but also between compute devices in the cluster environment. We implement SnuCL and evaluate its performance using eleven OpenCL benchmark applications.Abstract I. Introduction I.1 Heterogeneous Computing I.2 Motivation I.3 Related Work I.4 Contributions I.5 Organization of this Thesis II. The OpenCL Architecture II.1 Platform Model II.2 Execution Model II.3 Memory Model II.4 OpenCL Applications III. The SnuCL Framework III.1 The SnuCL Runtime III.1.1 Mapping Components III.1.2 Organization of the SnuCL Runtime III.1.3 Processing Kernel-execution Commands III.1.4 Processing Synchronization Commands III.2 Memory Management III.2.1 The OpenCL Memory Model III.2.2 Space Allocation to Buffers III.2.3 Minimizing Memory Copying Overhead III.2.4 Processing Memory Commands III.2.5 Consistency Management III.2.6 Ease of Programming III.3 Extensions to OpenCL III.4 Code Transformations III.4.1 Detecting Buffers Written by a Kernel III.4.2 Emulating PEs for CPU Devices III.4.3 Distributing the Kernel Code IV. Distributed Execution Model for SnuCL IV.1 Two Problems in SnuCL IV.2 Remote Device Virtualization IV.2.1 Exclusive Execution on the Host IV.3 OpenCL Framework Integration IV.3.1 OpenCL Installable Client Driver (ICD) IV.3.2 Event Synchronization IV.3.3 Memory Sharing V. Experimental Results V.1 SnuCL Evaluation V.1.1 Methodology V.1.2 Results V.2 SnuCL-D Evaluation V.2.1 Methodology V.2.2 Results VI. Conclusions and Future Directions VI.1 Conclusions VI.2 Future Directions Bibliography Korean AbstractDocto

    ์ค‘๋“ฑํ•™์ƒ์„ ์ค‘์‹ฌ์œผ๋กœ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ์‚ฌ๋ฒ”๋Œ€ํ•™ ํ˜‘๋™๊ณผ์ • ๋ฏธ์ˆ ๊ต์œก์ „๊ณต, 2023. 2. ๊น€ํ˜•์ˆ™.๋ณธ ์—ฐ๊ตฌ๋Š” ๋ฏธ์ˆ  ๊ฐ์ƒ ๊ต์œก์„ ํ†ตํ•ด ํ•™์Šต์ž๊ฐ€ ์ ๊ทน์ ์ด๊ณ  ํฅ๋ฏธ๋กœ์šด ํƒœ๋„๋กœ ๋ฏธ์ˆ ์„ ๊ฐ์ƒํ•  ์ˆ˜ ์žˆ๋Š” ๋””์ง€ํ„ธ ๋ฏธ์ˆ  ๊ต์œก ๋ฐฉํ–ฅ์„œ๋ฅผ ์ œ์‹œํ•˜๋Š” ๋ฐ์— ๋ชฉ ์ ์ด ์žˆ๋‹ค. ๋ฏธ์ˆ  ๊ฐ์ƒ๊ต์œก์˜ ๋ณธ์งˆ์  ๋ชฉํ‘œ๋Š” ๊ฐ์ƒ์ด๋ผ๋Š” ํ™œ๋™์„ ํ†ตํ•ด ์ž๊ธฐ ์ž์‹ ์„ ์ดํ•ดํ•˜๊ณ  ๊ทธ๋ฅผ ๋‘˜๋Ÿฌ์‹ผ ์‚ฌํšŒ์˜ ํ˜„์ƒ๊ณผ ํ๋ฆ„์„ ์ดํ•ดํ•˜์—ฌ ์ž์‹ ์˜ ์‚ถ์„ ๊ตฌ์„ฑํ•˜๋Š” ๊ฒฝํ—˜์„ ํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ๋ฏธ์ˆ  ๊ฐ์ƒ์˜ ์ผ์ƒํ™”๋Š” ๊ฐ์ƒ์ž์˜ ์‚ฌ๊ณ ์ฒด๊ณ„๋ฅผ ๊ตฌ์„ฑํ•˜๊ธฐ๋„ ํ•˜๋ฉฐ ์ด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜๋Š” ์ฐฝ์˜์  ์‚ฌ๊ณ  ์—ญ๋Ÿ‰๊ณผ ์ž๊ธฐ ์ฃผ๋„์  ํ•™์Šต ์—ญ๋Ÿ‰ ํ–ฅ์ƒ, ๋ฏธ์  ๊ฐ์ˆ˜์„ฑ ํ•จ์–‘ ๋“ฑ์˜ ํ•™์Šต์ž์˜ ๊ฐœ์ธ์  ์—ญ๋Ÿ‰ ํ˜•์„ฑ์„ ํ†ตํ•ด ์‚ฌํšŒ์˜ ๋ฐœ์ „์— ์˜ํ–ฅ์„ ์ฃผ๊ฒŒ ๋œ๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋ฏธ์ˆ  ๊ฐ์ƒ์˜ ์ผ์ƒ ํ™”๋ฅผ ์œ„ํ•ด ๋””์ง€ํ„ธ ์‹œ๋Œ€์— ํ†ต์šฉ๋˜๋Š” ์—ฌ๋Ÿฌ ๊ฐœ๋…์„ ์ •๋ฆฌํ•˜๊ณ  ๋””์ง€ํ„ธ ๋ฏธ์ˆ  ๊ฐ ์ƒ ๋ฐฉ๋ฒ•์ด ๋‘๋“œ๋Ÿฌ์ง€๊ฒŒ ๋“œ๋Ÿฌ๋‚˜๋Š” ์‚ฌ๋ก€์— ๋Œ€ํ•œ ๋ถ„์„์„ ํ†ตํ•ด ๋””์ง€ํ„ธ ๋ฏธ์ˆ  ๊ฐ ์ƒ ํ”„๋กœ๊ทธ๋žจ์˜ ๊ธฐ์ดˆ๊ฐ€ ๋˜๋Š” ๊ธฐ๋ณธ ๋ชจํ˜•์„ ๋งŒ๋“ค์–ด ํ”„๋กœ๊ทธ๋žจ์„ ๊ฐœ๋ฐœํ•˜๋Š” ๊ฒƒ์„ ๋ชฉํ‘œ๋กœ ๋‘์—ˆ๋‹ค. ์˜ˆ์ˆ ์ž‘ํ’ˆ์€ ํฌ๊ฒŒ ์ž‘ํ’ˆ์ด ๋‚ดํฌํ•˜๊ณ  ์žˆ๋Š” ์ฃผ์ œ์™€ ์˜๋„ ๋“ฑ์˜ ๋‚ด์šฉ๊ณผ ์ž‘ํ’ˆ ์„ ํ†ตํ•ด ๊ฐ์ƒ์ž๊ฐ€ ๊ฐ๊ฐ์ ์œผ๋กœ ๋Š๋‚„ ์ˆ˜ ์žˆ๋Š” ์ƒ‰๊น”, ๋ชจ์–‘, ๊ตฌ์„ฑ ๋“ฑ์˜ ํ˜•์‹์œผ๋กœ ๋‚˜๋ˆŒ ์ˆ˜ ์žˆ๋‹ค. ๋ฏธ์ˆ ์ž‘ํ’ˆ์„ ๊ฐ์ƒํ•œ๋‹ค๋Š” ๊ฒƒ์€ ๊ฐ๊ฐ์ ์ธ ํ˜•์‹๊ณผ ์‹œ์ง€๊ฐ์  ์ธ ๋‚ด์šฉ์„ ์ดํ•ดํ•˜๊ณ , ๋ชธ์†Œ ๋Š๋ผ๋Š” ์ฒดํ—˜์ด ๋œ๋‹ค. ๊ธฐ์ˆ ์˜ ์‹œ๋Œ€์ธ ํ˜„๋Œ€์‚ฌํšŒ์˜ ์ฃผ๋œ ์†Œํ†ต ๋„๊ตฌ๋Š” ์‹œ๊ฐ์ด๋ฏธ์ง€์ด๋‹ค. ์ด๋ฏธ์ง€๋ฅผ ํ†ตํ•ด ์‚ฌํšŒ๋ฅผ ์•Œ๊ณ  ์ •๋ณด๋ฅผ ์Šต๋“ํ•˜๋ฉฐ ์‚ฌ๋žŒ๋“ค ๋ฐ ์‚ฌํšŒ์™€ ์†Œํ†ตํ•˜๋Š” ์„ธ์ƒ์—์„œ ์‹œ๊ฐ์ด๋ฏธ์ง€๋ฅผ ์ฝ๊ณ  ๊ทธ๊ฒƒ์„ ๋˜ ๋‹ค๋ฅธ ํ˜•์‹์œผ๋กœ ๋ฐœ์ „์‹œํ‚ค๋Š” ๋Šฅ๋ ฅ์€ ํ•„์ˆ˜๋ถˆ๊ฐ€๊ฒฐํ•œ ์š”์†Œ์ด๋‹ค. ๋”ฐ๋ผ์„œ ์‹œ๊ฐ์ด ๋ฏธ์ง€๋ฅผ ์ฝ๊ณ  ์ดํ•ดํ•˜๋Š” ๋ฐ ๊ฐ€์žฅ ํšจ๊ณผ์ ์œผ๋กœ ์˜ํ–ฅ์„ ์ค„ ์ˆ˜ ์žˆ๋Š” ๋ถ„์•ผ์ธ ๋ฏธ ์ˆ  ๊ฐ์ƒ์˜ ์—ญํ• ๊ณผ ์ค‘์š”์„ฑ์ด ๋ฏธ์ˆ  ๋ถ„์•ผ์—์„œ ์ ์ฐจ ์ค‘์š”์‹œ ๋˜๊ณ  ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์˜ ์—ฐ๊ตฌ ๋ฌธ์ œ๋Š” ๋‹ค์Œ์˜ ์ด์œ ์—์„œ ์„ค์ •ํ•˜๊ฒŒ ๋˜์—ˆ๋‹ค. ์ฒซ์งธ, ๋ฏธ์ˆ  ๊ฐ์ƒ๊ต์œก์ด ์ผ์ƒ์ ์œผ๋กœ ์ผ์–ด๋‚˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์–ด๋– ํ•œ ์ดํ•ด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๊ต์œก์ด ์ด๋ฃจ์–ด์ ธ์•ผ ํ•˜๋Š”๊ฐ€? ํ˜„๋Œ€์— ์ด๋ฅด๋Ÿฌ ์‹œ๊ฐ์ด๋ฏธ์ง€์˜ ์ค‘์š”์„ฑ์ด ์ปค์ง€๋ฉด์„œ ๋ฏธ์ˆ  ๋ถ„์•ผ์—์„œ์˜ ๊ฐ์ƒ ์˜์—ญ์€ ์ฒดํ—˜, ํ‘œํ˜„์„ ์•„์šฐ๋ฅด๋Š” ์—ญํ• ์„ ํ•˜๊ฒŒ ๋˜์—ˆ๋‹ค. ์˜ค๋Š˜ ๋‚  ์‹œ๊ฐ์ด๋ฏธ์ง€๊ฐ€ ์ผ์ƒ์— ํฌ๊ฒŒ ์ž๋ฆฌํ•˜๊ณ  ์žˆ์œผ๋‚˜ ๋ฏธ์ˆ  ๊ฐ์ƒ์€ ๊ฐ์ƒ์ด๋ผ๋Š” ํ•™๋ฌธ์  ์˜์—ญ์œผ๋กœ ๋ถ„๋ฅ˜๋˜์–ด ์ผ์ƒ์  ์ดํ•ด๋ณด๋‹ค๋Š” ์ด๋ก ์  ์ดํ•ด์™€ ์ž‘ํ’ˆ ๊ฐ์ƒ์— ์ดˆ ์ ์ด ๋‘์–ด์ ธ ์žˆ๋‹ค. ๋ฏธ์ˆ  ๊ฐ์ƒ์„ ์˜ฌ๋ฐ”๋ฅด๊ฒŒ ๊ฒฝํ—˜ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๋ฏธ์ˆ  ๊ฐ์ƒ๊ต์œก์ด ์ผ์ƒ์  ๋ฒ”์ฃผ์—์„œ ์ด๋ฃจ์–ด์ ธ์•ผ ํ•œ๋‹ค. ๋‘˜์งธ, ๋ฏธ์ˆ  ๊ฐ์ƒ์ด ๊ต์œก ์‹œ๊ฐ„ ์™ธ์—๋„ ์ง€์†์ ์œผ๋กœ ์ด๋ฃจ์–ด์ง€๊ฒŒ ํ•˜๊ธฐ ์œ„ํ•ด์„œ ๋Š” ์–ด๋– ํ•œ ๋ฏธ์ˆ  ๊ฐ์ƒ ๋ฐฉ๋ฒ•์„ ๊ต์œกํ•ด์•ผ ํ•˜๋Š”๊ฐ€? ํ‰๊ท ์ˆ˜๋ช…์ด ๋Š˜์–ด๋‚จ์— ๋”ฐ๋ผ ์ง€์† ๊ฐ€๋Šฅํ•œ ๊ต์œก์— ๋Œ€ํ•œ ๊ด€์‹ฌ๊ณผ ์ˆ˜์š”๊ฐ€ ์ฆ๊ฐ€ํ•˜๊ณ  ์žˆ๋‹ค. ๋ฏธ์ˆ  ๊ต์œก์—์„œ ์—ญ ์‹œ ํ‰์ƒ๊ต์œก์˜ ๊ด€์ ์—์„œ ์ง€์† ๊ฐ€๋Šฅํ•œ ๊ต์œก์ด ์‹คํ–‰๋˜์–ด์•ผ ํ•œ๋‹ค. ๋˜ํ•œ ๋ฏธ์ˆ  ๋ถ„์•ผ๋Š” ์‹œ์ง€๊ฐ์  ์†Œ์žฌ๋ฅผ ๋‹ค๋ฃฌ๋‹ค๋Š” ํŠน์„ฑ์œผ๋กœ ์‚ฌ๋žŒ์ด ์‚ด๋ฉด์„œ ์ผํ‰์ƒ ์˜๋„ํ•˜ ์ง€ ์•Š์•„๋„ ์ ‘ํ•˜๊ฒŒ ๋œ๋‹ค. ๊ทธ๋Ÿฌ๋ฏ€๋กœ ๋ฏธ์ˆ  ๊ต์œก์—์„œ ๊ฐ์ƒ ๋ฐฉ๋ฒ•์„ ๊ฐœ์ธ์˜ ์ผ์ƒ ์— ์ ์ ˆํžˆ ์ ์šฉ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋Š” ๋Šฅ๋ ฅ์„ ๊ธธ๋Ÿฌ์ฃผ์–ด์•ผ ํ•œ๋‹ค. ๊ต์œก์  ํšจ๊ณผ๋ฅผ ๋ณด๊ธฐ ์œ„ํ•œ, ๊ทธ๋ฆฌ๊ณ  ๊ฒฝํ—˜ํ•œ ๋ฏธ์ˆ  ๊ฐ์ƒ์ด ์ผ์ƒ์—์„œ๋„ ์ ์ ˆํžˆ ์‘์šฉ๋˜๊ธฐ ์œ„ํ•œ ๋ฏธ์ˆ  ๊ฐ์ƒ ๋ฐฉ๋ฒ•์ด ์—ฐ๊ตฌ๋˜์–ด์•ผ ํ•œ๋‹ค. ์…‹์งธ, ๋””์ง€ํ„ธ ์‹œ๋Œ€์˜ ๋ฏธ์ˆ ๊ต์œก์—์„œ ๋ฏธ์ˆ  ๊ฐ์ƒ์„ ํšจ๊ณผ์ ์œผ๋กœ ์‹คํ–‰ํ•˜๊ธฐ ์œ„ ํ•ด์„œ๋Š” ์–ด๋– ํ•œ ๊ธฐ์ˆ ์„ ์ ์ ˆํžˆ ๋„์ž…ํ•ด์•ผ ํ•˜๋Š”๊ฐ€? ์—ฌ๋Ÿฌ ์˜์—ญ๊ฐ„์˜ ์ง€์‹์  ๊ณต ์œ ์™€ ๊ฒฐํ•ฉ์„ ๊ฐ•์กฐํ•˜๋Š” ์œตํ•ฉ๊ต์œก์˜ ๋ฐœ๋‹ฌ์€ ๊ต์œก์  ์ธก๋ฉด์—์„œ์˜ ๊ฒฐํ•ฉ ๋ฟ ์•„๋‹ˆ ๋ผ ๊ต์œก์˜ ๋ฐฉ๋ฒ•์  ์ธก๋ฉด์—์„œ์˜ ์ƒˆ๋กœ์šด ์‹œ๋„๋ฅผ ์œ ๋„ ํ•˜๊ธฐ๋„ ํ•œ๋‹ค. ๋ฏธ์ˆ  ๊ฐ์ƒ ๊ต์œก์˜ ๋ฐฉ๋ฒ•์  ์ธก๋ฉด์—์„œ ๊ฐ€์žฅ ํšจ๊ณผ์ ์œผ๋กœ ํ™œ์šฉํ•  ์ˆ˜ ์žˆ๋Š” ๊ธฐ์ˆ ์ด ๋ฌด์—‡์ธ ์ง€, ์–ด๋– ํ•œ ๋ฐฉ๋ฒ•์œผ๋กœ ๊ฐ์ƒ ๊ต์œก์— ์ ์šฉ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋Š”์ง€์— ๋Œ€ํ•œ ํƒ๊ตฌ๊ฐ€ ํ•„์š” ํ•˜๋‹ค. ์ด๋Ÿฌํ•œ ์—ฐ๊ตฌ ๋ฌธ์ œ๋กœ ์‹œ์ž‘ํ•œ ๋ณธ ์—ฐ๊ตฌ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์ด ์ง„ํ–‰ํ•˜์˜€๋‹ค. 1์žฅ์—์„œ ๋Š” ์ฒญ์†Œ๋…„ ๋Œ€์ƒ ๋””์ง€ํ„ธ ๋ฏธ์ˆ  ๊ฐ์ƒ๊ต์œก์˜ ํ•„์š”์„ฑ๊ณผ ์ค‘์š”์„ฑ์„ ์‚ดํŽด๋ณด์•˜๋‹ค. ์„ ํ–‰์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด ๋””์ง€ํ„ธ ๋ฏธ์ˆ  ๊ฐ์ƒ๊ต์œก์ด ์–ด๋– ํ•œ ๋ฐฉํ–ฅ์œผ๋กœ ์—ฐ๊ตฌ๋˜๊ณ  ์žˆ๋Š” ์ง€, ๊ทธ๋ฆฌ๊ณ  ํ˜„์žฌ์˜ ๋ฏธ์ˆ  ๊ฐ์ƒ์˜ ๊ด€์‹ฌ ๋ถ„์•ผ๊ฐ€ ๋ฌด์—‡์ธ์ง€๋ฅผ ๋ฐœ๊ฒฌํ•˜์˜€๋‹ค. 2์žฅ ์—์„œ๋Š” ๋””์ง€ํ„ธ ๋ฏธ์ˆ  ๊ฐ์ƒ ๊ต์œก์˜ ํ•„์š”์„ฑ๊ณผ, ๊ทธ๋ฅผ ๋’ท๋ฐ›์นจํ•  ์ˆ˜ ์žˆ๋Š” ๋””์ง€ํ„ธ ์šฉ์–ด์˜ ๋ฌธํ™”์  ๊ฐœ๋…์„ ์กฐ์‚ฌํ•˜๊ณ  ์ •์˜ํ•˜์˜€๋‹ค. ๋””์ง€ํ„ธ ๋ฏธ์ˆ  ๊ฐ์ƒ ๊ต์œก์˜ ํ•„ ์š”์„ฑ์„ ๊ฐ•์กฐํ•˜๊ธฐ์œ„ํ•ด ๋ฏธ์ˆ  ๊ฐ์ƒ ๊ต์œก์˜ ์ค‘์š”์„ฑ์—์„œ๋ถ€ํ„ฐ ๋ฏธ์ˆ  ๊ฐ์ƒ ๊ต์œก์˜ ํ˜„ํ™ฉ, ๊ทธ๋ฆฌ๊ณ  ๋””์ง€ํ„ธ ๋ฏธ์ˆ  ๊ฐ์ƒ ๊ต์œก์˜ ํ•„์š”์„ฑ์„ ์‚ดํŽด๋ณด์•˜๋‹ค. 3์žฅ์—์„œ๋Š” ๋””์ง€ํ„ธ ๋ฏธ์ˆ  ๊ฐ์ƒ ํ”„๋กœ๊ทธ๋žจ์„ ๊ตฌ์„ฑํ•˜๊ธฐ์— ์•ž์„œ ๋””์ง€ํ„ธ ๋ฏธ์ˆ  ๊ฐ์ƒ ๋ฐฉ๋ฒ•์˜ ํ˜„ํ™ฉ์„ ์กฐ์‚ฌ ๋ฐ ๋ถ„์„ํ•˜์˜€๋‹ค. ๊ทธ๋Ÿฌ๊ธฐ ์œ„ํ•ด์„œ ๋ฏธ์ˆ ๊ด€ ๋ฐ ๋ฐ•๋ฌผ๊ด€์˜ ๋””์ง€ํ„ธ ๋ฏธ์ˆ  ๊ฐ์ƒ ๋ฐฉ๋ฒ•๊ณผ ํ•™๊ต์—์„œ ์‹ค์ œ๋กœ ์ง„ํ–‰๋˜๊ณ  ์žˆ๋Š” ๋””์ง€ํ„ธ ๋ฏธ์ˆ  ๊ฐ์ƒ ๋ฐฉ๋ฒ•, ๊ทธ๋ฆฌ๊ณ  ๊ทธ ์™ธ์˜ ์‚ฌ์„ค์ด๋‚˜ ๋‹จ์ฒด์—์„œ ์ง„ํ–‰๋˜์—ˆ๋˜ ๋””์ง€ํ„ธ ๋ฏธ์ˆ  ๊ฐ ์ƒ ๋ฐฉ๋ฒ•์— ๋Œ€ํ•œ ์‚ฌ๋ก€๋ฅผ ์กฐ์‚ฌํ•˜์˜€๋‹ค. ์ด ์žฅ์—์„œ๋Š” ๋ฏธ์ˆ ๊ด€์—์„œ ๋””์ง€ํ„ธ๋กœ ์ „ ์‹œ๋˜์–ด ๋””์ง€ํ„ธ์ ์ธ ์ž‘ํ’ˆ์„ ๊ฐ์ƒํ•˜๋Š” ๊ฒƒ, ์˜ˆ๋ฅผ ๋“ค์–ด ๋ฏธ๋””์–ด ์•„ํŠธ์™€ ๊ฐ™์ด ์ž‘ ํ’ˆ์˜ ํ•œ ๊ตฌ์„ฑ ์š”์†Œ๋กœ์„œ ๋””์ง€ํ„ธ์  ์š”์†Œ๊ฐ€ ๋“ค์–ด๊ฐ€ ์žˆ๋Š” ๊ฒฝ์šฐ๋Š” ์ œ์™ธํ•˜๊ณ  ๋”” ์ง€ํ„ธ ๋งค์ฒด๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๊ธฐ์กด ์ž‘ํ’ˆ์„ ๊ฐ์ƒํ•˜๋Š” ๊ฒฝ์šฐ๋งŒ์„ ์ค‘์ ์ ์œผ๋กœ ๋‹ค๋ฃจ์—ˆ๋‹ค. 4์žฅ์—์„œ๋Š” ๋””์ง€ํ„ธ ๋ฏธ์ˆ  ๊ฐ์ƒ ํ™œ์šฉ ๋ฐฉ์•ˆ๊ณผ ๊ฐœ๋ฐœํ•œ ํ”„๋กœ๊ทธ๋žจ์˜ ๋‚ด์šฉ์„ ๋‹ค๋ฃจ์—ˆ๋‹ค. ํ”„๋กœ๊ทธ๋žจ์˜ ๊ตฌ์„ฑ๊ณผ ๋‚ด์šฉ์„ ์„ค๋ช…ํ•˜๊ธฐ ์œ„ํ•ด ๋ฌดํ•œ๊ถค๋„ ๋ชจํ˜•(๋ฐ•์†Œ์˜, 2016)์„ ์ฐธ๊ณ ํ•˜์—ฌ ์ƒˆ๋กœ์šด ๋””์ง€ํ„ธ ๋ฏธ์ˆ  ๊ฐ์ƒ ๋ฌดํ•œ๊ถค๋„ ๋ชจํ˜•์„ ๊ณ ์•ˆํ•ด ๋ณด์•˜๊ณ , STMPE ๋ชจํ˜•์„ ๋ฐฉ๋ฒ•์ ์œผ๋กœ ์ ์šฉํ•˜์˜€๋‹ค. ๊ฐœ๋ฐœํ•œ ํ”„๋กœ๊ทธ๋žจ์˜ ํšจ๊ณผ์„ฑ๊ณผ ์ ์šฉ ๊ฐ€๋Šฅ์„ฑ, ๊ทธ๋ฆฌ๊ณ  ํ•œ๊ณ„์ ์„ ๋ณด์™„ํ•˜๊ธฐ ์œ„ํ•ด ์ „๋ฌธ๊ฐ€์—๊ฒŒ ์„ค๋ฌธ์กฐ์‚ฌ๋ฅผ ์‹คํ–‰ ํ•˜๊ณ  ๋””์ง€ํ„ธ ๋ฏธ์ˆ  ๊ฐ์ƒ๊ต์œก์˜ ์‹œ์‚ฌ์ ์„ ๋„์ถœํ•ด๋‚ด์—ˆ๋‹ค. ๊ฒฐ๋ก ์ ์œผ๋กœ ๋ณธ ์—ฐ๊ตฌ๋Š” ํ•™์Šต์ž์˜ ๋ฏธ์ˆ  ๊ฐ์ƒ์„ ํ•™์Šต์ž์˜ ์‹œ๊ฐ์—์„œ ๋ฏธ์ˆ  ๊ฐ์ƒ์„ ์ผ์ƒํ™” ์‹œํ‚ค๋Š” ๋ฐ์— ์˜์˜๊ฐ€ ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ๋ฐ•๋ฌผ๊ด€๊ณผ ๋ฏธ์ˆ ๊ด€, ๊ทธ๋ฆฌ๊ณ  ํ•™๊ต์™€ ์‚ฌํšŒ์—์„œ ์‹คํ–‰๋˜๊ณ  ์žˆ๋Š” ์‚ฌ๋ก€์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๋””์ง€ํ„ธ ๋ฏธ์ˆ  ๊ฐ์ƒ ํ”„๋กœ๊ทธ๋žจ์„ ๊ฐœ๋ฐœํ•˜์—ฌ ๋ฐฉํ–ฅ์„ฑ์„ ์ œ์‹œํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ ์ œ์•ˆํ•œ ํ”„๋กœ ๊ทธ๋žจ์€ ๋””์ง€ํ„ธ ์‹œ๋Œ€์˜ ๋ฏธ์ˆ  ๊ฐ์ƒ ๋ฐฉ๋ฒ•์„ ํ†ตํ•ด ๋ฏธ์ˆ  ๊ฐ์ƒ์„ ์ผ์ƒํ™”ํ•˜๊ณ , ๊ทธ ๊ฒƒ์„ ์ง€์†์ ์œผ๋กœ ๊ฐœ์ธ์˜ ์‚ถ์— ๊ฐ–๊ณ  ๋“ค์–ด์˜ฌ ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฐ€๋Šฅ์„ฑ์ด ์žˆ์Œ์„ ๋ณด์—ฌ์ค€๋‹ค.์ œ 1 ์žฅ ์„œ๋ก  1 ์ œ 1 ์ ˆ ์—ฐ๊ตฌ์˜ ํ•„์š”์„ฑ ๋ฐ ๋ชฉ์  1 ์ œ 2 ์ ˆ ์—ฐ๊ตฌ์˜ ๋‚ด์šฉ ๋ฐ ๋ฐฉ๋ฒ• 3 ์ œ 3 ์ ˆ ์„ ํ–‰์—ฐ๊ตฌ 6 ์ œ 4 ์ ˆ ์—ฐ๊ตฌ์˜ ์ค‘์š”์„ฑ 8 ์ œ 2 ์žฅ ์ด๋ก ์  ๋ฐฐ๊ฒฝ 11 ์ œ 1 ์ ˆ ๋””์ง€ํ„ธ ๋ฏธ์ˆ  ๊ฐ์ƒ ๊ต์œก์˜ ํ•„์š”์„ฑ ๋ฐ ํ˜„ํ™ฉ 11 1. ๋””์ง€ํ„ธ ๋ฏธ์ˆ  ๊ฐ์ƒ ๊ต์œก์˜ ํ•„์š”์„ฑ 11 2. ๋ฏธ์ˆ  ๊ฐ์ƒ ๊ต์œก์˜ ํ˜„ํ™ฉ 15 ์ œ 2 ์ ˆ ์ •๋ณดํ™” ์‹œ๋Œ€์˜ ๋””์ง€ํ„ธ ๊ต์œก 19 1. ๋””์ง€ํ„ธ ๋„ค์ดํ‹ฐ๋ธŒ 19 2. ๋””์ง€ํ„ธ ๋ฆฌํ„ฐ๋Ÿฌ์‹œ 21 3. ๋””์ง€ํ„ธ ๋งค์ฒด๋ฅผ ํ™œ์šฉํ•œ ๋ฏธ์ˆ  ๊ฐ์ƒ๊ต์œก์˜ ํŠน์„ฑ 25 ์ œ 3 ์žฅ ๋””์ง€ํ„ธ ๋ฏธ์ˆ  ๊ฐ์ƒ ๋ฐฉ๋ฒ• ํ˜„ํ™ฉ ๋ฐ ์‚ฌ๋ก€๋ถ„์„ 29 ์ œ 1 ์ ˆ ๋ฐ•๋ฌผ๊ด€, ๋ฏธ์ˆ ๊ด€์˜ ๋””์ง€ํ„ธ ๋ฏธ์ˆ  ๊ฐ์ƒ ํ˜„ํ™ฉ ๋ฐ ์‚ฌ๋ก€ 29 1. ๊ตญ๋ฆฝํ˜„๋Œ€๋ฏธ์ˆ ๊ด€ 31 2. ๋ฆฌ์›€ ๋ฏธ์ˆ ๊ด€ 34 3. ๊ตญ๋ฆฝ์ค‘์•™๋ฐ•๋ฌผ๊ด€ 37 4. ๊ฒŒํ‹ฐ ๋ฏธ์ˆ ๊ด€ 40 5. ๋ชฌํŠธ๋Ÿฌ๋ฆฌ ๋ฒ ์ด ์•„์ฟ ์•„๋ฆฌ์›€ 42 ์ œ 2 ์ ˆ ํ•™๊ต์—์„œ์˜ ๋””์ง€ํ„ธ ๋ฏธ์ˆ  ๊ฐ์ƒ ๋ฐฉ๋ฒ• 45 1. ์ฒดํ—˜-ํ‘œํ˜„-๊ฐ์ƒ ์œตํ•ฉ ์‚ฌ๋ก€ 46 2. ๊ฐ€์ƒ ํ”Œ๋žซํผ ํ™œ์šฉ ์‚ฌ๋ก€ 49 3. ์˜จ๋ผ์ธ ๋ฏธ์ˆ  ๊ฒฝ๋งค ์‚ฌ๋ก€ 51 ์ œ 3 ์ ˆ ์†Œ์…œ๋ฏธ๋””์–ด ๋””์ง€ํ„ธ ๋ฏธ์ˆ  ๊ฐ์ƒ ๋ฐฉ๋ฒ• 54 1. ์Šค์ฟจํฌ์œ  ์˜จ๋ผ์ธ ๊ฐ€์ƒ ์ „์‹œํšŒ 54 2. ์นด์นด์˜ค 100 ํ”„๋กœ์ ํŠธ-๋งค์ผ ํ˜„๋Œ€๋ฏธ์ˆ  ํ•˜๋‚˜์”ฉ ๊ฐ์ƒํ•˜๊ธฐ 56 3. ์•„ํŠธ ์•ค ํ…Œํฌ 58 ์ œ 4 ์žฅ ๋””์ง€ํ„ธ ๋ฏธ์ˆ  ๊ฐ์ƒ ํ™œ์šฉ๋ฐฉ์•ˆ ๋ฐ ํ”„๋กœ๊ทธ๋žจ 60 ์ œ 1 ์ ˆ ๋ฐฉ๋ฒ•์  ์ ‘๊ทผ 60 1. ๋ฌดํ•œ๊ถค๋„ ๋ชจํ˜• 60 2. STMPE ๋ชจํ˜• 64 ์ œ 2 ์ ˆ ํ”„๋กœ๊ทธ๋žจ ๋‚ด์šฉ 66 1. ๊ฐ€์žฅ์ „์‹œ ๊พธ๋ฏธ๊ธฐ-์ผ์ƒ ์† ์ „์‹œํšŒ 66 2. ๋ฏธ์ˆ  ์ž‘๊ฐ€ ๋˜์–ด๋ณด๊ธฐ-์ž‘๊ฐ€์˜ ๋ฐฉ 71 ์ œ 3 ์ ˆ ์ „๋ฌธ๊ฐ€ ํ‰๊ฐ€ ๊ฒฐ๊ณผ 76 1. ์„ค๋ฌธ ๋Œ€์ƒ ์„ ์ • ๋ฐ ๋ฐฉ๋ฒ• 76 2. ์„ค๋ฌธ ๋‚ด์šฉ 77 3. ํ‰๊ฐ€ ๊ฒฐ๊ณผ ๋ฐ ํšจ๊ณผ ๋ถ„์„ 78 ์ œ 4 ์ ˆ ๋””์ง€ํ„ธ ๋ฏธ์ˆ  ๊ฐ์ƒ๊ต์œก์˜ ์‹œ์‚ฌ์  84 1. ๋””์ง€ํ„ธ ๋ฏธ์ˆ  ๊ฐ์ƒ ํ”„๋กœ๊ทธ๋žจ์˜ ์‹œ์‚ฌ์  84 2. ๋””์ง€ํ„ธ ๋ฏธ์ˆ  ๊ฐ์ƒ์˜ ๋ฏธ์ˆ  ๊ต์œก์  ์‹œ์‚ฌ์  85 3. ๋””์ง€ํ„ธ ๋ฏธ์ˆ  ๊ฐ์ƒ์˜ ๋ฏธ์ˆ ์‚ฌ์  ์‹œ์‚ฌ์  87 ์ œ 5 ์žฅ ๊ฒฐ๋ก  89 ์ฐธ๊ณ ๋ฌธํ—Œ 93 Abstract 97์„

    ์‚ฌ๊ธฐ๋ฒ”์ฃ„ ํ”ผํ•ด ์š”์ธ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ํ–‰์ •ํ•™๊ณผ, 2017. 2. ๊ธˆํ˜„์„ญ.์ด ๋…ผ๋ฌธ์€ ์‚ฌ๊ธฐ ๋ฒ”์ฃ„ ํ”ผํ•ด์ž๋“ค์„ ๋Œ€์ƒ์œผ๋กœ ๋ฒ”์ฃ„ ํ”ผํ•ด์˜ ์‹ฌ๊ฐ์„ฑ์— ๋ฏธ์น˜๋Š” ์š”์ธ์„ ๋ถ„์„ํ•˜๋Š”๋ฐ ๊ทธ ๋ชฉ์ ์ด ์žˆ๋‹ค. ๊ทธ ๋™์•ˆ ์‚ฌ๊ธฐ ๋ฒ”์ฃ„์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋Š” ์ฃผ๋กœ ๊ฐ€ํ•ด์ž๋ฅผ ์–ด๋–ป๊ฒŒ ์ œ์ง€ํ•  ๊ฒƒ์ธ์ง€์— ๋Œ€ํ•œ ์ˆ˜์‚ฌ๊ธฐ๊ด€์˜ ๋Œ€์‘์ฑ…์„ ์ค‘์‹ฌ์œผ๋กœ ์ด๋ฃจ์–ด์ ธ์žˆ์—ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์‚ฌ๊ธฐ ๋ฒ”์ฃ„๋Š” ๋ฒ”์ฃ„ ์ˆ˜์ต์˜ ํšŒ์ˆ˜์œจ์ด ๋‚ฎ๊ณ  ํ”ผ์˜์ž๋ฅผ ๊ฒ€๊ฑฐํ•  ํ™•๋ฅ ์ด ๋‹ค๋ฅธ ๋ฒ”์ฃ„๋ณด๋‹ค ํ˜„์ €ํžˆ ๋‚ฎ๋‹ค. ๋”ฐ๋ผ์„œ ๋ฒ”์ฃ„ ํ”ผํ•ด๋ฅผ ์ตœ์†Œํ™”ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๋ฒ”์ฃ„ ์˜ˆ๋ฐฉ์˜ ์ธก๋ฉด์—์„œ ๋ฒ”์ฃ„๋ฅผ ์ผ์œผํ‚ค๋Š” ์š”์ธ์„ ๋ถ„์„ํ•  ํ•„์š”๊ฐ€ ์žˆ๋‹ค. ์ด๋ฒˆ ์—ฐ๊ตฌ์—์„œ๋Š” ์‚ฌ๊ธฐ ๋ฒ”์ฃ„ ํ”ผํ•ด์ž๋“ค์— ๋Œ€ํ•˜์—ฌ ๋ฒ”์ฃ„ ํ”ผํ•ด ์š”์ธ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋ฅผ ์ง„ํ–‰ํ•˜์˜€๋‹ค. ๋ฒ”์ฃ„ ํ”ผํ•ด์ž์˜ ์ผ์ƒ ํ™œ๋™ ์ด๋ก ์ด๋‚˜ ์ƒํ™œ์–‘์‹ ์ด๋ก ์— ๋”ฐ๋ฅด๋ฉด ํ”ผํ•ด์ž๋“ค์˜ ์ธ๊ตฌยท์‚ฌํšŒ์  ํŠน์„ฑ์— ๋”ฐ๋ผ ๋ฒ”์ฃ„์— ๋…ธ์ถœ๋˜๋Š” ๋นˆ๋„๊ฐ€ ๋‹ค๋ฅด๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ด์— ๊ทผ๊ฑฐํ•˜์—ฌ ํ”ผํ•ด์ž๋“ค์˜ ์—ฐ๋ นยท์„ฑ๋ณ„ยท์ง์—…์œ ๋ฌด๋ฅผ ๋…๋ฆฝ๋ณ€์ˆ˜๋กœ ์„ค์ •ํ•˜์˜€๋‹ค. ์ด์— ๋” ๋‚˜์•„๊ฐ€ ์‚ฌ๊ธฐ๋ฒ”์ฃ„๋Š” ํ”ผํ•ด์ž์˜ ์‹ ๋ขฐ๊ฐ€ ๋ฒ”์ฃ„ ๋ฐœ์ƒ์— ์˜ํ–ฅ์„ ๋ฏธ์นœ๋‹ค๋Š” ์ ์—์„œ ํ”ผํ•ด์ž์˜ ์‹ ๋ขฐ ๋ฐ ๊ธฐ๋Œ€์ด์ต์„ ๋…๋ฆฝ๋ณ€์ˆ˜์— ์ถ”๊ฐ€๋กœ ์„ค์ •ํ•˜์˜€๋‹ค. ์ข…์† ๋ณ€์ˆ˜๋กœ๋Š” ๋ฒ”์ฃ„ ํ”ผํ•ด์˜ ์‹ฌ๊ฐ์„ฑ์„ ์–‘์ , ์งˆ์ ์ธ ๋ฉด์—์„œ ์ธก์ •ํ•˜์—ฌ ๋…๋ฆฝ๋ณ€์ˆ˜์™€์˜ ๊ทธ ๊ด€๊ณ„๋ฅผ ํƒ์ƒ‰ํ•˜์˜€๋‹ค. ๋ถ„์„ ๋ฐฉ๋ฒ•์œผ๋กœ๋Š” ๋ฒ”์ฃ„ ํ”ผํ•ด์˜ ์–‘์  ์‹ฌ๊ฐ์„ฑ์ธ ํ”ผํ•ด ๊ธˆ์•ก๊ณผ ๋…๋ฆฝ๋ณ€์ˆ˜์™€์˜ ๊ด€๊ณ„๋Š” ํšŒ๊ท€๋ถ„์„์„ ์ด์šฉํ•˜์˜€๋‹ค. ๋ฒ”์ฃ„ ํ”ผํ•ด์˜ ์งˆ์  ์‹ฌ๊ฐ์„ฑ์ธ ์ˆ˜์‚ฌ ๊ฒฐ๊ณผ์™€ ๋…๋ฆฝ๋ณ€์ˆ˜์™€์˜ ๊ด€๊ณ„๋Š” ๋กœ์ง€์Šคํ‹ฑ ๋ถ„์„์„ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ์œ„ ์—ฐ๊ตฌ ๋ชจํ˜•์— ๊ทผ๊ฑฐํ•˜์—ฌ ํ†ต๊ณ„ ๋ถ„์„์„ ์‹œํ–‰ํ•˜์˜€์œผ๋ฉฐ ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๊ฒฐ๊ณผ๊ฐ€ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ฒซ์งธ, ํ”ผํ•ด์ž์˜ ์ธ๊ตฌยท์‚ฌํšŒ์  ํŠน์„ฑ(์—ฐ๋ น, ์„ฑ๋ณ„, ์ง์—…) ์ค‘ ์ง์—…๊ณผ ์—ฐ๋ น์ด ๋ฒ”์ฃ„ํ”ผํ•ด์— ์œ ์˜๋ฏธํ•œ ์˜ํ–ฅ์„ ์ฃผ๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ํ”ผํ•ด์ž์˜ ๋‚˜์ด๊ฐ€ ๋งŽ์„์ˆ˜๋ก, ํ”ผํ•ด์ž๊ฐ€ ์ง์—…์ด ์žˆ๋Š” ๊ฒฝ์šฐ๋ณด๋‹ค ์—†๋Š” ๊ฒฝ์šฐ์— ์‚ฌ๊ธฐ์ฃ„ ํ”ผํ•ด ์ •๋„๊ฐ€ ์‹ฌ๊ฐํ•˜์˜€๋‹ค. ๋‘˜์งธ, ํ”ผํ•ด์ž๊ฐ€ ๊ณ ๋ น์ผ์ˆ˜๋ก ์ด๋“ค์€ ๊ณต์‹์  ์‹ ๋ขฐ๋ณด๋‹ค๋Š” ๋น„๊ณต์‹์  ์‹ ๋ขฐ์— ์˜์กดํ•˜๋Š” ๊ฒƒ์ด ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๊ณต์‹์  ์‹ ๋ขฐ๋Š” ์ฐจ์šฉ์ฆ, ๊ณ„์•ฝ์„œ ๋“ฑ๊ณผ ๊ฐ™์ด ๋ฒ•์  ๊ถŒ์œ„์— ๊ทผ๊ฑฐํ•˜๋Š” ๋ฐ˜๋ฉด, ๋น„๊ณต์‹์  ์‹ ๋ขฐ๋Š” ํ”ผํ•ด์ž์™€ ๊ฐ€ํ•ด์ž์˜ ์‚ฌํšŒ์  ๊ด€๊ณ„์— ๊ทผ๊ฑฐํ•˜๊ณ  ์žˆ๋‹ค. ๋น„๊ณต์‹์  ์‹ ๋ขฐ์˜ ์–‘ํƒœ๋Š” ๋‹จ์ˆœ ์ง€์ธ๊ด€๊ณ„, ์ง์žฅ๋™๋ฃŒ, ์—ฐ์ธ, ๊ณ„, ํ˜ˆ์—ฐ, ํ•™์—ฐ, ์ง€์—ฐ ๋“ฑ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ด ์ค‘์—์„œ ํ˜ˆ์—ฐ, ์ง€์—ฐ, ํ•™์—ฐ๊ณผ ๊ฐ™์€ ์—ฐ๊ณ  ์ง‘๋‹จ์— ๊ทผ๊ฑฐํ•œ ์‹ ๋ขฐ ์œ ํ˜•์ด ๊ณ ๋ น์˜ ํ”ผํ•ด์ž๋“ค ์‚ฌ์ด์—์„œ ๋‘๋“œ๋Ÿฌ์ง€๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์…‹์งธ, ํ”ผํ•ด์ž์˜ ๋น„๊ณต์‹์  ์‹ ๋ขฐ๋Š” ๋ฒ”์ฃ„ ํ”ผํ•ด์˜ ์งˆ์ , ์–‘์  ์‹ฌ๊ฐ์„ฑ์— ์œ ์˜๋ฏธํ•œ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ๊ฒƒ์œผ๋กœ ํ™•์ธ๋˜์—ˆ๋‹ค. ์ด์™€ ๊ฐ™์€ ๋ถ„์„์„ ๋ฐ”ํƒ•์œผ๋กœ ๋‹ค์Œ๊ณผ ๊ฐ™์€ ์‹œ์‚ฌ์ ์„ ์ œ์‹œํ•  ์ˆ˜ ์žˆ๋‹ค. ์ฒซ์งธ, ์ทจ์•ฝ ๊ณ„์ธต์˜ ๋ฒ”์ฃ„ ํ”ผํ•ด๋Š” ๊ฒฝ์ œ์  ์–‘๊ทนํ™”์™€ ์—ฐ๊ด€์„ฑ์ด ์žˆ๋‹ค. ๋ถ„์„ ๊ฒฐ๊ณผ์—์„œ๋„ ๋‚˜ํƒ€๋‚˜๋“ฏ์ด, ํ”ผํ•ด์ž๋“ค์˜ ์ง์—…์ด ๋ฌด์ง์ด๊ฑฐ๋‚˜ ์ผ๋ฐ˜ ์ฃผ๋ถ€๋“ค์˜ ๋ฒ”์ฃ„ ํ”ผํ•ด๊ฐ€ ์ง์—…์ด ์žˆ๋Š” ์‚ฌ๋žŒ๋“ค๋ณด๋‹ค ํ”ผํ•ด์˜ ์‹ฌ๊ฐ์„ฑ์ด ๋‘๋“œ๋Ÿฌ์กŒ๋‹ค. ํŠนํžˆ๋‚˜ ๋ณด์ด์Šคํ”ผ์‹ฑ ์‚ฌ๊ธฐ์˜ ํ”ผํ•ด์ž๋“ค์€ ์†Œ๋“์ˆ˜์ค€์ด ๋‚ฎ๊ฑฐ๋‚˜ ์‹ ์šฉ ๋“ฑ๊ธ‰์ด ๋‚ฎ์€ ์ทจ์•ฝ ๊ณ„์ธต์˜ ํ”ผํ•ด์ž๋“ค์ด ๋‹ค์ˆ˜ ํ™•์ธ๋˜์—ˆ๋‹ค. ๋‘˜์งธ, ์ทจ์•ฝ ๊ณ„์ธต์— ๋Œ€ํ•œ ๋ฒ”์ฃ„ ํ”ผํ•ด๋Š” ์ธ๊ตฌ์˜ ๊ณ ๋ นํ™” ํ˜„์ƒ์˜ ์ด๋ฉด์œผ๋กœ ํ•ด์„ํ•  ์ˆ˜ ์žˆ๋‹ค. ํˆฌ์ž ์‚ฌ๊ธฐ์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๋…ธ์ธ ํ”ผํ•ด์ž๋“ค์€ ์ฃผ๋กœ 1์ธ ๊ฐ€๊ตฌ๋“ค์ด ๋งŽ์•˜๋‹ค. ๊ณ ๋ นํ™” ๋ฐ ํ•ต๊ฐ€์กฑํ™”๋กœ ์ธํ•˜์—ฌ ๊ฐ€์กฑ๊ณผ ๋ถ„๋ฆฌ๋˜์–ด ํ™€๋กœ ๊ฑฐ์ฃผํ•˜๋Š” ๋…ธ์ธ๋“ค์ด ์ฆ๊ฐ€ํ•˜๋ฉด์„œ ์ด๋“ค์„ ์ƒ๋Œ€๋กœ ํ•œ ๋ฒ”์ฃ„๊ฐ€ ๋Š˜์–ด๋‚˜๊ณ  ์žˆ๋‹ค. ์‚ฌ๊ธฐ ๋ฒ”์ฃ„ ํ”ผํ•ด์ž์— ๋Œ€ํ•œ ์ •์ฑ…์  ๋Œ€์ฑ…์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. ์ฒซ์งธ, ๋…ธ์ธ๊ณผ ๊ฐ™์€ ๋ฒ”์ฃ„ ์ทจ์•ฝ ๊ณ„์ธต์— ๋Œ€ํ•œ ๋ณดํ˜ธ์™€ ๋„คํŠธ์›Œํฌ ๊ตฌ์ถ•์ด ํ•„์š”ํ•˜๋‹ค. ๋‘˜์งธ, ํ์‡„์ ์ธ ์ง‘๋‹จ ๋‚ด์—์„œ ํ˜•์„ฑ๋˜๋Š” ๋น„๊ณต์‹์  ์‹ ๋ขฐ๋ฅผ ์ง€์–‘ํ•ด์•ผ ํ•œ๋‹ค. ์—ฐ๊ณ  ์ง‘๋‹จ์— ๊ทผ๊ฑฐํ•˜์—ฌ ๋ฐœ์ƒํ•˜๋Š” ๋น„๊ณต์‹์  ์‹ ๋ขฐ๋Š” ๋‚ด๋ถ€ ์ง€ํ–ฅ์ ์ด๋ฉฐ ๋„คํŠธ์›Œํฌ์˜ ๋ฐฐํƒ€์  ์ •์ฒด์„ฑ๊ณผ ๋™์งˆ์„ฑ์„ ๊ฐ•ํ™”ํ•˜๋Š” ๊ฒฝํ–ฅ์ด ์žˆ๋‹ค. ์…‹์งธ, ์‚ฌ๊ธฐ ๋ฒ”์ฃ„๋Š” ์ฃผ๋กœ ํ”ผํ•ด์ž์˜ ๋น„๊ณต์‹์  ์‹ ๋ขฐ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๋‚˜ํƒ€๋‚œ๋‹ค. ๋”ฐ๋ผ์„œ ํ”ผํ•ด์ž ์ž…์žฅ์—์„œ๋Š” ์‚ฌ๊ธฐ๋ฒ”์— ๋Œ€ํ•˜์—ฌ ์—ฐ๊ณ  ์ง‘๋‹จ ๋“ฑ๊ณผ ๊ฐ™์€ ๋น„๊ณต์‹์  ์‹ ๋ขฐ์— ์˜์กดํ•˜๊ธฐ ๋ณด๋‹ค๋Š” ๋ฒ•์  ๊ถŒ์œ„๊ฐ€ ์žˆ๋Š” ๊ณต์‹์  ์‹ ๋ขฐ์˜ ๊ตฌ์ œ ์ˆ˜๋‹จ์„ ํ™•๋ณดํ•˜๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•˜๋‹ค.์ œ1์žฅ ์„œ ๋ก  1 ์ œ1์ ˆ ์—ฐ๊ตฌ์˜ ๋ฐฐ๊ฒฝ 1 ์ œ2์ ˆ ์—ฐ๊ตฌ์˜ ๋ชฉ์  3 ์ œ2์žฅ ์—ฐ๊ตฌ์˜ ์ด๋ก ์  ๋ฐฐ๊ฒฝ 7 ์ œ1์ ˆ ์‚ฌ๊ธฐ์ฃ„์— ๋Œ€ํ•œ ๊ฐœ๋…์  ์ •์˜ 7 1. ์‚ฌ๊ธฐ์ฃ„์˜ ๊ฐœ๋… 7 2. ์ทจ์•ฝ๊ณ„์ธต์— ๋Œ€ํ•œ ์‚ฌ๊ธฐ๋ฒ”์ฃ„ ํ”ผํ•ด 8 ์ œ2์ ˆ ๋ฒ”์ฃ„์š”์ธ๊ณผ ๋ฒ”์ฃ„ ํ”ผํ•ด์— ๊ด€ํ•œ ์—ฐ๊ตฌ 10 1. ๋ฒ”์ฃ„ ์š”์ธ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ 10 2. ํ”ผํ•ด์ž์— ๋Œ€ํ•œ ์ด๋ก ์  ์—ฐ๊ตฌ 11 1) ํ”ผํ•ด์ž ์œ ๋ฐœ ์ด๋ก  12 2) ์ƒํ™ฉ์  ์ „์ด ์ด๋ก  13 3) ์ƒํ™œ์–‘์‹/๋…ธ์ถœ์ด๋ก ๊ณผ ์ผ์ƒํ™œ๋™ ์ด๋ก  14 4) ์ƒํ™ฉ์  ๋ฒ”์ฃ„์˜ˆ๋ฐฉ์ด๋ก  16 5) ์†Œ๊ฒฐ 16 ์ œ3์ ˆ ์‹ ๋ขฐ์— ๊ด€ํ•œ ์—ฐ๊ตฌ 18 1. ์„ ํ–‰์—ฐ๊ตฌ 18 2. ์‹ ๋ขฐ์˜ ์ •์˜์™€ ์—ฐ๊ณ  ์ง‘๋‹จ 19 3. ์„ ํ–‰์—ฐ๊ตฌ์˜ ๋น„ํŒ์  ๊ฒ€ํ†  ๋ฐ ์—ฐ๊ตฌ์˜ ๋ฐฉํ–ฅ 21 ์ œ3์žฅ ์—ฐ๊ตฌ์กฐ์‚ฌ์„ค๊ณ„ ๋ฐ ๋ถ„์„๋ฐฉ๋ฒ• 22 ์ œ1์ ˆ ๋ณ€์ˆ˜ ์„ ์ • 22 1. ์ž๋ฃŒ ์ถœ์ฒ˜ ๋ฐ ์ˆ˜์ง‘ ๊ณผ์ • 23 1) ์—ฐ๊ตฌ๋Œ€์ƒ 23 2) ์—ฐ๊ตฌ์ž๋ฃŒ ๋ฐ ์ž๋ฃŒ์ˆ˜์ง‘ ์ ˆ์ฐจ 25 2. ์ข…์† ๋ณ€์ˆ˜์˜ ์ •์˜์™€ ์ธก์ • 27 1) ์‚ฌ๊ธฐ์ฃ„ ๋ฐœ์ƒ 27 2) ์‚ฌ๊ธฐ์ฃ„ ๋ฐœ์ƒ ํ”ผํ•ด 28 3. ๋…๋ฆฝ ๋ณ€์ˆ˜์˜ ์ •์˜์™€ ์ธก์ • 29 1) ํ”ผํ•ด์ž์˜ ์ธ๊ตฌยท์‚ฌํšŒ์  ์š”์ธ์˜ ์ธก์ • 29 2) ํ”ผํ•ด์ž์˜ ์‹ ๋ขฐ์˜ ์ธก์ • 29 3) ์—ฐ๊ณ  ์ง‘๋‹จ 31 4) ๊ธฐํƒ€ ๋ณ€์ˆ˜์˜ ์ธก์ • 32 ์ œ2์ ˆ ์—ฐ๊ตฌ๋ถ„์„ 32 1. ์—ฐ๊ตฌ ๋ชจํ˜• 32 2. ์—ฐ๊ตฌ ๊ฐ€์„ค ์„ค์ • 33 3. ์—ฐ๊ตฌ ๋ถ„์„ ๋ฐฉ๋ฒ• 35 ์ œ4์žฅ ์‹ค์ฆ๋ถ„์„ ๋ฐ ๊ฐ€์„ค๊ฒ€์ฆ 38 ์ œ1์ ˆ ๊ธฐ์ˆ ํ†ต๊ณ„๋ถ„์„ 38 1. ์ข…์†๋ณ€์ˆ˜ ๊ธฐ์ˆ ํ†ต๊ณ„๋ถ„์„ 38 2. ๋…๋ฆฝ๋ณ€์ˆ˜ ๊ธฐ์ˆ ํ†ต๊ณ„๋ถ„์„ 41 1) ํ”ผํ•ด์ž์˜ ์ธ๊ตฌยท์‚ฌํšŒ์  ์š”์ธ 41 2) ํ”ผํ•ด์ž์˜ ์‹ ๋ขฐ์œ ํ˜• 43 3. ๊ธฐํƒ€๋ณ€์ˆ˜ ๊ธฐ์ˆ ํ†ต๊ณ„๋ถ„์„ 45 ์ œ2์ ˆ ์ด๋ณ€๋Ÿ‰ ๋ถ„์„ 46 1. ๋ฒ”์ฃ„ํ”ผํ•ด์˜ ์–‘์  ์‹ฌ๊ฐ์„ฑ๊ณผ ๊ทธ ์š”์ธ 46 2. ๋ฒ”์ฃ„ํ”ผํ•ด์˜ ์งˆ์  ์‹ฌ๊ฐ์„ฑ๊ณผ ๊ทธ ์š”์ธ 50 ์ œ3์ ˆ ํšŒ๊ท€๋ถ„์„ 52 1. ๋‹ค์ค‘๊ณต์„ ์„ฑ ์ง„๋‹จ 53 2. ๋กœ์ง€์Šคํ‹ฑ ํšŒ๊ท€๋ถ„์„ ๊ฒฐ๊ณผ 54 3. ์„ ํ˜• ํšŒ๊ท€๋ถ„์„๊ฒฐ๊ณผ 57 4. ๊ฐ€์„ค๊ฒ€์ •๊ณผ ํ•ด์„ 59 5. ์‚ฌ๋ก€ ๋ถ„์„ 60 ์ œ5์žฅ ๊ฒฐ๋ก  65 ์ œ1์ ˆ ์—ฐ๊ตฌ์˜ ์‹œ์‚ฌ์  65 ์ œ2์ ˆ ์—ฐ๊ตฌ์˜ ํ•œ๊ณ„ 68 ์ œ3์ ˆ ๊ฒฐ์–ด 70 ์ฐธ๊ณ ๋ฌธํ—Œ 72 Abstract 76Maste

    Health status and medical service utilization of migrant workers in Korea

    No full text
    ๊ฐ„ํ˜ธํ•™๊ณผ/์„์‚ฌ[ํ•œ๊ธ€]๋ณธ ์—ฐ๊ตฌ๋Š” ๊ตญ๋‚ด ์™ธ๊ตญ์ธ ๋…ธ๋™์ž๋ฅผ ๋Œ€์ƒ์œผ๋กœ ๊ฑด๊ฐ•์ƒํƒœ์™€ ์ด์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ์š”์ธ ๊ทธ๋ฆฌ๊ณ  ์ด๋“ค์˜ ์˜๋ฃŒ์„œ๋น„์Šค ์ด์šฉ์— ๋Œ€ํ•˜์—ฌ ํŒŒ์•…ํ•˜๊ณ ์ž ์‹œํ–‰๋œ ์กฐ์‚ฌ์—ฐ๊ตฌ์ด๋‹ค. ์ž๋ฃŒ์ˆ˜์ง‘์€ ๊ตญ๋‚ด ์„œ์šธ ์†Œ์žฌ์˜ ์™ธ๊ตญ์ธ ๋…ธ๋™์ž ์ง„๋ฃŒ๋ฅผ ์‹œํ–‰ํ•˜๋Š” ๋ณ‘์›๊ณผ ์˜์› 3๊ณณ ๊ทธ๋ฆฌ๊ณ  ๋ฌด๋ฃŒ์ง„๋ฃŒ์†Œ 1๊ณณ์— ๋‚ด์›ํ•œ ์™ธ๊ตญ์ธ ๋…ธ๋™์ž ์ค‘์—์„œ ์˜์–ด ๋˜๋Š” ํ•œ๊ตญ์–ด ์˜์‚ฌ์†Œํ†ต์ด ๊ฐ€๋Šฅํ•œ 150๋ช…์„ ๋Œ€์ƒ์„ ์ง์ ‘ ๋งŒ๋‚˜, ์ž๊ฐ€๋ณด๊ณ ์‹ ์„ค๋ฌธ์กฐ์‚ฌ๋ฅผ ์‹œํ–‰ํ•˜์˜€๋‹ค. ์กฐ์‚ฌ๊ธฐ๊ฐ„์€ 2006๋…„ 11์›” 20์ผ๋ถ€ํ„ฐ 2007๋…„ 10์›” 20์ผ๊นŒ์ง€ 11๊ฐœ์›” ๋™์•ˆ ์‹ค์‹œํ•˜์˜€๊ณ , ์ด ์ค‘ ์ด 110๋ถ€๊ฐ€ ์ตœ์ข… ๋ถ„์„์— ์ด์šฉ๋˜์—ˆ๋‹ค.๊ตญ๋‚ด ์™ธ๊ตญ์ธ ๋…ธ๋™์ž์˜ ๊ฑด๊ฐ•์ƒํƒœ๋Š” ํ‰๊ท  5.78๋กœ ๋น„๊ต์  ์ข‹์€ ํŽธ์ด์—ˆ์œผ๋ฉฐ ๋ฌธ์ œ ์˜์—ญ๋ณ„๋กœ ์ƒ๋Œ€์  ๋น„๊ต ๋ถ„์„ํ•œ ๊ฒฐ๊ณผ, ํ”ผ๋กœ๋„, ๊ทผ๊ณจ๊ฒฉ๊ณ„, ํ˜ธํก๊ธฐ๊ณ„, ํ˜„์žฌ ๋งŒ์„ฑ์งˆํ™˜ ์œ ๋ฌด, ์†Œํ™”๊ธฐ๊ณ„, ์‹ ๊ฒฝ๊ณ„, ํ”ผ๋ถ€, ์•ˆ์ด๋น„์ธํ›„๊ณ„, ์งˆ๋ณ‘๋ฐœ์ƒ๋นˆ๋„, ๋น„๋‡จ๊ธฐ๊ณ„, ์ˆœํ™˜๊ธฐ๊ณ„์˜ ์ˆœ์œผ๋กœ ๊ฑด๊ฐ•๋ฌธ์ œ๊ฐ€ ๋งŽ์€ ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ์œผ๋ฉฐ ์ด๋“ค์˜ ๊ฑด๊ฐ•์ƒํƒœ์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ์š”์ธ์œผ๋กœ๋Š” ๊ตญ์ , ์‚ฌํšŒ์  ์ง€์ง€, ์šฐ์šธ, ์ƒํ™œ์‚ฌ๊ฑด(์ŠคํŠธ๋ ˆ์Šค), ํ‰์ƒ์‹œ ๊ฑด๊ฐ•์ธ์‹, ๊ฑด๊ฐ•์—ผ๋ ค๋„, ๊ทœ์น™์  ์šด๋™, ํก์—ฐ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ฆ‰ ์ค‘๊ตญ๊ตญ์ ์„ ๊ฐ€์ง„ ์™ธ๊ตญ์ธ ๋…ธ๋™์ž์˜ ๊ฑด๊ฐ•์ƒํƒœ๊ฐ€ ์ข‹์ง€ ์•Š์•˜์œผ๋ฉฐ, ๋ฐ˜๋ฉด, ์‚ฌํšŒ์  ์ง€์ง€๊ฐ€ ๋†’์„์ˆ˜๋ก, ๊ฑด๊ฐ•์—ผ๋ ค๋„๋Š” ๋‚ฎ์„์ˆ˜๋ก, ๊ทœ์น™์  ์šด๋™์„ ๋งŽ์ด ํ• ์ˆ˜๋ก, ๋น„ํก์—ฐ์ž์ผ์ˆ˜๋ก ์ด๋“ค์˜ ๊ฑด๊ฐ•์ƒํƒœ๋Š” ์–‘ํ˜ธํ•˜์˜€๋‹ค. ์ด ๋ณ€์ˆ˜๋“ค์„ ๊ฐ€์ง€๊ณ  ๋‹ค์ค‘ํšŒ๊ท€๋ถ„์„์„ ์‹ค์‹œํ•œ ๊ฒฐ๊ณผ, ํ‰์ƒ์‹œ ๊ฑด๊ฐ•์ธ์‹๊ณผ ์ƒํ™œ์‚ฌ๊ฑด(์ŠคํŠธ๋ ˆ์Šค)์ด ๋Œ€์ƒ์ž์˜ ๊ฑด๊ฐ•์ƒํƒœ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ๋ ฅ์ด ํฐ ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ด ๋‘ ์š”์ธ์ด ์™ธ๊ตญ์ธ ๋…ธ๋™์ž์˜ ๊ฑด๊ฐ•์ƒํƒœ ๋ณ€์ธ์˜ 58.7%๋ฅผ ์„ค๋ช…ํ•˜์˜€๋‹ค.๊ตญ๋‚ด ์™ธ๊ตญ์ธ ๋…ธ๋™์ž์˜ ์˜๋ฃŒ์„œ๋น„์Šค ์ด์šฉ์— ๊ด€ํ•œ ๋ถ„์„๊ฒฐ๊ณผ, ๋Œ€๋ถ€๋ถ„์ด ์ฒซ๋ฒˆ์งธ ๋ฐฉ๋ฌธ์ด์—ˆ์œผ๋ฉฐ, ๋น„์šฉ์ด ์ €๋ ดํ•˜๊ฑฐ๋‚˜ ๋ฌด๋ฃŒ์ด๊ธฐ ๋•Œ๋ฌธ์— ์„ ํƒํ–ˆ๋‹ค๊ณ  ํ•˜์˜€์œผ๋ฉฐ, ์‘๋‹ต์ž์˜ ๋Œ€๋ถ€๋ถ„์ด ์˜๋ฃŒ์„œ๋น„์Šค์ด์šฉ์— ๋งŒ์กฑํ•œ๋‹ค๊ณ  ํ•˜์˜€์ง€๋งŒ ๋ถˆ๋งŒ์กฑ์ธ ๊ฒฝ์šฐ ๊ทธ ์ด์œ ๋Š” ๊ธด ๋Œ€๊ธฐ์‹œ๊ฐ„, ๋ถˆ์นœ์ ˆ, ์ ˆ์ฐจ์˜ ๋ณต์žกํ•จ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์˜๋ฃŒ์„œ๋น„์Šค์ด์šฉ์— ์žˆ์–ด์„œ ๊ฐœ์„ ์ ์œผ๋กœ๋Š” ์‹œ์„ค๊ฐœ์„ , ์นœ์ ˆ, ์ ˆ์ฐจ์˜ ๊ฐ„์†Œํ™”, ์ง„๋ฃŒ์‹œ๊ฐ„ ์กฐ์ ˆ, ๋Œ€๊ธฐ์‹œ๊ฐ„๋‹จ์ถ•, ์˜์‚ฌ์†Œํ†ต๋ฌธ์ œ์˜ ํ•ด๊ฒฐ, ์ง„๋ฃŒ์ˆ˜์ค€ํ–ฅ์ƒ์˜ ์ˆœ์œผ๋กœ ์กฐ์‚ฌ๋˜์—ˆ๋‹ค.๊ตญ๋‚ด ์™ธ๊ตญ์ธ ๋…ธ๋™์ž๋“ค์ด ์ž์‹ ์˜ ์งˆ๋ณ‘์ด ์ปค์ง€๋Š” ๊ฒƒ์„ ๋ง‰๊ณ  ์ž์‹ ๋“ค์˜ ๊ฑด๊ฐ•์„ ์œ ์ง€, ํ–ฅ์ƒ ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋„๋ก ๋ณด๊ฑด๊ต์œก, ์ง€์‹ ๋“ฑ์„ ์ œ๊ณตํ•˜๋ฉฐ ์ด๋“ค์˜ ๊ฑด๊ฐ•์„ ํ•ด์น˜๋Š” ์œ ํ•ด ํ™˜๊ฒฝ์˜ ์ง„๋‹จ๊ณผ ํ•ด๊ฒฐ, ์™ธ๊ตญ์ธ ๋…ธ๋™์ž๋ฅผ ์œ„ํ•œ ์ง„๋ฃŒ์†Œ๋‚˜ ๋ณ‘o์˜์›์˜ ํ™•์ถฉ๊ณผ ์ง€์› ๊ทธ๋ฆฌ๊ณ  ์ด๋ฅผ ์ข…ํ•ฉ์ ์œผ๋กœ ์ถ”์ง„ํ•  ์ˆ˜ ์žˆ๋„๋ก ์ •๋ถ€์ฐจ์›์˜ ์ง€์› ๋˜ํ•œ ์‹œ๊ธ‰ํ•˜๋‹ค๊ณ  ํ•˜๊ฒ ๋‹ค. [์˜๋ฌธ]This study deals with the health status, its influencing factors, and the medical service utilization of migrant workers residing in Korea. Hence, a research was done by a questionnaire survey regarding of the physical health status, its affecting factors (such as general characteristics, mental/psychological, social, health perceptions, and health behaviors), and medical service usage.The survey was distributed to 150 migrant workers, who were at least 18 years old and capable of communicating in either English or Korean, visiting 3 hospitals/clinics and 1 free clinic in Seoul, offering them medical examinations and treatments. This was carried out between November 20th, 2006 and October 20th, 2007, and among all, in total 110 responses were analyzed.As a relative result of the comparative analysis of health status among migrant workers in Korea, numerous health problems appeared in the order of fatigue, musculoskeletal system, respiratory system, chronic disease, digestive system, neurologic system, skin, ENT, frequency of illness, genitourinary system, and cardiac system. The factors causing such health issues turned out as nationality, social support, depression, daily life event (stress), and health perceptions and concerns, regular exercise, and smoking. For instance, health status of the Chinese migrant workers were relatively unfavorable; on the other hand, the higher social support, the less health concerns, the more regular exercise, and/or being a non-smoker, their health status were much more favorable. As a result of the multiple regression analysis based on the variables affecting migrant workers' health status, the better health perceptions and the less stress the workers have, the more influence the factors have on their health status. Above 2 accounts for 58.7% of the differences of the health status among the migrant workers. The following was concluded from the analysis of medical service utilization of the migrant workers: it was mostly their first visit and they chose the clinics because of the low or free cost. Furthermore, most of them were satisfied with the medical service they had received and if not, such discontent was due to long wait time, inhospitality, and complex procedures. Improvements may take place in the order of enhanced facilities, hospitality, simplification of examination procedures, controlled consultation hours, shortened wait time, solution to communication difficulties, and advanced medical treatment. In order to prevent any spread or aggravation of disease, and maintain and improve their health on their own, the migrant workers in Korea should be provided with sufficient health education and awareness. Also examination and solution to harmful environments, expansion and assistance to hospitals/clinics for migrant workers, and confirmed financial support from government for all others are imperatively in need.ope

    Aberrant methylation of prostaglandin E receptor 3 gene (PTGER3) in human gastric cancer cells

    No full text
    Thesis(master`s)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :ํ˜‘๋™๊ณผ์ • ์ข…์–‘์ƒ๋ฌผํ•™์ „๊ณต,2006.Maste

    Two Dimensions of Teacher's Life Stages

    No full text
    ๋ณธ ์—ฐ๊ตฌ๋Š” ํ•œ๊ตญ ๊ต์‚ฌ ์ƒ์•  ๋‹จ๊ณ„์˜ ์ฃผ์š” ํŠน์ง•์„ ๋ฐํžˆ๊ณ  ๊ทธ๊ฒƒ์˜ ์˜๋ฏธ๋ฅผ ํƒ์ƒ‰ํ•ด ๋ณด๊ณ ์ž ํ•œ ์—ฐ๊ตฌ์ด๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ์„œ์šธ๊ณผ ์ง€๋ฐฉ์˜ ์ดˆ 2๊ฐœ, ์ค‘ 2๊ฐœ, ๊ณ  4๊ฐœ๊ต์—์„œ ๊ฒฝ๋ ฅ๋ณ„ 5๋ช…์”ฉ ์ด 40๋ช…์˜ ๊ต์‚ฌ๋“ค์—๊ฒŒ ๊ต์ง ํฌ๋ง ๊ณ„๊ธฐ, ๊ต์ง ์ž…๋ฌธ ์‹œ ์ฃผ์š” ๊ด€์‹ฌ๊ณผ ์ž…๋ฌธ ์‹œ ์ƒํ™ฉ, ์‹œ๊ฐ„์— ๋”ฐ๋ฅธ ๊ฐ์ข… ๋ณ€ํ™”์™€ ๊ทธ ๊ณ„๊ธฐ ๋“ฑ์„ ์งˆ๋ฌธํ•˜์—ฌ ๊ทธ ์ž๋ฃŒ๋ฅผ ๋ถ„์„ํ•ด ๋ณธ ๊ฒฐ๊ณผ, ํ•œ๊ตญ ๊ต์‚ฌ ์ƒ์• ๋‹จ๊ณ„๋Š” ๊ต์‚ฌ์˜ ์กฐ์ง ๋‚ด ์—ญํ•  ๋ณ€ํ™” ๊ด€๋ จ ์ƒ์• ๋‹จ๊ณ„์™€ ๊ต์œก์— ๋Œ€ํ•œ ๊ด€์  ๋ณ€ํ™” ๊ด€๋ จ ์ƒ์• ๋‹จ๊ณ„์˜ ๋‘ ์ฐจ์›์œผ๋กœ ๊ตฌ๋ถ„๋  ์ˆ˜ ์žˆ๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ „์ž๋Š” ์ ์‘๊ธฐ, ์ž๋ฆฝ๊ธฐ, ์Šน์ง„๊ณ ๋ ค๊ธฐ, ํ‡ด์ง์ค€๋น„๊ธฐ ๋“ฑ์œผ๋กœ ๊ตฌ๋ถ„๋˜๊ณ , ํ›„์ž๋Š” ์—ด์ •๊ธฐ, ์„ฑ์ˆ™๊ธฐ, ์„ฑ์ฐฐ๊ธฐ ๋“ฑ์œผ๋กœ ๊ตฌ๋ถ„๋œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์˜ ์ถœ๋ฐœ์ ์—์„œ ์˜ˆ์ƒํ•˜์ง€ ๋ชปํ–ˆ๋˜ ์ฐจ์›์„ ๋‹ฌ๋ฆฌํ•˜๋Š” ๊ต์‚ฌ ์ƒ์• ๋‹จ๊ณ„๋“ค์€ ํ•œํŽธ์œผ๋กœ๋Š” ์Šน์ง„ ๊ตฌ์กฐ์™€ ๊ด€๋ จํ•œ ๊ต์ง์˜ ๋ชจ์ˆœ์  ๊ตฌ์กฐ๋ฅผ ๋“œ๋Ÿฌ๋‚ด ์ฃผ๊ณ  ์žˆ์œผ๋ฉฐ ๋‹ค๋ฅธ ํ•œํŽธ์œผ๋กœ๋Š” ๊ต์‚ฌ์˜ ์ „๋ฌธ์„ฑ ๊ฐ•ํ™”๋ฅผ ์œ„ํ•œ ์ฃผ์š”ํ•œ ์ž์›์ด ๊ต์ง ๋‚ด๋ถ€์— ์žˆ๋‹ค๋Š” ์ ์„ ์‹œ์‚ฌํ•ด ์ฃผ๊ณ  ์žˆ๋‹ค.The purpose of the study is to explore the major characteristics of Korean teachers' life stage based on interviews with forty teachers. The teachers are selected after considering students' school ages that they are teaching and the regions that they are working at. The interviews are structured with the questions of the circumstances at beginners, the changes over time, the present and the future plans, etc. The research results show that there are largely two dimensions on teachers' life stages. One is based on the teacher's role changes in a school organization. The other one is on the changes in the teacher's pedagogical viewpoint. According to the first dimension, so called organizational dimension, there are four stages in a teacher' life. Those are adaptation, independence, promotion aspiration, and retirement preparation. According to the second dimension, which is pedagogical one, there are three stages. Those are named as passion, maturity, and self-reflection. These two dimensions of teachers' life stages run separately and independently

    Configuration and control method of modular converter schemes for distributed power system

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€,2001.Docto

    Ketoconazole ๋ฐ rifampicin ์ด fimasartan ์˜ ์•ฝ๋™ํ•™์  ํŠน์„ฑ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์— ๋Œ€ํ•œ in vivo ๋ฐ in vitro ์—ฐ๊ตฌ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์˜ํ•™๊ณผ, 2012. 2. ์‹ ์ƒ๊ตฌ.Fimasartan (BR-A-657) is an angiotensin II receptor antagonist for the treatment of hypertension. Although more than 90% of circulating fimasartan in human plasma is the parent form, multiple cytochrome P450 (CYP) enzymes, mainly CYP3A, involve its metabolism. It is a substrate of organic anion transporter 1 (OAT1) and organic anion transporting polypeptide 1B1 (OATP1B1). Therefore, it was expected to interact with ketoconazole and/or rifampicin. This study was conducted to explore the effect of ketoconazole and rifampicin on the pharmacokinetics of a single dose of fimasartan. An open-label, three-treatment, three-period, fixed-sequence, crossover study was conducted in 22 healthy male volunteers. Each volunteer received fimasartan 240 mg in each period; in the first period, fimasartan alone, in the second period, fimasartan with ketoconazole after pretreatments of 200 mg ketoconazole once daily for 3 days, and in the third period, fimasartan with rifampicin after pretreatments of 600 mg rifampicin once daily for 9 days. Serial blood samples for pharmacokinetics were collected after the last administration in each period. Plasma concentrations-time data of fimasartan was analyzed by non-compartmental methods and the results of coadministration with either ketoconazole or rifampicin were compared to those of fimasartan alone. Safety was assessed by monitoring vital signs, 12-lead ECG, clinical laboratory parameters, and adverse events. In vitro experiments were conducted to investigate the inhibitory effect of ketoconazole and rifampicin on the uptake of fimasartan into Xenopus Laevis oocytes expressing the human organic anion transporter (OAT)1 and organic anion transporting polypeptide (OATP)1B1. Compared to fimasartan alone, ketoconazole increased the maximum plasma concentrations (Cmax) and the area under the concentration-time curve from 0 to infinity (AUCinf) of fimasartan by 2.47-fold (90% CI, 1.61-3.79) and 2.03-fold (1.56-2.64), respectively. Concomitant administration of rifampicin increased the Cmax and AUCinf of fimasartan by 10.33-fold (6.74-15.81) and 4.60-fold (3.54-5.97). In vitro studies indicated that ketoconazole inhibited only the uptake of fimasartan into cells expressing OATP1B1 with an inhibition rate constant (Ki) of 107.7 ฮผM, and rifampicin inhibited OAT1- and OATP1B1-mediated fimasartan transport with a Ki of 212 ฮผM and 12.2 ฮผM, respectively. The systemic exposure to fimasartan was significantly increased by coadministration of ketoconazole or rifampicin in healthy volunteers. This is consistent with in vitro results, in which fimasartan is shown to be a substrate of CYP3A and OATP1B1.Fimasartan (ํ”ผ๋งˆ์‚ดํƒ„, BR-A-657) ์€ ๊ณ ํ˜ˆ์••์˜ ์น˜๋ฃŒ๋ฅผ ๋ชฉ์ ์œผ๋กœ ์ƒˆ๋กญ๊ฒŒ ๊ฐœ๋ฐœ๋œ ์•ˆ์ง€์˜คํ…์‹  II ์ˆ˜์šฉ์ฒด ๊ธธํ•ญ์ฒด์ด๋‹ค. Fimasartan ์€ ์‚ฌ๋žŒ ํ˜ˆ์žฅ ๋‚ด์—์„œ 90% ์ด์ƒ์ด ๋ชจ์ฒด๋กœ ์กด์žฌํ•˜๋‚˜, fimasartan์˜ ๋Œ€์‚ฌ์— ์—ฌ๋Ÿฌ CYP ํšจ์†Œ๋“ค(์ฃผ๋กœ CYP3A)์ด ๊ด€์—ฌํ•œ๋‹ค.. ๋˜ํ•œ fimasartan ์€ OAT1 ๊ณผ OATP1B1 ์˜ ๊ธฐ์งˆ์ด๋ฏ€๋กœ, ketoconazole ๋ฐ rifampicin ๊ณผ ์ƒํ˜ธ์ž‘์šฉ์„ ๊ฐ€์งˆ ๊ฐ€๋Šฅ์„ฑ์ด ์žˆ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ๊ฑด๊ฐ•ํ•œ ์ž์›์ž ๋ฐ in vitro ์—์„œ ketoconazole ๊ณผ rifampicin ์ด fimasartan์˜ ์•ฝ๋™ํ•™์  ํŠน์„ฑ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ํƒ์ƒ‰ํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ์‹œํ—˜์€ ๊ณต๊ฐœ ์ƒํƒœ์—์„œ 3 ๊ฐ€์ง€ ์น˜๋ฃŒ๋ฅผ 3 ๊ธฐ์— ๊ฑธ์ณ ์ •ํ•ด์ง„ ์ˆœ์„œ์— ๋”ฐ๋ผ ๋ชจ๋‘ ํˆฌ์—ฌ ๋ฐ›๋Š” ํ˜•ํƒœ (open-label, three-treatment, three-period, fixed-sequence, crossover study) ๋กœ ์„ค๊ณ„๋˜์—ˆ๊ณ , 22 ๋ช…์˜ ๊ฑด๊ฐ•ํ•œ ์„ฑ์ธ ๋‚จ์„ฑ์ด ์—ฐ๊ตฌ์— ์ฐธ์—ฌํ•˜์˜€๋‹ค. ์ž์›์ž๋“ค์€ Day 1์— fimasartan 240 mg ์„ ๋‹จํšŒ ํˆฌ์—ฌ๋ฐ›์•˜๋‹ค. 4์ผ๊ฐ„์˜ ํœด์•ฝ๊ธฐ๋ฅผ ๋‘๊ณ  ketoconazole 400 mg ์„ 1์ผ 1ํšŒ์”ฉ 3์ผ ๋™์•ˆ ๋ฐ˜๋ณต ํˆฌ์—ฌ ํ›„, ketoconazole ๊ณผ fimasartan 240 mg ์„ 1์‹œ๊ฐ„ ํˆฌ์—ฌ ๊ฐ„๊ฒฉ์„ ๋‘๊ณ  ๋ณ‘์šฉ ํˆฌ์—ฌํ•œ๋‹ค. ์ดํ›„์—๋„ ํœด์•ฝ๊ธฐ๋ฅผ ๋‘๊ณ  rifampicin 600 mg ์„ 1์ผ 1ํšŒ์”ฉ 9์ผ ๋™์•ˆ ๋ฐ˜๋ณตํˆฌ์—ฌ ํ›„, rifampicin ๊ณผ fimasartan 240 mg ์„ ๋ณ‘์šฉ ํˆฌ์—ฌํ•œ๋‹ค. ์•ฝ๋™ํ•™์  ํ‰๊ฐ€๋ฅผ ์œ„ํ•ด ๊ฐ ํˆฌ์—ฌ ์‹œ๊ธฐ์˜ ๋งˆ์ง€๋ง‰ ํˆฌ์—ฌ ํ›„ ์ผ์ • ์‹œ๊ฐ์— ์ฑ„ํ˜ˆํ•˜์—ฌ ํ˜ˆ์žฅ ์ค‘ fimasartan ์˜ ๋†๋„๋ฅผ ์ธก์ •ํ•˜์˜€๋‹ค. ์•ฝ๋™ํ•™ ๋ถ„์„์€ ๋น„๊ตฌํš๋ชจํ˜•์„ ์ด์šฉํ•˜์—ฌ ๋ถ„์„ํ•˜์˜€๊ณ , fimasartan ๋‹จ๋…ํˆฌ์—ฌ ์‹œ์˜ ๊ฒฐ๊ณผ์™€ ketoconazole ๋˜๋Š” rifampicin ๋ณ‘์šฉํˆฌ์—ฌ ์‹œ์˜ ๊ฒฐ๊ณผ๋ฅผ ๊ฐ๊ฐ ๋น„๊ตํ•˜์˜€๋‹ค. ํ™œ๋ ฅ์ง•ํ›„ ๋ฐ 12-lead ์‹ฌ์ „๋„ ๊ฒ€์‚ฌ, ์ž„์ƒ์‹คํ—˜์‹ค๊ฒ€์‚ฌ, ์œ ํ•ด์‚ฌ๋ก€ ๋ชจ๋‹ˆํ„ฐ๋ง์„ ํ†ตํ•ด ์•ˆ์ „์„ฑ์„ ํ‰๊ฐ€ํ•˜์˜€๋‹ค. OAT1, OATP1B1 ์ˆ˜์†ก๊ณ„๋ฅผ ๋ฐœํ˜„์‹œํ‚จ ๋ถ๋ฐฉ์‚ฐ ๊ฐœ๊ตฌ๋ฆฌ ์•Œ์„ธํฌ์—์„œ fimasartan ์˜ uptake ์— ๋Œ€ํ•œ ketoconazole ๋ฐ rifampicin ์˜ ์ˆ˜์†กํ™œ์„ฑ ์ €ํ•ด ์ž‘์šฉ์„ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ in vitro ์‹คํ—˜์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. Ketoconazole ์€ fimasartan ๋‹จ๋…ํˆฌ์—ฌ ์‹œ์— ๋น„ํ•˜์—ฌ fimasartan ์˜ ์ตœ๊ณ ํ˜ˆ์ค‘๋†๋„ (Cmax) ๋ฐ ์ฒด๋‚ด๋…ธ์ถœ (area under the concentration-time curve from 0 to infinity, AUCinf) ์„ ๊ฐ๊ฐ 2.47 ๋ฐฐ (90% ์‹ ๋ขฐ๊ตฌ๊ฐ„, 1.61~3.79), 2.03 ๋ฐฐ (1.56~2.64) ์ฆ๊ฐ€์‹œ์ผฐ๋‹ค. Rifampicin ๋„ fimasartan ์˜ Cmax ๋ฐ AUCinf ์„ ๊ฐ๊ฐ 10.33 ๋ฐฐ (6.74~15.81), 4.60 ๋ฐฐ (3.54~5.97) ์”ฉ ์ฆ๊ฐ€์‹œ์ผฐ๋‹ค. In vitro ์‹คํ—˜ ๊ฒฐ๊ณผ, ketoconazole ์€ OATP1B1์„ ๋งค๊ฐœ๋กœ ํ•œ fimasartan ์˜ ์ˆ˜์†ก๋งŒ์„ ์ €ํ•ดํ•˜์˜€๊ณ  ์ด ๋•Œ ์ €ํ•ด์†๋„์ƒ์ˆ˜ (Ki) ๋Š” 107.7 ฮผM ์ด์—ˆ๋‹ค. ๋ฐ˜๋ฉด, rifampicin ์€ OAT1 (Ki: 212 ฮผM) ๊ณผ OATP1B1 (Ki: 12.2 ฮผM) ์„ ํ†ตํ•œ fimasartan ์˜ ์ˆ˜์†ก์„ ๋ชจ๋‘ ์ €ํ•ดํ–ˆ๋‹ค. ๊ฑด๊ฐ•ํ•œ ์ž์›์ž์—์„œ ketoconazole ๊ณผ rifampicin ์˜ ๋ณ‘์šฉ์— ์˜ํ•ด fimasartan ์— ๋Œ€ํ•œ ์ „์‹ ๋…ธ์ถœ์ด ์œ ์˜ํ•˜๊ฒŒ ์ฆ๊ฐ€ํ•˜์˜€๋‹ค. ์ด๋Š” fimasartan ์ด CYP3A ์™€ OATP1B1์˜ ๊ธฐ์งˆ์ž„์„ ๋ณด์—ฌ ์ค€ in vitro ์—ฐ๊ตฌ ๊ฒฐ๊ณผ์— ๋ถ€ํ•ฉํ•˜๋Š” ๊ฒƒ์ด๋‹ค.Maste

    TCE ์˜ค์—ผ ๋ถ€์ง€์—์„œ DNA ๋ฐ”์ด์˜ค๋งˆ์ปค๋ฅผ ์ด์šฉํ•œ ํƒˆ์—ผ์†Œ ์„ฑ๋Šฅ์˜ ์ดํ•ด

    No full text
    Chlorinated aliphatic hydrocarbons (CAHs) are the major contaminants in the soil and groundwater environment, and require an exceedingly long and complicated process to remediate and restore. Bioremediation is a highly effective method to remediate toxic PCE into non-toxic ethene in aquifers contaminated with chlorinated aliphatic hydrocarbons. However, studies on the dechlorination performance of re-contaminated aquifers on a field scale have been limited. In this study, we investigated the effect of re-contamination and bioremediation of contaminated aquifers on the dechlorination performance of the site by utilizing DNA biomarkers such as 16S rRNA and dechlorination functional genes in an industrial complex contaminated with PCE/TCE. As a result, dechlorinating microorganisms were found in most of the samples except for the newly-contaminated site, and the relative abundance of some dechlorinating microorganisms increased in the re-contaminated sites. Additionally, in the PCoA analysis using this result, it was confirmed that re-contamination and dechlorination of chlorinated ethene had a significant effect on the microbial community structure. Dehalococcoides, the only dechlorinating microorganism that degrades PCE and TCE into ethene, was not detected in 16S rRNA gene-based microbial community analysis, but a reliably detected in qPCR analysis using functional genes. Among the dechlorination functional genes, pceA and tceA appeared at high concentrations similar to Dehalococcoides 16S rRNA, and vcrA and bvcA showed low concentrations or below the detection limit, confirming that in-situ dechlorination was concentrated only in the upper stage. In addition, re-contamination did not increase the relative abundance of dechlorinating microorganisms and the quantitative amounts of dechlorinating functional genes, but it is likely that continuous PCE/TCE contamination contributed to keeping the dechlorinating performance constant. Through this study, it was confirmed that contamination can be quickly diagnosed and biodegradation can be monitored in PCE/TCE contaminated groundwater using DNA-based biomarkers. Using these biomarkers, it is believed that it will be possible to effectively establish a remediation plan and monitoring strategy for diagnosing the contamination and dechlorination status of chlorine-based aliphatic hydrocarbons in the field.|์—ผ์†Œ๊ณ„ ์ง€๋ฐฉ์กฑ ํƒ„ํ™”์ˆ˜์†Œ๋ฌผ(Chlorinated aliphatic hydrocarbon)์€ ํ† ์–‘์ง€ํ•˜์ˆ˜ ํ™˜๊ฒฝ์˜ ์ฃผ์š” ์˜ค์—ผ๋ฌผ์งˆ์ด๋ฉฐ, ์ •ํ™” ๋ฐ ๋ณต์›์—๋Š” ๋งค์šฐ ๊ธธ๊ณ  ๋ณต์žกํ•œ ๊ณผ์ •์„ ์š”๊ตฌํ•œ๋‹ค. ์ƒ๋ฌผํ•™์  ์ •ํ™”๋Š” ์—ผ์†Œ๊ณ„ ์ง€๋ฐฉ์กฑ ํƒ„ํ™”์ˆ˜์†Œ๋กœ ์˜ค์—ผ๋œ ๋Œ€์ˆ˜์ธต์—์„œ ๋…์„ฑ์˜ PCE๋ฅผ ๋ฌด๋…์„ฑ์˜ ethene์œผ๋กœ ๋ถ„ํ•ดํ•˜๋Š” ๋งค์šฐ ํšจ๊ณผ์ ์ธ ๋ฐฉ๋ฒ•์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜, ํ˜„์žฅ ๊ทœ๋ชจ์—์„œ ์žฌ์˜ค์—ผ๋œ ๋Œ€์ˆ˜์ธต์˜ ํƒˆ์—ผ์†Œ๋Šฅ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋Š” ์ œํ•œ์ ์œผ๋กœ ์ˆ˜ํ–‰์ด ๋˜๊ณ  ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” PCE/TCE๋กœ ์˜ค์—ผ๋œ ์‚ฐ์—…๋‹จ์ง€์—์„œ 16S rRNA ๋ฐ ํƒˆ์—ผ์†Œํ™” ๊ธฐ๋Šฅ์„ฑ ์œ ์ „์ž์™€ ๊ฐ™์€ DNA ๋ฐ”์ด์˜ค๋งˆ์ปค๋ฅผ ํ™œ์šฉํ•˜์—ฌ ์˜ค์—ผ๋œ ๋Œ€์ˆ˜์ธต์˜ ์žฌ์˜ค์—ผ ๋ฐ ์ƒ๋ฌผํ•™์  ์ •ํ™”๊ฐ€ ํ˜„์žฅ์˜ ํƒˆ์—ผ์†Œ๋Šฅ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ์กฐ์‚ฌํ•˜์˜€๋‹ค. ๊ทธ ๊ฒฐ๊ณผ ํƒˆ์—ผ์†Œ ๋ฏธ์ƒ๋ฌผ์€ ์‹ ๊ทœ ์˜ค์—ผ ์ง€์—ญ์„ ์ œ์™ธํ•œ ๋Œ€๋ถ€๋ถ„์˜ ์ƒ˜ํ”Œ์—์„œ ๋ฐœ๊ฒฌ๋˜์—ˆ์œผ๋ฉฐ, ์žฌ์˜ค์—ผ ์ง€์—ญ์—์„œ ๋ช‡๋ช‡ ํƒˆ์—ผ์†Œ ๋ฏธ์ƒ๋ฌผ์˜ ์ƒ๋Œ€์  ํ’๋ถ€๋„๊ฐ€ ์ฆ๊ฐ€ํ•˜์˜€๋‹ค. ์ถ”๊ฐ€์ ์œผ๋กœ ๋ณธ ๊ฒฐ๊ณผ๋ฅผ ์ด์šฉํ•œ PCoA ๋ถ„์„์—์„œ ํ˜„์žฅ์˜ ์žฌ์˜ค์—ผ ๋ฐ ์—ผ์†Œํ™” ์—ํ…์˜ ํƒˆ์—ผ์†Œํ™”๋Š” ๋ฏธ์ƒ๋ฌผ ๊ตฐ์ง‘ ๊ตฌ์กฐ์— ์œ ์˜๋ฏธํ•œ ์˜ํ–ฅ์„ ๋ฏธ์นจ์„ ํ™•์ธํ•˜์˜€๋‹ค. PCE์™€ TCE๋ฅผ ethene์œผ๋กœ ๋ถ„ํ•ดํ•˜๋Š” ์œ ์ผํ•œ ํƒˆ์—ผ์†Œ ๋ฏธ์ƒ๋ฌผ์ธ Dehalococcoides๋Š” 16S rRNA ์œ ์ „์ž ๊ธฐ๋ฐ˜์˜ ๋ฏธ์ƒ๋ฌผ ๊ตฐ์ง‘๋ถ„์„์—์„œ๋Š” ๊ฒ€์ถœ๋˜์ง€ ์•Š์•˜์ง€๋งŒ, ๊ธฐ๋Šฅ์„ฑ ์œ ์ „์ž๋ฅผ ํ™œ์šฉํ•œ qPCR ๋ถ„์„์—์„œ๋Š” ์ƒ๋Œ€์ ์œผ๋กœ ๋†’์€ ์–‘์ด ๊ฒ€์ธก๋˜์—ˆ๋‹ค. ํƒˆ์—ผ์†Œ ๊ธฐ๋Šฅ์„ฑ ์œ ์ „์ž ์ค‘ pceA์™€ tceA๋Š” Dehalococcoides 16S rRNA์™€ ๋น„์Šทํ•œ ๋†’์€ ๋†๋„, vcrA์™€ bvcA๋Š” ์ ์€ ๋†๋„ ํ˜น์€ ๊ฒ€์ถœํ•œ๊ณ„ ์ดํ•˜๋กœ ๋‚˜ํƒ€๋‚ฌ์œผ๋ฉฐ ์ด๋กœ์จ ํ˜„์žฅ์˜ ํƒˆ์—ผ์†Œํ™”๊ฐ€ ์ƒ์œ„ ๋‹จ๊ณ„์—๋งŒ ์ง‘์ค‘๋˜์–ด ์žˆ์Œ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋˜ํ•œ ์žฌ์˜ค์—ผ์€ ํƒˆ์—ผ์†Œ ๋ฏธ์ƒ๋ฌผ์˜ ์ƒ๋Œ€์  ํ’๋ถ€๋„์™€ ํƒˆ์—ผ์†Œ ๊ธฐ๋Šฅ์„ฑ ์œ ์ „์ž์˜ ์ •๋Ÿ‰์  ์–‘์„ ์ฆ๊ฐ€์‹œํ‚ค์ง€ ์•Š์•˜์ง€๋งŒ, ์ด๋Š” ์ง€์†์ ์ธ PCE/TCE ์˜ค์—ผ์ด ํƒˆ์—ผ์†Œ ๋Šฅ๋ ฅ์„ ์ผ์ •ํ•˜๊ฒŒ ์œ ์ง€ํ•˜๋Š”๋ฐ ๊ธฐ์—ฌํ–ˆ์„ ๊ฐ€๋Šฅ์„ฑ์ด ๋†’์€ ๊ฒƒ์œผ๋กœ ํŒ๋‹จ๋œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด DNA ๊ธฐ๋ฐ˜์˜ ๋ฐ”์ด์˜ค๋งˆ์ปค๋ฅผ ํ™œ์šฉํ•˜์—ฌ PCE/TCE ์˜ค์—ผ ์ง€ํ•˜์ˆ˜์—์„œ ์‹ ์†ํ•˜๊ฒŒ ์˜ค์—ผ์„ ์ง„๋‹จํ•˜๊ณ  ์ƒ๋ถ„ํ•ด๋Šฅ์„ ๋ชจ๋‹ˆํ„ฐ๋งํ•  ์ˆ˜ ์žˆ์Œ์„ ํ™•์ธํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ ๋ฐ”์ด์˜ค๋งˆ์ปค๋ฅผ ํ™œ์šฉํ•˜์—ฌ ํ˜„์žฅ์—์„œ ์—ผ์†Œ๊ณ„ ์ง€๋ฐฉ์กฑ ํƒ„ํ™”์ˆ˜์†Œ๋ฌผ์˜ ์˜ค์—ผ๊ณผ ํƒˆ์—ผ์†Œํ™” ์ƒํƒœ์ง„๋‹จ์— ๋Œ€ํ•œ ์ •ํ™”๊ณ„ํš๊ณผ ๋ชจ๋‹ˆํ„ฐ๋ง ์ „๋žต์„ ํšจ๊ณผ์ ์œผ๋กœ ์„ธ์šธ ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ํŒ๋‹จ๋œ๋‹ค.1. Introduction 1 2. Materials and methods 4 2.1 Study site and sample collection 4 2.1.1. Study site 4 2.1.2 Sample collection and chemical analysis 5 2.2 DNA extraction and amplicon sequencing 6 2.3 Statistical analysis 7 2.4 qPCR 7 3. Results and discussion 10 3.1 Microbial community analysis in chlorinated ethene contaminated site 10 3.1.1. Chlorinated ethene 10 3.1.2. Microbial community 15 3.1.3. Beta diversity 22 3.2 Quantitative PCR of dechlorination genes in chlorinated ethene contaminated site 25 3.2.1. Quantitative PCR of dechlorination genes in re-contaminated and once-contaminated site 25 3.2.2. Quantitative PCR of dechlorination genes in newly-contaminated site 30 4. Conclusions 34 5. References 36Maste
    • โ€ฆ
    corecore