
 

 

저작자표시-변경금지 2.0 대한민국 

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게 

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.  

l 이 저작물을 영리 목적으로 이용할 수 있습니다.  

다음과 같은 조건을 따라야 합니다: 

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.  

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.  

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다. 

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.  

Disclaimer  

  

  

저작자표시. 귀하는 원저작자를 표시하여야 합니다. 

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다. 

http://creativecommons.org/licenses/by-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nd/2.0/kr/


공학박사학위논문

An OpenCL Framework for
Heterogeneous Clusters

이종 클러스터를 위한 OpenCL 프레임워크

2013년 8월

서울대학교 대학원

전기컴퓨터공학부

김 정 원



Abstract

OpenCL is a unified programming model for different types of compu-

tational units in a single heterogeneous computing system. OpenCL

provides a common hardware abstraction layer across different com-

putational units. Programmers can write OpenCL applications once

and run them on any OpenCL-compliant hardware. However, one of

the limitations of current OpenCL is that it is restricted to a program-

ming model on a single operating system image. It does not work for a

cluster of multiple nodes unless the programmer explicitly uses com-

munication libraries, such as MPI. A heterogeneous cluster contains

multiple general-purpose multicore CPUs and multiple accelerators

to solve bigger problems within an acceptable time frame. As such

clusters widen their user base, application developers for the clusters

are being forced to turn to an unattractive mix of programming mod-

els, such as MPI-OpenCL. This makes the application more complex,

hard to maintain, and less portable.

In this thesis, we propose SnuCL, an OpenCL framework for het-

erogeneous clusters. We show that the original OpenCL semantics nat-

urally fits to the heterogeneous cluster programming environment, and
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the framework achieves high performance and ease of programming.

SnuCL provides a system image running a single operating system

instance for heterogeneous clusters to the user. It allows the applica-

tion to utilize compute devices in a compute node as if they were in

the host node. No communication API, such as the MPI library, is

required in the application source. With SnuCL, an OpenCL appli-

cation becomes portable not only between heterogeneous devices in

a single node, but also between compute devices in the cluster envi-

ronment. We implement SnuCL and evaluate its performance using

eleven OpenCL benchmark applications.

Keywords : OpenCL, Clusters, Heterogeneous computing, Program-

ming models, Runtime system, Parallelization

Student ID : 2006-23153
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Chapter I

Introduction

A recent trend in high-performance computing (HPC) is to use hetero-

geneous parallel systems including accelerators such as GPUs, Cell BE

processors, and Intel Xeon Phi coprocessors. This trend is driven by

the need for achieving high performance at low energy consumption.

Programming for heterogeneous architectures uses multiple diverse

platforms and systems simultaneously and it adds to the complexity

of programming. The complexity of heterogeneous parallel program-

ming hinders effective use of available resources by programmers, and

it leads to lower productivity.

OpenCL[21] is an open and cross-platform programming model for

heterogeneous parallel computing systems. OpenCL provides a com-

mon low-level hardware abstraction across different devices and archi-

tectures. Programmers can write OpenCL applications once and run

them on any OpenCL-compliant hardware.

The platform model of OpenCL is designed for a single operating
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system image. All OpenCL implementations from various hardware

vendors are implemented for the model. In order to write an OpenCL

application for clusters with multiple nodes, the application is being

forced to turn to an unattractive mixture of programming models:

OpenCL for accelerators and MPI for inter-node communication.

I.1 Heterogeneous Computing

A heterogeneous computing system typically refers to a single com-

puter system that contains different types of computational units.

It distributes data and program execution among different computa-

tional units that are each best suited to specific tasks. The computa-

tional unit could be a CPU, GPU, DSP, FPGA, or ASIC. Introducing

such additional, specialized computational resources in a system en-

ables the user to gain extra performance. In addition, exploiting the

inherent capabilities of a wide range of computational resources en-

ables the user to solve difficult and complex problems efficiently and

easily. A typical example of the heterogeneous computing system is a

GPGPU system.

The GPGPU system has been a great success so far. However, in

the future, applications may not be written for GPGPUs only, but for

more general heterogeneous computing systems to improve power ef-

ficiency and performance. Open Computing Language (OpenCL)[21]

is a unified programming model for different types of computational
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units in a heterogeneous computing system. OpenCL provides a com-

mon hardware abstraction layer across different computational units.

Programmers can write OpenCL applications once and run them on

any OpenCL-compliant hardware. This portability is one of OpenCL’s

chief advantages. With OpenCL, programmers no longer have to

use vendor-specific languages or libraries to write a program for

vendor-specific hardware. Some industry-leading hardware vendors

such as AMD[2], IBM[15], Intel[18], NVIDIA[37], and Samsung[40]

have provided OpenCL implementations for their hardware. This

makes OpenCL a standard parallel programming model for general-

purpose, heterogeneous computing systems.

I.2 Motivation

One of the limitations of current OpenCL is that it is restricted to

a programming model on a single operating system image. The same

thing is true for CUDA[25]. A heterogeneous CPU/GPU cluster con-

tains multiple general-purpose multicore CPUs and multiple GPUs to

solve bigger problems within an acceptable time frame. As such clus-

ters widen their user base, application developers for the clusters are

being forced to turn to an unattractive mix of programming models,

such as MPI-OpenCL and MPI-CUDA. This makes the application

more complex, hard to maintain, and less portable.

The mixed programming model requires the hierarchical distri-
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bution of the workload and data (across nodes and across compute

devices in a node). MPI functions are used to communicate between

the nodes in the cluster. As a result, the resulting application may

not be executed in a single node.

To use OpenCL as a programming model for clusters, there are

some limitations arising from the architecture of OpenCL. First,

OpenCL is designed for a master/slave execution model. A single host

manages multiple compute devices. The main drawback of this model

is its lack of scalability. The master can become a communication

bottleneck if there are many slaves[24]. Second, OpenCL uses shared

memory in the compute devices. An OpenCL memory object can be

shared between multiple compute devices. When multiple compute de-

vices in different nodes share an OpenCL memory object, the case is

similar to the concept of distributed shared memory systems[19]. For

these reasons, it has seemed that OpenCL is not a natural candidate

as a programming model for clusters.

I.3 Related Work

Heterogeneous computing has been drawn much attention due to its

parallelism, energy efficiency and cost effectiveness. Recently, there

have been many studies done on GPU clusters. Fan et al.[11] are the

first to develop a scalable GPU cluster for high performance scien-

tific computing and large-scale simulation using graphics program-
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ming APIs. They build a GPU cluster with 32 nodes. Each node con-

sists of a dual-core CPU with an NVIDIA GeForce FX 5800 Ultra.

They implement a Lattice-Boltzmann solver on the cluster to simu-

late the transport of airborne contaminants in the Times Square area

of New York City. They achieve a speedup of 4.6 on the GPU clus-

ter over the same model implemented on a CPU cluster. Phillips et

al.[38] advance GPU clusters using a multi-GPU capable host system

and CUDA, a general purpose programming language for GPU. They

build a GPU cluster for simulation of large bio-molecular systems and

achieve performance that nearly matches the performance of 330 CPU

cores with fifteen 4-GPU nodes. Chen et al.[8] implement large-scale

FFT on a GPU cluster. They achieve 5 times speedup with respect

to Intel MKL for 4096 3D double-precision FFT on the 16-node clus-

ter with 32 GPUs. They exploit an all-to-all collective communication

operation to distribute data across nodes efficiently. In all of these

studies, the authors develop their applications using the MPI library

to implement communication between nodes in the cluster. Our ap-

proach, on the other hand, does not require any communication APIs,

such as MPI, in the application code.

In addition to GPU clusters, there are some studies that exploit

CPU/GPU clusters. Fatica[12] and Yang et al.[44] propose heteroge-

neous CPU/GPU clusters to accelerate Linpack. They distribute the

workload across CPUs and GPUs based on their throughput. Espe-

cially, Yang et al.’s TianHe-1 system ranked No. 5 in the TOP500
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list[1] published in November 2009. Moreover, its upgraded version,

TianHe-1A was ranked as the world’s first fasted supercomputer in

the TOP500 list released in November 2010.

Chen et al.[7] propose new language extensions to Unified Parallel

C (UPC) in order to take advantage of GPU clusters. They extend

UPC with hierarchical data distribution and introduce the implicit

thread hierarchy. They implement the compiler and runtime system,

and show that their model has better programmability than the mixed

MPI/CUDA approach, and the model is effective to achieve good

performance on GPU clusters. We, on the other hand, show that the

original OpenCL semantics naturally fits to the GPU clusters, and

present the OpenCL framework for such clusters.

Fan et al.[11] are the first to develop a scalable GPU cluster for

high performance scientific computing and large-scale simulation us-

ing graphics programming APIs. They build a GPU cluster with

32 nodes. Each node consists of a dual-core CPU with an NVIDIA

GeForce FX 5800 Ultra. They implement a Lattice-Boltzmann solver

on the cluster to simulate the transport of airborne contaminants in

the Times Square area of New York City. They achieve a speedup of

4.6 on the GPU cluster over the same model implemented on a CPU

cluster. Phillips et al.[38] advance GPU clusters using a multi-GPU

capable host system and CUDA. They build a GPU cluster for sim-

ulation of large bio-molecular systems and achieve performance that

nearly matches the performance of 330 CPU cores with fifteen 4-GPU
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nodes. Chen et al.[8] implement large-scale FFT on a GPU cluster.

They achieve 5 times speedup with respect to Intel MKL for 4096 3D

double-precision FFT on the 16-node cluster with 32 GPUs. In all of

these studies, the authors develop their applications using the MPI li-

brary to implement communication between nodes in the cluster. Our

approach, on the other hand, does not require any communication

APIs, such as MPI, in the application code.

Kim et al.[22] propose an OpenCL framework for multiple GPUs

in a system. The OpenCL framework provides an illusion of a single

compute device to the programmer for the multiple GPUs available

in the system. It automatically partitions the work-group index space

of the kernel at run time. To find an optimal partition that minimizes

data transfer through the PCI-E bus between the host and GPUs, they

use a sampling technique that analyzes the buffer access ranges in the

kernel. To achieve a single compute device image, the runtime main-

tains a virtual device memory and copies them to each device memory

when required. While their proposed OpenCL framework provides an

illusion of a single compute device to the programmer, our OpenCL

framework provides an illusion of a single system to the user for the

multiple compute nodes available in GPU clusters.

OpenMP is another platform-independent programming model. It

is an industry standard language, widely used for parallel program-

ming on shared memory multiprocessors. There are some proposals[30,

29] to make OpenMP programs portable to the GPGPU systems. Lee
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et al.[30] present a compiler framework for translation OpenMP pro-

grams into CUDA programs. It converts the loop-level parallelism

of the OpenMP programs into the data parallelism of the CUDA

programs. OpenMPC[29] extends Lee et al.’s model by adding new

OpenMP directives and environment variables, extended for CUDA.

Thus, it offers not only portability but also tunability, to GPU

programming. They extend OpenMP programs’ portability to the

GPGPU systems with compiler techniques, while our work extends

OpenCL programs’ portability to the heterogeneous CPU/GPU sys-

tems with both of compiler and runtime system.

There are some previous proposals for OpenCL frameworks[14,

28, 22, 23, 27]. Gummaraju et al.[14] present an OpenCL framework

named Twin Peaks that handles both CPUs and GPUs in a single

node. Twin Peaks executes SPMD style OpenCL kernels on a CPU

core by switching contexts between work-items. They use their own

light-weight setjmp() and longjmp() system calls to reduce the con-

text switching overhead. Lee et al.[27] propose an OpenCL framework

for heterogeneous multicores with local memory, such as Cell BE pro-

cessors. They present work-item coalescing technique and show that

it significantly reduces context switching overhead of executing an

OpenCL kernel on multiple SPEs. Lee et al.[28] present an OpenCL

framework for homogeneous manycore processors with no hardware

cache coherence mechanism, such as the Single-chip Cloud Computer

(SCC). Their OpenCL runtime exploits the SCC’s dynamic memory
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mapping mechanism together with the symbolic array bound analysis

to preserve coherence and consistency between CPU cores.

Some other prior work proposes GPU virtualization[22, 10, 23].

Kim et al.[22] propose an OpenCL framework for multiple GPUs in a

single node. The OpenCL framework provides an illusion of a single

compute device to the programmer for the multiple GPUs available

in the system. Duato et al.[10] presents a CUDA framework named

rCUDA. The framework enables multiple clients to share GPUs in

a remote server. These approaches are similar to our work in that

OpenCL or CUDA is used as an abstraction layer to provide ease of

programming.

A Single System Image (SSI) operating system is a physical or

logical mechanism giving the illusion that a set of distributed systems

forms a unique single system. Morin et al.[33] present an operating

system called Kerrighed. Kerrighed provides a view of a single SMP

machine on top of a cluster. Walker [6] provides OpenSSI that al-

lows to dynamically balance the cluster CPU load by using a process

migration scheme. Both of Kerrighed and OpenSSI cannot virtualize

the accelerators such as GPUs in the remote nodes. Moreover, these

implementations required modified operating systems whereas SnuCL

uses unmodified operating systems.

Garland et al.[13] propose a new programming model named Pha-

lanx. Phalanx presents the programmers a unified programming model
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for heterogeneous machines, in both a single node and multiple nodes

in a distributed system. Phalanx allows the programmers to control

the placement of tasks and data across the entire machine. Phalanx

defines its interface in terms of a set of new generic functions and

template types. In contrast, we show that the original OpenCL se-

mantics naturally fits to the distributed systems, and extend OpenCL

semantics to the heterogeneous cluster environment.

The OpenCL Common Runtime from IBM[16] integrates multiple

OpenCL implementations into a single OpenCL programming envi-

ronment. The main goal of this runtime is similar to our OpenCL

runtime. It improves application portability and resource usages, and

reduces programming complexity. However, unlike our OpenCL run-

time, this runtime is limited to a single node. Even though, it auto-

matically manages the resources across multiple platforms in a sys-

tem, it requires programmers to write specialized code to manage and

synchronize the resources across multiple nodes. On the other hand,

all OpenCL resources are seamlessly shared and managed across all

devices on the multiple nodes in the cluster.

I.4 Contributions

In this thesis, we propose an OpenCL framework called SnuCL[24] and

show that OpenCL can be a unified programming model for hetero-

geneous CPU/GPU clusters. The target cluster architecture is shown

10



in Figure I.1. It consists of a single host node and multiple compute

nodes. The nodes are connected by an interconnection network, such

as Gigabit Ethernet and InfiniBand switches. The host node executes

the host program in an OpenCL application. Each compute node con-

sists of multiple multicore CPUs and multiple GPUs. A set of CPU

cores or a single GPU becomes an OpenCL compute device. A GPU

has its own device memory, up to several gigabytes. Within a compute

node, data is transferred between the GPU device memory and the

main memory through a PCI-E bus.

SnuCL provides a system image running a single operating system

instance for heterogeneous CPU/GPU clusters to the user as shown

in Figure I.1. It allows the application to utilize compute devices in a

compute node as if they were in the host node. The user can launch

a kernel to a compute device or manipulate a memory object in a

remote node using only OpenCL API functions. This enables OpenCL

applications written for a single node to run on the cluster without any

modification. That is, with SnuCL, an OpenCL application becomes

portable not only between heterogeneous computing devices in a single

node, but also between those in the entire cluster environment.

The major contributions of this thesis are the following:

• We show that the original OpenCL semantics naturally fits to

the heterogeneous cluster environment.

• We extend the original OpenCL semantics to the cluster envi-

11
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Figure I.1: Overview of SnuCL.
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ronment to make communication between nodes faster and to

achieve ease of programming.

• We describe the design and implementation of SnuCL (the run-

time and source-to-source translators) for the heterogeneous

CPU/GPU cluster.

• We develop an efficient memory management technique for the

SnuCL runtime for the heterogeneous CPU/GPU cluster.

• We show the effectiveness of SnuCL by implementing the

runtime and source-to-source translators. We experimentally

demonstrate that SnuCL achieves high performance, ease of pro-

gramming, and scalability for medium-scale heterogeneous clus-

ters.

Node

CPU

Accelerator

Accelerator

…

Interconnection network

Node

CPU

Accelerator

Accelerator

Node

CPU

Accelerator

Accelerator

CPU CPU CPU

Figure I.2: Target cluster architecture of SnuCL-D.

To overcome the limitations encountered when using SnuCL, we

propose two techniques. First, the framework provides an illusion that
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each node has all available compute devices in the cluster to every

node in the cluster. With this illusion, every node runs an OpenCL

application. Secondly, the framework provides an efficient memory

management technique by exploiting OpenCL’s relaxed memory con-

sistency model.

In this thesis, we propose an OpenCL framework called SnuCL-D

for heterogeneous clusters. The target cluster architecture is shown

in Figure I.2. It consists of multiple nodes, and they are connected

by an interconnection network, such as Gigabit Ethernet and Infini-

Band switches. Each node consists of one or more CPUs and one or

more accelerators. The architecture of the nodes can be identical or

different.

SnuCL-D extends the OpenCL platform model to the heteroge-

neous clusters. SnuCL-D enables the host to execute kernels and ma-

nipulate memory objects on the devices located in not only local node,

but also remote nodes. With the framework, the programmer can write

OpenCL applications for heterogeneous clusters using OpenCL only.

I.5 Organization of this Thesis

The rest of the thesis is organized as follows. Chapter II briefly de-

scribes OpenCL and its features. Chapter III describes the design

and implementation of the SnuCL framework. Chapter IV introduces

14



the limitations of SnuCL and proposes a novel distributed execution

model for SnuCL to overcome the limitations. Chapter V discusses

and analyzes the evaluation results of our implementations. Finally,

Chapter VI concludes the thesis.
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Chapter II

The OpenCL Architecture

In this chapter, we briefly describe the OpenCL platform and its ex-

ecution semantics.

II.1 Platform Model

Interconnect Bus

Main Memory Host
Processor

Compute 
Device ...Compute 

Device

Private Memory

Compute Device

Compute Device 
Memory

Global/Constant 
Memory Data Cache

Global 
Memory 

Constant 
Memory 

... CUCU CU...

Local Memory

PE PE PE
Compute Unit

Figure II.1: The OpenCL platform model.
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Figure II.1 shows the OpenCL platform model specified in the

OpenCL specification[21]. The OpenCL platform consists of a host

(host processor) connected to one or more compute devices, each of

which contains one or more compute units (CUs). Each CU contains

one or more processing elements (PEs). A PE is a virtual scalar pro-

cessor. The host runs an operating system. A GPU, multicore CPU,

Cell BE processor, Intel Xeon Phi coprocessor, or an accelerator can

be a compute device. In addition, the host processor itself can be a

compute device. Compute devices except CPUs communicate with the

host processor using a peripheral interconnect, such as PCI-E buses.

II.2 Execution Model

An OpenCL application consists of a host program and kernels. The

host program executes on the host processor and submits commands

to perform computations on the PEs within a compute device or to

manipulate memory objects. There are three types of commands: ker-

nel execution, memory, and synchronization. A kernel is a function

and written in OpenCL C. It executes on a single compute device. It

is submitted to a command-queue in the form of a kernel execution

command by the host program. A compute device may have one or

more command-queues. Commands in a command-queue are issued

in-order or out-of-order depending on the queue type. Commands are

then scheduled onto compute devices. There are three different types

17



of commands: kernel-execution, memory, and synchronization. Com-

mands enqueued in a command-queue are executed asynchronously

with the host.

When the host program submit a kernel execution command to

a command-queue, it defines an N -dimensional abstract index space,

called NDRange for the kernel, where 1 ≤ N ≤ 3. Each point in

NDRange is specified by an N -tuple of integers with each dimension

starting at 0. Each point is associated with an execution instance of

the kernel, which is called work-item. Thus, the N -tuple becomes the

global ID of the associated work-item. Each work-item performs a dif-

ferent task based on its ID in an SPMD[9] manner. Before enqueueing

a kernel command, the host program defines an integer array of length

N (i.e., the dimension of the NDRange) that specifies the number of

work-items in each dimension of the NDRange. Each work-item exe-

cutes the same code, but the specific pathway and data operated on

can vary.

A work-group contains one or more work-items. Each work-group

has a unique ID that is also an N -tuple. An integer array of length N

specifies the number of work-groups in each dimension of the index

space. A work-item in a work-group is assigned to a unique local ID

within the work-group, treating the entire work-group as an index

space. The index space is called a local index space. The global ID of

a work-item can be computed with its local ID, work-group ID, and

work-group size. Work-items in a work-group execute concurrently on
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a work-item
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(0,0)

Figure II.2: A two-dimensional index space.

the PEs of a single CU.

For example, Figure II.2 shows a two-dimensional index space

whose sizes in dimensions x and y are Ix and Iy respectively. Suppose

that the work-group size in dimension x is Sx and in dimension y is

Sy. Let (IDglobal
x , IDglobal

y ), (IDlocal
x , IDlocal

y ), and (IDgroup
x , IDgroup

y )

be the global ID, local ID, and work-group ID of a work-item in the

index space, respectively. The number of work-groups in dimension

x is computed by Ix/Sx and in dimension y is by Iy/Sy. Each work-

group contains Sx × Sy work-items. The global ID is computed with

the work-group size, work-group ID and local ID,

IDglobal
x = Sx · IDgroup

x + IDlocal
x

IDglobal
y = Sy · IDgroup

y + IDlocal
y

19



II.3 Memory Model

OpenCL defines four distinct memory regions: global, constant, local

and private. Compute device memory consists of the global and con-

stant memory regions. The local memory is shared by all PEs in the

same compute unit. The private memory is local to a PE. Accesses

to the global memory or the constant memory may be cached in the

global/constant memory data cache if there is such a cache in the de-

vice. The OpenCL runtime maps each OpenCL platform component

to a component in the target GPGPU system. The entire GPU card

becomes an OpenCL compute device.

The host program enqueues memory commands that operate on

memory objects in the device memory. Only the host program can

dynamically create global or constant memory objects with OpenCL

API functions. Pointers to the memory objects are passed as argu-

ments to a kernel that accesses the objects. A memory object in the

device memory is typically a buffer object, called in short as a buffer.

A buffer stores a one-dimensional collection of elements that can be

a scalar data type, a vector data type, or a user-defined structure.

II.4 OpenCL Applications

For an example of the OpenCL kernel, consider a C function that

performs matrix multiplication in Figure II.3 (a). It computes A×B
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(c)

#define BLOCK_SIZE 16
void main() 
{
1: ...
2: cl_mem A_gpu, B_gpu, C_gpu;
3: float *A_cpu, *B_cpu, *C_cpu;
4: int WA, WB, WC;  // widths of matrices
5: int HA, HB, HC;    // heights of matrices 
6:                              // HB=WA, WC=WB, and HC=HA
7: ...
8: // Initialize the OpenCL runtime 
9: ...
10: // Build and create the kernel
11: ...
12: // Allocate the main memory space for the matrices 
13: A_cpu = (float*) malloc(sizeA);
14: B_cpu = (float*) malloc(sizeB);
15: C_cpu = (float*) malloc(sizeC);
16: // Initialize A_cpu, B_cpu, and C_cpu
17: ...
18: // Allocate the device memory for the matrices 
19: A_gpu = clCreateBuffer(context, CL_MEM_READ_ONLY, 
20:                                        sizeA, NULL, NULL); 
21: B_gpu = clCreateBuffer(context, CL_MEM_READ_ONLY, 
22:                                        sizeB, NULL, NULL); 
23: C_gpu = clCreateBuffer(context, CL_MEM_WRITE_ONLY, 
24:                                        sizeC, NULL, NULL); 
25: ... 
26: // Copy the matrices from the main memory to the device memory  
27: clEnqueueWriteBuffer(command_queue, A_gpu, CL_TRUE, 0, sizeA,
28:                                      A_cpu, 0, NULL, NULL); 
29: clEnqueueWriteBuffer(command_queue, B_gpu, CL_TRUE, 0, sizeB,
30:                                      B_cpu, 0, NULL, NULL);
31: ...
32: // Set up kernel arguments
33: clSetKernelArg(kernel, 0, sizeof(cl_mem), &C_gpu); 
34: clSetKernelArg(kernel, 1, sizeof(cl_mem), &A_gpu);
35: clSetKernelArg(kernel, 2, sizeof(cl_mem), &B_gpu);
36: clSetKernelArg(kernel, 3, sizeof(int), &WA);
37: clSetKernelArg(kernel, 4, sizeof(int), &WB);
38: // Set the size of the global index space
39: size_t globalWorkSize[] = {WC, HC}; 
40: // Set the size of the local index space
41: size_t localWorkSize[] = {BLOCK_SIZE, BLOCK_SIZE};
42: // Execute the kernel
43: clEnqueueNDRangeKernel(command_queue, kernel, 2, 0, 
44:                                 globalWorkSize, localWorkSize, 0, NULL, NULL);
45: // Copy the result from the device memory to the main memory
46: clEnqueueReadBuffer(command_queue, C_gpu, CL_TRUE, 0, sizeC, 
47:                                      C_cpu, 0, NULL, NULL); 
}

__kernel void matrixMul( __global float* C, __global float* A, 
                                        __global float *B, int WA, int WB) 
{
1: int i = get_global_id(0);
2: int j = get_global_id(1);
3: float acc = 0.0f;
4: for (int k = 0; k < WA; k++)
5:     acc += A[k + j * WA] * B[i + k * WB];
6: C[i + j * WB] = acc;
}

(b)

void matrixMul(float* C, float* A, float* B, int WA, int HA, int WB) 
{
1: for (int j = 0;  j < HA; j++) {
2:     for (int i = 0; i < WB; i++) {
3:         float acc = 0.0f;
4:         for (int k = 0; k < WA; k++) {
5:             acc += A[k + j * WA] * B[i + k * WB];
6:         }
7:         C[i + j * WB] = acc;
8:     }
9: }
}

(a)

Figure II.3: (a) A C function for matrix multiplication. (b) The OpenCL
kernel for the C function in (a). (c) The OpenCL host program for matrix
multiplication.
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and stores the result in C. Figure II.3 (b) shows an OpenCL kernel

function that implements the C function. It is written in OpenCL C.

OpenCL C has four address space qualifiers to distinguish different

memory regions: global, constant, local and private. The

global qualifier is used in the argument declaration of the kernel.

It tells the OpenCL C compiler that the buffers of matrices A, B,

and C are allocated in the global memory. The kernel has a two-

dimensional index space. OpenCL functions get global id(0) and

get global id(1) return the first and second elements of the global

ID of the work-item that executes the kernel, respectively. Each work-

item computes an element of C.

Figure II.3 (C) shows the host program for the matrix multipli-

cation. At the beginning, the host initializes the OpenCL runtime by

creating an OpenCL context and a (in-order) command-queue for the

compute device. Then, it builds and creates the kernel by invoking

the OpenCL C compiler. The host allocates spaces for matrices A, B,

and C (subscripted with cpu) in the main memory (lines 12 – 15)

and initializes them (lines 16 – 17). It also allocates buffer objects for

matrices A, B, and C (subscripted with gpu) in the device memory

(lines 18 – 24). After allocating the buffers, the host copies matrices A

and B from the main memory to the buffers by enqueueing memory

commands to the command-queue (lines 26 – 30). After setting up

kernel arguments to be passed to the kernel (lines 32 – 37), it specifies

the dimension and size of the global and local index spaces (lines 38 –
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41). The host executes the kernel by enqueueing a kernel command to

the command-queue (lines 42 – 44). To copy matrix C from the buffer

to the main memory, the host enqueues a memory command to the

command-queue (lines 45 – 47). The command-queue is an in-order

queue. Thus, the enqueued memory and kernel commands are issued

to the compute device in order.

1: __kernel void vecadd(__global float* C, __global float* A,
2:                      __global float* B) {
3:   int id = get_global_id(0);
4:   C[id] = A[id] + B[id];
5: }

1: #define SIZE     16
2: #define MAX_DEV 4
3: 
4: int main(int argc, char** argv) {
5: cl_platform_id platform;
6: cl_context context;
7: cl_device_id dev[MAX_DEV];
8: cl_command_queue command_queue[MAX_DEV];
9: cl_mem bufferA[MAX_DEV];

10: cl_mem bufferB[MAX_DEV];
11: cl_mem bufferC[MAX_DEV];
12: cl_kernel kernel;
13: cl_uint num_dev;
14: size_t cb = SIZE * sizeof(float);
15: size_t global, local, offset;
16: ...
17: // Allocate the main memory space for the vector
18: float *hostA = (float*) malloc(cb);
19: float *hostB = (float*) malloc(cb);
20: float *hostC = (float*) malloc(cb);
21: // Initialize hostA, hostB
22: ...
23: // Initialize the OpenCL objects
24: clGetPlatformIDs(1, &platform, NULL);
25: clGetDeviceIDs(platform, CL_DEVICE_TYPE_ALL, 0, NULL, &num_dev);
26: clGetDeviceIDs(platform, CL_DEVICE_TYPE_ALL, num_dev, dev, NULL);
27: context = clCreateContext(0, num_dev, dev, NULL, NULL, NULL);
28: for (i = 0; i < num_dev; i++) {
29:   command_queue[i] = clCreateCommandQueue(context, dev[i], 0, NULL);
30:   bufferA[i] = clCreateBuffer(context, CL_MEM_READ_ONLY, 
31:                               cb / num_dev, NULL, NULL);
32:   bufferB[i] = clCreateBuffer(context, CL_MEM_READ_ONLY,
33:                               cb / num_dev, NULL, NULL);
34:   bufferC[i] = clCreateBuffer(context, CL_MEM_WRITE_ONLY,
35:                               cb / num_dev, NULL, NULL);
36: }
37: ...
38: // Copy the vectors from the main memory to the device memory
39: for (i = 0; i < num_dev; i++) {
40:   offset = (cb / num_dev) * i;
41:   clEnqueueWriteBuffer(command_queue[i], bufferA[i], CL_FALSE, 0,
42:                        cb / num_dev, hostA + offset, 0, NULL, NULL);
43:   clEnqueueWriteBuffer(command_queue[i], bufferB[i], CL_FALSE, 0,
44:                        cb / num_dev, hostB + offset, 0, NULL, NULL);
45: }
46: // Set up kernel arguments and launch the kernel
47: kernel = clCreateKernel(program, "vecadd", NULL);
48: global = { SIZE / num_dev };
49: local = { 1 };
50: for (i = 0; i < num_dev; i++) {
51:   clSetKernelArg(kernel, 0, sizeof(cl_mem), (void*) &bufferC[i]);
52:   clSetKernelArg(kernel, 1, sizeof(cl_mem), (void*) &bufferA[i]);
53:   clSetKernelArg(kernel, 2, sizeof(cl_mem), (void*) &bufferB[i]);
54:   clEnqueueNDRangeKernel(command_queue[i], kernel, 1, NULL, global,
55:                          local, 0, NULL, NULL);
56: }
57: // Copy the results from the device memory to the main memory
58: for (i = 0; i < num_dev; i++) {
59:   offset = (cb / num_dev) * i;
60:   clEnqueueReadBuffer(command_queue[i], bufferC[i], CL_TRUE,  0,
61:                       cb / num_dev, hostC + offset, 0, NULL, NULL);
62: }
63:
64: }

(b)

(c)

=

+

Dev 0

C[id]

=

+

A[id]

B[id]

=

+

Dev 1

=

+

Dev 2

=

+

Dev 3

(a)
Figure II.4: Vector addition (C = A + B) with multiple compute devices.

To write an OpenCL application for multiple compute devices,

the programmer needs to distribute workload across the multiple de-

vices and manage data between the host memory and multiple device

memories. For example, Figure II.4 shows an OpenCL application

that performs vector addition with multiple compute devices. It adds

vector A and B and places the result in vector C (i.e., C=A+B).

Figure II.4 shows that there are total of 16 elements in vector A, B,

and C, respectively. There are four compute devices and we distribute

the workload evenly across the devices. Each device processes four

elements.
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1: __kernel void vecadd(__global float* C, __global float* A,
2:                      __global float* B) {
3:   int id = get_global_id(0);
4:   C[id] = A[id] + B[id];
5: }

1: #define SIZE     16
2: #define MAX_DEV 4
3: 
4: int main(int argc, char** argv) {
5: cl_platform_id platform;
6: cl_context context;
7: cl_device_id dev[MAX_DEV];
8: cl_command_queue command_queue[MAX_DEV];
9: cl_mem bufferA[MAX_DEV];

10: cl_mem bufferB[MAX_DEV];
11: cl_mem bufferC[MAX_DEV];
12: cl_kernel kernel;
13: cl_uint num_dev;
14: size_t cb = SIZE * sizeof(float);
15: size_t global, local, offset;
16: ...
17: // Allocate the main memory space for the vector
18: float *hostA = (float*) malloc(cb);
19: float *hostB = (float*) malloc(cb);
20: float *hostC = (float*) malloc(cb);
21: // Initialize hostA, hostB
22: ...
23: // Initialize the OpenCL objects
24: clGetPlatformIDs(1, &platform, NULL);
25: clGetDeviceIDs(platform, CL_DEVICE_TYPE_ALL, 0, NULL, &num_dev);
26: clGetDeviceIDs(platform, CL_DEVICE_TYPE_ALL, num_dev, dev, NULL);
27: context = clCreateContext(0, num_dev, dev, NULL, NULL, NULL);
28: for (i = 0; i < num_dev; i++) {
29:   command_queue[i] = clCreateCommandQueue(context, dev[i], 0, NULL);
30:   bufferA[i] = clCreateBuffer(context, CL_MEM_READ_ONLY, 
31:                               cb / num_dev, NULL, NULL);
32:   bufferB[i] = clCreateBuffer(context, CL_MEM_READ_ONLY,
33:                               cb / num_dev, NULL, NULL);
34:   bufferC[i] = clCreateBuffer(context, CL_MEM_WRITE_ONLY,
35:                               cb / num_dev, NULL, NULL);
36: }
37: ...
38: // Copy the vectors from the main memory to the device memory
39: for (i = 0; i < num_dev; i++) {
40:   offset = (cb / num_dev) * i;
41:   clEnqueueWriteBuffer(command_queue[i], bufferA[i], CL_FALSE, 0,
42:                        cb / num_dev, hostA + offset, 0, NULL, NULL);
43:   clEnqueueWriteBuffer(command_queue[i], bufferB[i], CL_FALSE, 0,
44:                        cb / num_dev, hostB + offset, 0, NULL, NULL);
45: }
46: // Set up kernel arguments and launch the kernel
47: kernel = clCreateKernel(program, "vecadd", NULL);
48: global = { SIZE / num_dev };
49: local = { 1 };
50: for (i = 0; i < num_dev; i++) {
51:   clSetKernelArg(kernel, 0, sizeof(cl_mem), (void*) &bufferC[i]);
52:   clSetKernelArg(kernel, 1, sizeof(cl_mem), (void*) &bufferA[i]);
53:   clSetKernelArg(kernel, 2, sizeof(cl_mem), (void*) &bufferB[i]);
54:   clEnqueueNDRangeKernel(command_queue[i], kernel, 1, NULL, global,
55:                          local, 0, NULL, NULL);
56: }
57: // Copy the results from the device memory to the main memory
58: for (i = 0; i < num_dev; i++) {
59:   offset = (cb / num_dev) * i;
60:   clEnqueueReadBuffer(command_queue[i], bufferC[i], CL_TRUE,  0,
61:                       cb / num_dev, hostC + offset, 0, NULL, NULL);
62: }
63:
64: }

(a)

(b)

Figure II.5: (a) The OpenCL kernel for vector addition. (b) The OpenCL
host program for vector addition.
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Figure II.5 (a) shows the OpenCL kernel of the vector addition.

When a work-item calls get global id(0), it returns the work-item’s

global ID. The work-item then uses the global ID to index the data

assigned to it.

Figure II.5 (b) shows the host program of the application. At

the beginning, the host initializes OpenCL objects. The host gets an

OpenCL platform in the system (line 24) and obtains an array of com-

pute devices available in the platform (lines 25 – 26). After it creates

a context with the devices (line 27), it creates a command-queue (line

29), and three memory objects for vector A, B, and C (lines 30 – 35)

for each device. The size of each memory object is set to the vector

size in bytes divided by the number of devices (cb / num dev). The

host copies vectors A and B from the main memory to the memory ob-

jects by enqueueing memory write commands to the command-queues

(lines 41 – 44). After setting up kernel arguments (lines 51 – 53), it

executes the kernels by enqueueing kernel commands to the command-

queues (lines 54 – 55). The index space size for each kernel is set to

the vector size divided by the number of devices (SIZE / num dev).

To copy vector C from the memory objects to the main memory, the

host enqueues memory read commands to the command-queues (lines

60 – 61).
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Chapter III

The SnuCL Framework

In this chapter, we describe the design and implementation of the

SnuCL framework for the heterogeneous CPU/GPU cluster.

III.1 The SnuCL Runtime

III.1.1 Mapping Components

SnuCL defines a mapping between the OpenCL platform components

and the target architecture components. A CPU core in the host node

becomes the OpenCL host processor. A GPU or a set of CPU cores

in a compute node becomes a compute device. Thus, a compute node

may have multiple GPU devices and multiple CPU devices. The re-

maining CPU cores in the host node other than the host core can be

configured as a compute device. Table III.1 summarizes the mapping.

The host node executes the host program and compute nodes execute

kernels in an OpenCL application. SnuCL runtime for GPU devices
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Table III.1: Mapping the OpenCL platform to the target architecture.

OpenCL platform Target architecture
(host node)

Host processor A CPU core

Main memory Node main memory

OpenCL platform Target architecture
(compute node)

Compute device A set of CPU cores

Compute unit A CPU core

Processing element Emulated by a CPU core

Global memory Node main memory

Constant memory Node main memory

Local memory Node main memory

Private memory Node main memory

Data cache Data caches and hardware
coherence mechanism

OpenCL platform Target architecture
(compute node)

Compute device A GPU

Compute unit Streaming multiprocessor

Processing element Scalar processor

Global memory Global memory

Constant memory Constant memory

Local memory Shared memory

Private memory Local memory

Data cache Data cache in the GPU
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is implemented using CUDA framework[36].

Since OpenCL has a strong CUDA heritage[25], the mapping be-

tween the components of an OpenCL compute device to those in a

GPU is straightforward. For a compute device composed of multiple

CPU cores, SnuCL maps all of the memory components in the com-

pute device to disjoint regions in the main memory of the compute

node where the device resides. Each CPU core becomes a CU, and

the core emulates the PEs in the CU using the work-item coalescing

technique[27].

...

GPU device

...

Interconnection
network

Command queue
Completion queue

GPU device

Command scheduler 

Issue

Command handler 

Per device

...
...

...

Host thread

Completion

Ready queue

... ...

Device thread CU thread

Host
node

Compute 
node

Issue list

Enqueue

➊
➋

➌ ➍
➎

➏

➐

➑

...
CPU device

...
CPU device

Figure III.1: The organization of the SnuCL runtime.

III.1.2 Organization of the SnuCL Runtime

Figure III.1 shows the organization of the SnuCL runtime. It consists

of two different parts for the host node and a compute node. Execution

of an OpenCL application in SnuCL runtime occurs in two parts: the

host program that executes on the host node and kernels that execute

on the compute devices in the compute nodes.

The runtime for the host node runs two threads: host thread and
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command scheduler. When a user launches an OpenCL application

in the host node, the host thread in the host node executes the host

program in the application. The host thread and command scheduler

share the OpenCL command-queues. A compute device may have one

or more command-queues as shown in Figure III.1. The host thread

enqueues commands to the command-queues (➊ in Figure III.1). The

command scheduler schedules the enqueued commands across com-

pute devices in the cluster one by one (➋).

When the command scheduler in the host node dequeues a com-

mand from a command-queue, the command scheduler issues the

command by sending a command message (➌) to the target com-

pute node that contains the target compute device associated with

the command-queue. A command message contains the information

required to execute the original command. To identify each OpenCL

object, the runtime assigns a unique ID to each OpenCL object, such

as contexts, compute devices, buffers (memory objects), programs,

kernels, events, etc. The command message contains these IDs.

After the command scheduler sends the command message to the

target compute node, it calls a non-blocking receive communication

API function to wait for the completion message from the target node.

The command scheduler encapsulates the receive request in the com-

mand event object and adds the event object in the issue list. The

issue list contains event objects associated with the commands that

have been issued but have not completed yet.
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The runtime for a compute node runs a command handler thread.

The command handler receives command messages from the host

node and executes them across compute devices in the compute node.

It creates a command object and an associated event object from

the message. After extracting the target device information from the

message, the command handler enqueues the command object to the

ready-queue of the target device (➍). Each compute device has a sin-

gle ready-queue. The ready-queue contains commands that are issued

but not launched to the associated compute device yet.

The runtime for a compute node runs a device thread for each com-

pute device in the node. If a CPU device exists in the compute node,

each core in the CPU device runs a CU thread to emulate PEs. The

device thread dequeues a command from its ready-queue and launches

the kernel to the associated compute device when the command is a

kernel-execution command and the compute device is idle (➎). If it is a

memory command, the device thread executes the command directly.

When the compute device completes executing the command, the

device thread updates the status of the associated event to completed,

and then inserts the event to the completion queue in the compute

node (➏). The command handler in each compute node repeats han-

dling commands and checking the completion queue in turn. When

the completion queue is not empty, the command handler dequeues

the event from the completion queue and sends a completion message

to the host node (➐).
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The command scheduler in the host node repeats scheduling com-

mands and checking the event objects in the issue list in turn until

the OpenCL application terminates. If the receive request encapsu-

lated in an event object in the issue list completes, the command

scheduler removes the event from the issue list and updates the status

of the dequeued event from issued to completed (➑).

The command scheduler in the host node and command handlers

in the compute nodes are in charge of communication between dif-

ferent nodes. This communication mechanism is implemented with a

lower-level communication API, such as MPI. To implement the run-

time for each compute node, an existing CUDA or OpenCL runtime

for a single node can be used.

III.1.3 Processing Kernel-execution Com-

mands

When a device thread dequeues a kernel-execution command from

its ready-queue, it launches the kernel to the target device when the

device is idle. When the target device is a GPU, the device thread

launches the kernel using the vendor-specific API, such as CUDA if

the GPU vendor is NVIDIA. When the target is a CPU device, CU

threads (i.e., CPU cores) in the device emulate the PEs using a kernel

transformation technique, called work-item coalescing[27]. Basically,

the work-item coalescing technique makes the CU thread execute each
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work-item in a work-group one by one sequentially using a loop that

iterates over the local index space in the work-group. This transfor-

mation is provided by the SnuCL OpenCL-C-to-C translator.

The CPU device thread dynamically distributes the kernel work-

load across the CU threads and achieves workload balancing between

the CU threads. The unit of workload distribution is a work-group.

The problem of work-group scheduling across the CU threads is similar

to that of parallel loop scheduling for the conventional multiprocessor

system because each work-group is essentially a loop due to the work-

item coalescing technique. Thus, we modify the conventional parallel

loop scheduling algorithm proposed by Li et al.[32] and use it in the

SnuCL runtime.

In the SnuCL runtime, one or more work-groups are grouped to-

gether and dynamically assigned to a currently idle CU thread. The

set of work-groups assigned to a CU thread is called a work-group

assignment. To minimize the scheduling overhead, the size of each

work-group assignment is large at the beginning, and the size de-

creases progressively. When there are N remaining work-groups, the

size S of next work-group assignment to an idle CU thread is com-

puted by S=⌈N/(2P )⌉, where P is the number of all CU threads in

the CPU device. The CPU device thread repeatedly schedules the

remaining work-groups until N is equal to zero.
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III.1.4 Processing Synchronization Com-

mands

OpenCL supports synchronization between work-items in a work-

group using a work-group barrier. Every work-item in the work-group

must execute the barrier and cannot proceed beyond the barrier

until all other work-items in the work-group reach the barrier. Be-

tween work-groups, there is no synchronization mechanism available

in OpenCL.

Synchronization between commands in a single command-queue

can be specified by a command-queue barrier command. To synchro-

nize commands between different command-queues, events are used.

Each OpenCL API function that enqueues a command returns an

event object that encapsulates the command status. Most of OpenCL

API functions that enqueue a command take an event wait list as an

argument. This command cannot be issued for execution until all the

commands associated with the event wait list complete.

The command scheduler in the host node honors the type (in-order

or out-of-order) of each command-queue and (event) synchronization

enforced by the host program. When the command scheduler dequeues

a synchronization command, the command scheduler uses it for deter-

mining execution ordering between queued commands. It maintains

a data structure to store the events that are associated with queued

commands and bookkeeps the ordering between the commands. When
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there is no event for which a queued command waits, the command

is dequeued and issued to its target node that contains the target

device.

III.2 Memory Management

In this section, we describe how the SnuCL runtime manages memory

objects and executes memory commands.

III.2.1 The OpenCL Memory Model

OpenCL defines four distinct memory regions in a compute de-

vice: global, constant, local and private. To distinguish these mem-

ory regions, OpenCL C has four address space qualifiers: global,

constant, local, and private. They are used in variable decla-

rations in the kernel code. Since OpenCL treats these memory regions

as logically distinct regions, they may overlap in physical memory.

An OpenCL memory object is a handle to a region of the global

memory. The host program dynamically creates a memory object and

enqueues commands to read from, write to, and copy the memory

object. A memory object in the global memory is typically a buffer

object, called a buffer in short. A buffer stores a one-dimensional col-

lection of elements that can be a scalar data type, vector data type,

or user-defined structure.
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OpenCL defines a relaxed memory consistency model. An up-

date to a memory location by a work-item does not need to be

visible to other work-items at all times. Instead, the local view of

memory from each work-item is guaranteed to be consistent at syn-

chronization points. Synchronization points include work-group barri-

ers, command-queue barrier, and events. Especially, the device global

memory is consistent across work-items in a single work-group at a

work-group barrier, but there are no guarantees of memory consis-

tency between different work-groups executing the kernel. For other

synchronization points, such as command-queue barriers and events,

the state of the global memory should be consistent across all work-

items in the kernel index space.

III.2.2 Space Allocation to Buffers

In OpenCL, the host program creates a buffer object by invoking

an API function clCreateBuffer(). Even though the space for a

buffer is allocated in the global memory of a specific device, the

buffer is not bound to the compute device in OpenCL[21]. Binding

a buffer and a compute device is implementation dependent. As a re-

sult, clCreateBuffer() has no parameter that specifies a compute

device. This implies that when a buffer is created, the runtime has no

information about which compute device accesses the buffer.

The SnuCL runtime does not allocate any memory space to a
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buffer when the host program invokes clCreateBuffer() to create

it. Instead, when the host program issues a memory command that

manipulates the buffer or a kernel-execution command that accesses

the buffer to a compute device, the runtime checks if a space is al-

located to the buffer in the target device’s global memory. If not, it

allocates a space to the buffer in the global memory.

III.2.3 Minimizing Memory Copying Over-

head

To efficiently handle buffer sharing between multiple compute devices,

the SnuCL runtime maintains a device list for each buffer. The device

list contains compute devices that have the same latest copy of the

buffer in their global memory. It is empty when the buffer is created.

When the command that accesses the buffer completes, the host com-

mand scheduler updates the device list of the buffer. If the buffer

contents are modified by the command, it empties the list and adds

the device that has the modified copy of the buffer in the list. Oth-

erwise, it just adds in the list the device that has recently obtained a

copy of the buffer because of the command.

When the host command scheduler dequeues a memory command

or kernel-execution command, it checks the device list of each buffer

that is accessed by the command. If the target compute device is

in the device list of a buffer, the compute device has a copy of the
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buffer. Otherwise, the runtime checks whether a space is allocated to

the buffer in the target device’s global memory. If not, the runtime

allocates a space for the buffer in the global memory of the target

device. Then it copies the buffer contents from a device in the device

list of the buffer to the allocated space.

To minimize the memory copying overhead, the runtime selects

a source device in the device list that incurs the minimum copying

overhead. Figure III.2 shows an example of the memory copy time in

a node (Within a GPU, Within a CPU, CPU to CPU, CPU to GPU, GPU

to CPU, and GPU to GPU) or between different nodes (Node to Node)

of the target cluster. We vary the buffer size from 1 MB to 512 MB.

As the source of copying, the runtime prefers a device that has

a latest copy of the buffer and resides in the same node as that of

the target device. If there are multiple such devices, a CPU device

is preferred. When all of the potential source devices reside in other

nodes, a CPU device is also preferred to a GPU device. This is because

the lower-level communication API does not typically support reading

directly from the GPU device memory. It costs one more copying step

from the GPU device memory to a temporary space in the node main

memory.

To avoid such an unnecessary memory copying overhead, we define

a distance metric between compute devices as shown in Table III.2.

Based on this metric, the runtime selects the nearest compute device
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Figure III.2: Memory copy time.

Table III.2: Distance between compute devices

Distance Compute devices

0 Within a device
1 a CPU and another CPU in the same node
2 a CPU and another GPU in the same node
3 a GPU and another GPU in the same node
4 a CPU and another CPU in the different nodes
5 a CPU and another GPU in the different nodes
6 a GPU and another GPU in the different nodes

in the device list of the buffer and copies the buffer contents to the

target device from the selected device.

III.2.4 Processing Memory Commands

There are three representative memory commands in OpenCL: write

(clEnqueueWriteBuffer()), read (clEnqueueReadBuffer()), and

copy (clEnqueueCopyBuffer()). When the runtime executes a write

command, it copies the buffer contents from the host node’s main

memory to the global memory of the target device. When the run-
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time executes a read command, it copies the buffer contents from the

global memory of a compute device in the device list of the buffer to

the host node’s main memory. A CPU device is preferred to avoid the

unnecessary memory copying overhead. When the runtime executes a

copy command, based on the distance metric (Table III.2), it selects

a nearest device in the device list of the source buffer from the target

device. Then it copies the buffer contents from the global memory in

the source device to the global memory in the target device.

III.2.5 Consistency Management

In OpenCL, multiple kernel-execution and memory commands can be

executed simultaneously, and each of them may access a copy of the

same buffer. If they update the same set of locations in the buffer,

we may choose any copy as the last update for the buffer according

to the OpenCL memory consistency model. However, when they up-

date different locations in the same buffer, the case is similar to the

false sharing problem that occurs in a traditional, page-level software

shared virtual memory system[3].

One solution to this problem is introducing a multiple-writers

protocol[3] that maintains a twin for each writer and updates the

original copy of the buffer by comparing the modified copy with its

twin. Each node that contains a writer device performs the compar-

ison and sends the result (e.g., diffs) to the host who maintains the
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original buffer. The host updates the original buffer with the result.

However, this introduces a significant communication and computa-

tion overhead in the cluster environment if the degree of buffer sharing

is high.

Instead, the SnuCL runtime solves this problem by executing

kernel-execution and memory commands atomically in addition to

keeping the most up-to-date copies using the device list. When

the host command scheduler issues a memory command or kernel-

execution command, it records the buffers that are written by the

command in a list called written-buffer list. When the host com-

mand scheduler dequeues a command, and the command writes to

any buffer in the written-buffer list, it delays issuing the command un-

til the buffers accessed by the dequeued command are removed from

the written-buffer list. This mechanism is implemented by adding the

commands that write to the buffers and have not completed their ex-

ecution yet into the event wait list of the dequeued command. When-

ever a kernel-execution or memory command completes its execution,

the host command scheduler removes the buffers written by the com-

mand from the written-buffer list.

III.2.6 Ease of Programming

Assume that a user uses a mix of MPI and OpenCL as a programming

model for the heterogeneous cluster. When the user wants to launch
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a kernel to an OpenCL-compliant compute device, and the kernel ac-

cesses a buffer having been written by another compute device in a dif-

ferent compute node, the user explicitly inserts necessary communica-

tion and data transfer operations in the MPI-OpenCL program. First,

the user makes the source device copy the buffer into the main mem-

ory of its node using clEnqueueReadBuffer(), and sends the data to

the target node using MPI Send(). The target node receives the data

from the source node using MPI Recv(). Then, the user copies the

data into the device memory by invoking clEnqueueWriteBuffer().

Finally, the user invokes clEnqueueNDRangeKernel() to execute the

kernel.

On the other hand, SnuCL hides the communication and data

transfer layer from the user and manages memory consistency all by

itself. Thus, with SnuCL, the user executes the kernel by invoking only

clEnqueueNDRangeKernel() without any additional data movement

operations (clEnqueueReadBuffer(), MPI Send(), MPI Recv(), and

clEnqueueWriteBuffer()). This improves software developers’ pro-

ductivity and increases portability.

III.3 Extensions to OpenCL

A buffer copy command (clEnqueueCopyBuffer()) is available in

OpenCL[21]. Although this can be used for point-to-point commu-

nication in the cluster environment, OpenCL does not provide any
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Table III.3: Collective communication extensions

SnuCL MPI Equivalent

clEnqueueBroadcastBuffer MPI Bcast

clEnqueueScatterBuffer MPI Scatter

clEnqueueGatherBuffer MPI Gather

clEnqueueAllGatherBuffer MPI Allgather

clEnqueueAlltoAllBuffer MPI Alltoall

clEnqueueReduceBuffer MPI Reduce

clEnqueueAllReduceBuffer MPI Allreduce

clEnqueueReduceScatterBuffer MPI Reduce scatter

clEnqueueScanBuffer MPI Scan
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Figure III.3: clEnqueueAlltoAllBuffer() operation for four source
buffers and four destination buffers.
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collective communication mechanisms that facilitate exchanging data

between many devices. SnuCL provides collective communication op-

erations between buffers. These are similar to MPI collective com-

munication operations. They can be efficiently implemented with the

lower-level communication API or multiple clEnqueueCopyBuffer()

commands. Table III.3 lists each collective communication operation

and its MPI equivalent.

For example, the format of clEnqueueAlltoAllBuffer() opera-

tion is as follows:

cl int clEnqueueAlltoAllBuffer(

cl command queue *cmd queue list, cl uint num buffers,

cl mem *src buffer list, cl mem *dst buffer list,

size t *src offset list, size t *dst offset list,

size t bytes to copy, cl uint num events in wait list,

const cl event *event wait list, cl event *event)

The API function clEnqueueAlltoAllBuffer() is similar to

the MPI collective operation MPI Alltoall(). The first argu-

ment cmd queue list is the list of command-queues that are as-

sociated with the compute devices where the destination buffers

(dst buffer list) are located. The command is enqueued to the

first command-queue in the list. The meaning of this API function

is the same as enqueueing N independent clEnqueueCopyBuffer()s

to each command-queue in cmd queue list, where N is the number
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of buffers. The meaning of this operation is illustrated in Figure III.3.

III.4 Code Transformations

In this section, we describe compiler analysis and transformation tech-

niques used in SnuCL.

III.4.1 Detecting Buffers Written by a Kernel

To keep shared buffers consistent, the SnuCL runtime performs

consistency management as described in Section III.2. This re-

quires detecting buffers that are written by an OpenCL kernel.

In OpenCL, each memory object has a flag that represents its

read/write permission: CL MEM READ ONLY, CL MEM WRITE ONLY, and

CL MEM READ WRITE. Thus, the runtime may use the read/write per-

mission of each buffer object to obtain the necessary information.

However, this may be too conservative. When the memory object has

CL MEM READ WRITE and the kernel does not write to the buffer at all,

the runtime cannot detect this.

Thus, SnuCL performs a conservative pointer analysis on the ker-

nel source when the kernel is built. A simple and conservative pointer

analysis[42] is enough to obtain the necessary information because

OpenCL imposes a restriction on the usage of global memory point-

ers used in a kernel[21]. Specifically, a pointer to address space A can
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__kernel void vec_add(__global float *A, __global float *B, 
__global float *C) {

int id = get_global_id(0);
C[id] = A[id] + B[id];

}

int vec_add_memory_flags[3] = {
CL_MEM_READ_ONLY, // A
CL_MEM_READ_ONLY, // B
CL_MEM_WRITE_ONLY // C

};

#define get_global_id(N) \
(__global_id[N] + (N == 0 ? __i : (N == 1 ? __j : __k)))

void vec_add(float *A, float *B, float *C) {
for (int __k = 0; __k < __local_size[2]; __k++) {

for (int __j = 0; __j < __local_size[1]; __j++) {
for (int __i = 0; __i < __local_size[0]; __i++) {

int id = get_global_id(0);
C[id] = A[id] + B[id];

}
}

}
}

__global__ void vec_add(float *A, float *B, float *C) {
int id = blockDim.x * blockIdx.x + threadIdx.x;
C[id] = A[id] + B[id];

}

(a)

(b)

(d)

(c)

Figure III.4: (a) An OpenCL kernel. (b) The buffer access information of
kernel vec add for the runtime. (c) The CUDA C code generated for a GPU
device. (d) The C code for a CPU device.
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only be assigned to a pointer to the same address space A. Casting a

pointer to address space A to a pointer to address space B (̸= A) is

illegal.

When the host builds a kernel by invoking clBuildProgram(),

the SnuCL OpenCL-C-to-C translator at the host node generates

the buffer access information for the runtime from the OpenCL ker-

nel code. Figure III.4 (b) shows the information generated from the

OpenCL kernel in Figure III.4 (a). It is an array of integer for each

kernel. The ith element of the array represents the access information

of the ith buffer argument of the kernel. Figure III.4 (b) indicates that

the first and second buffer arguments (A and B) are read and the third

buffer argument (C) is written by kernel vec add. The runtime uses

this information to manage buffer consistency.

III.4.2 Emulating PEs for CPU Devices

In a CPU device, the SnuCL runtime makes each CU thread em-

ulate the PEs in the CU using a kernel transformation technique,

called work-item coalescing[27] provided by the SnuCL OpenCL-C-

to-C translator. The work-item coalescing technique makes the CPU

core execute each work-item in the work-group one by one sequen-

tially using a loop that iterates over the local work-item index space.

The triply nested loop in Figure III.4 (d) is such a loop after the

work-item coalescing technique has been applied. The size of the local
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work-item index space is determined by the array local size pro-

vided by the runtime. The runtime also provides an array global id

that contains the global ID of the first work-item in the work-group.

When there are work-group barriers in the kernel, the work-item

coalescing technique divides the code into work-item coalescing re-

gions (WCRs)[27]. A WCR is a maximal code region that does not

contain any barrier. Since a work-item private variable whose value

is defined in one WCR and used in another needs a separate loca-

tion for each work-item to transfer the variable’s value between differ-

ent WCRs, the variable expansion technique[27] is applied to WCRs.

Then, the work-item coalescing technique executes each WCR using

a loop that iterates over the local work-item index space. After work-

item coalescing, the execution ordering of WCRs preserves the barrier

semantics.

III.4.3 Distributing the Kernel Code

When the host builds a kernel by invoking clBuildProgram(), the

SnuCL OpenCL-C-to-CUDA-C translator (we assume that the run-

time in a compute node is implemented with the CUDA runtime)

generates the code for a GPU and OpenCL-C-to-C translator gener-

ates the code for a CPU device. Figure III.4 (c) and Figure III.4 (d)

show the code generated for a GPU and a CPU device, respectively.

Then, the host command scheduler sends a message that contains the
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translated kernels to each compute node. The compute node stores

the kernels in separate files and builds them with the native compiler

for each compute device in the system.
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Chapter IV

Distributed Execution Model

for SnuCL

IV.1 Two Problems in SnuCL

This chapter addresses two problems. First, we try to solve the scala-

bility problem of SnuCL. Second, we would like to abstract away the

vendor heterogeneity in the underlying cluster architecture. When a

system has multiple compute devices from different vendors, it is the

programmers’ burden to manage multiple OpenCL platforms from

different vendors in a single OpenCL application. For example, as-

sume that a system has three different accelerators: an AMD GPU,

an NVIDIA GPU, and an Intel Xeon Phi coprocessor. In this case, the

programmer needs to manage three different OpenCL platforms from

three different vendors in a single application when the programmer

wants to use all the accelerators in the application.

However, what makes it more difficult for the programmer is that
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OpenCL objects, such as memory and event objects, cannot be shared

between different platforms. Extra copy processes between them are

required to share memory and event object. Furthermore, when it

comes to a heterogeneous cluster, the programmer is responsible for

managing memory and event objects between different platforms and

different nodes. This requires additional host-side code for memory

movement, event synchronization, inter-node communication, etc. In

turn, the scalability of the application worsens because of the extra

overhead.

Node
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Device
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Figure IV.1: Overview of SnuCL-D.

We redesign SnuCL to overcome the above two problems. We call

the redesigned framework SnuCL-D. Figure IV.1 shows an overview

of SnuCL-D on a heterogeneous cluster. SnuCL-D is built on top of

different OpenCL implementations for a single operating system in-
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stance, and uses them to control different compute devices from dif-

ferent vendors in each node in the cluster.

The user executes an OpenCL application on the cluster using

SnuCL-D. Then, SnuCL-D runtime executes the host program in the

application on each node in the cluster. These host program instances

run asynchronously and in parallel. Every node runs the same host

program and follows the same execution path. However, each program

instance accesses different data using different compute devices. It is

a completely distributed execution mechanism and requires no cen-

tralized control. The execution process is transparent to the user and

accomplished by a technique called remote device virtualization.

As described in Section II, the host program obtains an array

of compute devices available from the target platform. It distributes

the workload across the compute devices in the array and manages

data between them. In SnuCL-D, the host program is written for all

compute devices available in the cluster as if they were local compute

devices. SnuCL-D runtime executes the host program on every node

in the cluster, and it provides an illusion to the node that the node has

all compute devices available in the cluster. The runtime determines

which device is local to the node transparently to the host program.

In addition, SnuCL-D hides the multiple underlying OpenCL im-

plementations from the user by integrating them into a single unified

OpenCL framework on top of them. This integration relieves the pro-
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grammer’s burden of managing multiple OpenCL platforms and shar-

ing OpenCL objects across different platforms and different nodes.

IV.2 Remote Device Virtualization

To make the illusion, the runtime performs the following operations.

When a user launches an OpenCL application in a cluster, the runtime

on each node finds out all compute devices available in the local node.

Then, the runtime sends the information about the devices to a spe-

cific node. The node is specified by the user and called root node. The

root node gathers the device information from all nodes in the cluster,

and then it organizes an array of compute devices using the gathered

information. The root node broadcasts a message that indicates the

array of compute devices to all nodes in the cluster.

The runtime on each node organizes an array of compute devices

using the message received from the root node. The message contains

the attributes of compute devices, such as their type, name, located

node, and etc. For each device in the array, the runtime obtains a real

compute device from the local platform if the device is located in the

local node. Otherwise, if the device is in a remote node, the runtime

creates a virtual compute device using the information. All nodes

organize their own array of compute devices using the same message,

and thus the sequence of the compute devices is identical in all nodes.

We call the virtualization technique Remote Device Virtualization.
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Figure IV.2: Remote Device Virtualization.

Figure IV.2 shows an example. Here is a cluster that consists of

four nodes, and Node 0 is specified the root node. Each node has a

single compute device, and thus there are total four compute devices

in the cluster. Remote device virtualization provides an illusion to

each node that the node has four compute devices. In Figure IV.2, a

gray-colored device represents a real device, and a dotted-lined device

represents a virtual device. For all nodes, the sequences of the compute

devices are same and represented in Dev0, Dev1, Dev2, and Dev3.

When the host requests an array of compute devices available on

the platform, the runtime provides a device array that consists of real

and virtual devices to the host. An OpenCL operation is submitted to

a command-queue in the form of an OpenCL command. A command-
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queue is created and attached to a specific compute device. When a

command is submitted to a command-queue that is attached to a real

device, the runtime submits the command to the command-queue by

calling the corresponding API function in the underlying OpenCL im-

plementation. Otherwise, if the target command-queue is attached to

a virtual device, the runtime does not submit the command. Instead,

the runtime checks the OpenCL objects such as memory and event

that are needed to execute the command. We describe this checking

process in Section IV.3.

Finally, we show how SnuCL-D executes the OpenCL application

as shown in Figure II.5 on the cluster of Figure IV.2. The host pro-

gram in the application runs in every node on the cluster. For each

node, when the host requests all compute devices available on the plat-

form, the runtime returns four compute devices in a sequence of Dev0,

Dev1, Dev2, and Dev3. The host creates four command-queues with

the four compute devices. The host enqueues a write memory com-

mand to each command-queue. The runtime submits the command

to the command-queue, only when the command-queue is associated

with a real compute device. Thus, Node 0, Node 1, Node2, and Node

3 process the command that assigned to Dev0, Dev1, Dev2, and Dev3

respectively. And then, the runtime processes kernel-execution com-

mands in the same manner as the write memory commands. Finally,

the host reads memory objects from the devices by enqueuing read

memory commands. For a read memory command, the runtime keeps
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all nodes in the cluster have the same content in their host main mem-

ory, because all node runs the host program and they should follow

the same execution path. Thus, a node that has the content of mem-

ory object broadcasts the content to other nodes. And at the same

time, it receives content of the memory object that does not reside

in the local node from another node. For example, in Node 2, the

runtime sends the content of bufferC[2] to Node0, Node1, and Node3.

And it receives the contents of bufferC[0], bufferC[1], and bufferC[3]

from Node0, Node1, and Node3 respectively.

IV.2.1 Exclusive Execution on the Host

Since every node runs the host program in SnuCL-D, there are some

side effects from the execution. First, the host can generate random in-

put set data and use it. With SnuCL-D every node can make different

random input sets, and thus the application may behave incorrectly

or fail. Alternatively, the host writes the generated random input set

in the host main memory to a single device memory, and then it

can share or copy the memory object between compute devices. This

programming style make the application run correctly with random

generated input sets.

Second, the host may require IO operations such as writing a file.

In this case, only one single host should write the file to avoid the du-

plicate IO operations and race conditions. SnuCL-D offers a wrapped
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system library set. It wraps the system calls such as write(), and exe-

cutes exclusively on the root node only. Programmer can indicate the

system calls that runs exclusively in linking time.

Finally, some host codes cannot be covered with above cases.

In this case, the programmer can specify the exclusive execution

region in the application using our built-in global variable named

IS ROOT NODE. SnuCL-D runtime set IS ROOT NODE to 1 in the

root node and 0 in other nodes. The programmer moves the code

that should run exclusively with an if clause using IS ROOT NODE.

However, the application that uses IS ROOT NODE is not a standard

OpenCL application and cannot run with other OpenCL frameworks.

IV.3 OpenCL Framework Integration

IV.3.1 OpenCL Installable Client Driver

(ICD)

The OpenCL Installable Client Driver (ICD) enables multiple

OpenCL implementations from different hardware vendors to coexist

in a single system. With help of ICD, programmers can select between

multiple OpenCL implementations at run time.

Every OpenCL object such as platform, device, and etc has a

dispatch table pointer (KHRicdVendorDispatch) as shown in Fig-

ure IV.3. KHRicdVendorDispatch is a function pointer dispatch ta-
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typedef struct KHRicdVendorDispatchRec KHRicdVendorDispatch;

struct KHRicdVendorDispatchRec
{

KHRpfn_clGetPlatformIDs clGetPlatformIDs;
KHRpfn_clGetPlatformInfo clGetPlatformInfo;
KHRpfn_clGetDeviceIDs clGetDeviceIDs;
KHRpfn_clGetDeviceInfo clGetDeviceInfo;
KHRpfn_clCreateContext clCreateContext;
...

};

typedef struct _cl_platform_id *    cl_platform_id;
typedef struct _cl_device_id *      cl_device_id;
...

struct _cl_platform_id
{

KHRicdVendorDispatch *dispatch;
...

};

struct _cl_device_id
{

KHRicdVendorDispatch *dispatch;
...

};

Figure IV.3: OpenCL ICD.
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ble which is used to direct calls to a particular vendor OpenCL

platform[20]. Almost all OpenCL implementations from various hard-

ware vendors are implemented as dynamic shared libraries and ICD

compatible. The ICD Loader in SnuCL-D loads all available OpenCL

dynamic shared libraries in the system and gets the respective

OpenCL platforms from them. OpenCL platform object contains

KHRicdVendorDispatch, and thus SnuCL-D can call OpenCL API

functions in all underlying OpenCL implementations in the system.

IV.3.2 Event Synchronization

When the host calls an OpenCL API function that enqueues a com-

mand, it can obtain an event object. The event object encapsulates

the status of the enqueued command. An event object can notify the

host that the associated command completes its execution. In addi-

tion, it can be used to define an ordering between commands. A user

event is a special form of event object and not associated with any

command’s execution. A user event is created and set its status by

the host.

When the host waits a command identified by an event object

to complete, there are two cases to be considered. One is the node

that has the device that executes the command; we call the node the

source node. The other is other nodes that do not have the device.

For the source node, the runtime calls the corresponding OpenCL API
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function of the underlying implementation associated with the target

device and waits until the completion of the command. When the

runtime receives notification of completion, it broadcasts a completion

message to all other nodes in the cluster through the interconnection

network. For all nodes except source node, the runtime just waits for

a completion message from the source node.

These processes can be achieved by the distributed execution

model of SnuCL-D. As shown in Section IV.1, SnuCL-D runtime ex-

ecutes the same host program on every node in the cluster with an

illusion that each node has all compute devices available in the clus-

ter. Therefore, the runtime in each node can make a distinction if an

event object is associated with a real device or a virtual device. If

it is the former, the self-node becomes the source node. Otherwise,

it identifies the source node that has the device associated with the

event, and then it waits a completion message from the source node.

This is a completely distributed mechanism and requires no central-

ized control. The distributed execution model in SnuCL-D makes all

of the following techniques possible.

Every OpenCL API function that enqueues a command takes a

wait list made up of event objects as an argument. It is called event

wait list. The enqueued command cannot be issued for execution un-

til all events in event wait list has completed. One restriction is that

the platform associated with the target compute device and events in

event wait list should be the same. Even though SnuCL-D provides a
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single OpenCL platform to the users, it internally uses multiple un-

derlying OpenCL implementations. Thus, some events in the wait list

can be associated with different OpenCL platforms from that of the

target compute device. The events can be from the different platforms

in the local node or from a remote node.

If the target device and an event in the event wait list are asso-

ciated with different platforms within a same node, then the runtime

creates a user event using the platform of the target device. The run-

time substitutes it with the original event in the event wait list, and

it registers a callback function for the original event. The registered

callback function will be called when the original event completes, and

it changes the user event’s status to complete.

When a command waits an event from a remote node, the run-

time identifies the remote node that has a device associated with the

event. We call the remote node the source node. The runtime creates

a user event using the platform of the target device and substitutes it

with the original event. Then the runtime calls a non-blocking receive

communication API to receive a completion message from the source

node. The runtime encapsulates the receive request in the request ob-

ject and adds it in the request list. Each node has a single request list,

and the request thread in the node repeats checking the list. When the

receive communication function completes, that is, the node receives

the completion message, the runtime changes the user event’s status

to complete. For the source node, the node identifies the target node
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that has the target device associated with the command and registers

a callback function for the event. The callback function will be called

when the event completes and it sends a completion message to the

target node.

IV.3.3 Memory Sharing

OpenCL requires that memory objects are shareable between mul-

tiple devices within a platform. On the other hand, they cannot be

shared between different platforms. SnuCL-D runtime presents the

programmer a single OpenCL platform, and thus the runtime makes

it possible to share memory objects between multiple devices that are

from different underlying vendor implementations or different nodes.

SnuCL-D runtime creates memory objects on demand. A mem-

ory object is a handle to a reference region of device memory. When

the host creates a memory object, the runtime does not allocate any

memory space to the memory object. Instead, the runtime allocates

a space to the memory object when the memory object eventually is

used such as execution for a memory command or kernel execution

command. When the host enqueues a command to a command-queue,

the runtime checks the memory objects needed by the command. If

the target device is a real device and a memory object has not been

allocated on the target device’s memory, then the runtime allocates a

space to the memory object in the device memory.
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After checking the memory allocation, the runtime updates the

contents of the memory object to maintain memory consistency. The

runtime transfers contents of the memory from a source device which

has the latest copy to the target device that needs the latest copy. In

SnuCL-D, all nodes executes the same host program, then all nodes

know that what command is executed on what device. If a command

that modifies a memory object is executed on a compute device, then

the device has the latest copy of the memory object and the device

becomes the single source device. Otherwise, the command only reads

the memory object, the device becomes one of the source devices.

With this information, the runtime transfers the memory contents to

the target device from one of the source devices.

There are three cases to be considered for selecting a source device.

First, a source device can be associated with the same underlying plat-

form in the same node as the target device. In that case, the runtime

just enqueues the command without any additional operations. Then,

the underlying OpenCL implementation transparently transfers the

memory between devices.

Second, a source device can be in the same node but different un-

derlying platform as the target device. The runtime creates a user

event by using the underlying platform of the target device. The run-

time enqueues a non-blocking memory read command to a command-

queue associated with the source device. The memory command reads

the content of the memory from the source device and writes the con-
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tent to a temporary space in the node main memory. Then the runtime

registers a callback function for the enqueued memory read command.

The callback function will be called when the memory read command

completes and it changes the user event’s status to complete. Then the

runtime enqueues a non-blocking memory write command to the tar-

get command-queue, and adds the user event into the memory write

command’s event wait list. The memory write command writes the

content of the temporary space in the main memory to the device

memory. After enqueueing the write memory command, the runtime

enqueues the original command with a modified event wait list con-

taining the write memory command’s event.

Last, a source device can be in the different node as the target

device. For this case, the runtimes in the source node and the target

node transfer the contents of the memory object through the inter-

connection network. The source node sends data to the target node

and the target node receives the data from the source node. Their

requests must be matched to each other. If there is only one source

device, then the node that has the source device becomes the source

node and sends data to the target node. Otherwise, if there are mul-

tiple source nodes, the runtime must select one node among them.

Each node has a unique integer rank in the cluster. The target

node selects a source device in the devices that have the latest copy of

the memory object by using the rank. A node has the shortest distance

between its node and the target node’s rank is selected to the source
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node. If there are more than one nodes that have the same shortest

distance, the runtime selects a node has lower rank. According to this

rule, the target node selects a source node and receives the memory

contents from the node. On the other hand, every node except the

target node in the cluster checks whether oneself is the source node

or not. When the host enqueues a command to a command-queue

associated with a virtual device, the runtime checks the latest copy

of the memory objects needed in the command are in the local node.

If then, the runtime calculates all node distance of source nodes and

checks the local node has the lowest distance.

In order to minimize the memory copying overhead, the runtime

selects a source device that incurs the minimum copying overhead.

For above three cases, the runtime prefers preceding cases.
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Chapter V

Experimental Results

V.1 SnuCL Evaluation

This section describes the evaluation methodology and results for

SnuCL.

Table V.1: The target clusters

Host node Compute node
Processors 2 × Intel 2 × Intel 4 × NVIDIA

Xeon X5680 Xeon X5660 GTX 480
Clock frequency 3.33GHz 2.80GHz 1.40GHz

Cores per processor 6 6 480
Memory size 72GB 48GB 1.5GB

Quantity 1 9
OS Red Hat Enterprise Linux Server 5.5

Interconnection Mellanox InfiniBand QDR

Cluster A (a 10-node heterogeneous CPU/GPU cluster)

Host node Compute node
Processors 2 × Intel 2 × Intel

Xeon X5570 Xeon X5570
Clock frequency 2.93GHz 2.93GHz

Cores per processor 4 4
Memory size 24GB 24GB

Quantity 1 256
OS Red Hat Enterprise Linux Server 5.3

Interconnection Mellanox InfiniBand QDR

Cluster B (a 257-node CPU cluster)
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V.1.1 Methodology

Target cluster architecture. We evaluate SnuCL using two cluster

systems (Cluster A and Cluster B). Table V.3 summarizes the target

clusters.

Table V.2: Applications used

Application Source Description Input Global memory size (MB) Extension used
BinomialOption AMD Binomial option pricing 65504 or 2097152 samples, 512 steps, 100 iterations 2.0 or 64.0

BlackScholes PARSEC Black-Scholes PDE 33538048 options, 100 iterations 895.6
BT NAS Block tridiagonal solver Class C (162x162x162) or Class D (408x408x408) 1982.1 or 30686.7
CG NAS Conjugate gradient Class C (150000) or Class D (1500000) 1102.6 or 20399.1
CP Parboil Coulombic potential 16384x16384, 10000 atoms 4.1
EP NAS Embarrassingly parallel Class D (2^36) 0.8
FT NAS 3-D FFT PDE Class B (512x256x256) or Class C (512x512x512) 2816.0 or 11264.0 AlltoAll

MatrixMul NVIDIA Matrix multiplication 10752x10752 or 16384x16384 1323.0 or 3072.0 Broadcast
MG NAS Multigrid Class C (512x512x512) or Class D (1024x1024x1024) 3575.3 or 28343.7

Nbody NVIDIA N-Body simulation 1048576 bodies 64.0
SP NAS Pentadiagonal solver Class C (162x162x162) or Class D (408x408x408) 1477.9 or 19974.4

Benchmark applications. We use eleven OpenCL applications

from various sources: AMD[2], NAS[34], NVIDIA[35], Parboil[43], and

PARSEC[5]. The characteristics of the applications and their input

sets are summarized in Table V.2. The applications from Parboil and

PARSEC are translated to OpenCL applications manually. The appli-

cations from NAS are from SNU NPB Suite[39] that contains OpenCL

versions of the original NAS Parallel Benchmarks for multiple OpenCL

compute devices. For an OpenCL application written for a single com-

pute device, we modify the application to distribute workload across

multiple compute devices available. Especially, FT and MatrixMul use

SnuCL collective communication extensions to OpenCL. Some appli-

cations are evaluated with two input sets. The smaller input set is

used for Cluster A because a GPU has relatively small device memory

and allows only the smaller input set for those applications. The larger
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input set is used for Cluster B to show its scalability in a large-scale

cluster. All applications are portable across CPU and GPU devices.

That is, we can run the applications either on CPU devices or GPU

devices without any source code modification.

Runtime and source-to-source translators. We have imple-

mented the SnuCL runtime and source-to-source translators. The

SnuCL runtime uses Open MPI 1.4.1 as the lower-level communica-

tion API. The GPU part of the runtime is implemented with CUDA

Toolkit 4.0[35]. We have implemented SnuCL source-to-source trans-

lators by modifying clang that is a C front-end for the LLVM[26]

compiler infrastructure. The runtime uses Intel ICC 11.1[17], and

NVIDIA’s NVCC 4.0[35] to compile the translated kernels for CPU

devices and GPU devices, respectively.

V.1.2 Results

Figure V.1 shows the speedup (over a single CPU core) of each ap-

plication with SnuCL when we use only CPU devices in Cluster A.

The sequential CPU version of each application is obtained from the

same source (Table V.2). Each application from NAS is shown with

its input set. The CPUs in the compute nodes support simultane-

ous multithreading (SMT) that enables two logical cores per physical

core. Thus, each compute node contains 24 logical CPU cores. In each

compute node, two logical CPU cores are dedicated to the command
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Figure V.1: Speedup over a single CPU core using CPU devices on Cluster
A. The numbers on x-axis represent the number of CPU compute devices.
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Figure V.2: Speedup over a single CPU core using GPU devices on Cluster
A. The numbers on x-axis represent the number of GPU compute devices.
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handler and the CPU device thread. The remaining 22 logical CPU

cores are configured as a CPU device. We vary the number of compute

nodes (i.e., the total number of CPU devices in the cluster) from 1

to 8 in powers of two for all applications but BT and SP. We set the

number of CPU devices to square numbers (1, 4, 9) for BT and SP

because of their algorithms.

We also implement another SnuCL runtime (SnuCL-Static) that

exploits a static scheduling algorithm (conventional block scheduling)

for the kernel workload distribution for CPU compute devices. The

device thread divides the entire work-groups into sets of ⌈N/P ⌉ work-

groups, where N is the number of work-groups and P is the number

of CU threads in the CPU device. The SnuCL runtime that uses the

dynamic scheduling algorithm described in Section III.1.3 is denoted

by SnuCL in Figure V.1.

All applications scale well in Figure V.1. Our dynamic schedul-

ing algorithm is quite effective. Static scheduling mechanisms used in

SnuCL-Static ignore workload imbalance that occurs at run time due

to variations in CPU cores. In addition, when the total workload is not

evenly divisible for all CPU cores, some CPU cores are not fully uti-

lized resulting in load imbalance. Our dynamic scheduling mechanism

solves this load imbalancing problem.

Figure V.2 shows the speedup (over a single CPU core) when we

use only GPU devices in Cluster A. Each compute node contains four
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GPU devices. We vary the number of GPU devices in the cluster from

1 to 36 in powers of two or square numbers. For BT, FT, MG, and

SP, we cannot use fewer than four GPUs because of their memory

requirement. Note that we use the same OpenCL application source

code for both CPU devices and GPU devices.

When we use only GPU devices in the cluster, all applications but

MatrixMul, MG and SP scale well. Since the communication overhead

due to data movement (e.g., read/write and copy operations of buffers)

dominates the performance of MatrixMul and SP, they do not scale

well. The speedup of MG at 32 GPU devices is smaller than that at 16

GPU devices because its index space is not large enough to fully utilize

all the 32 GPU devices and the communication overhead increases at

32 GPU devices.

When an application has enough data parallelism, its performance

with GPU devices is better than that with CPU devices. On the other

hand, the cost of data transfer between GPU devices is higher than

that between CPU devices because of extra data transfer between the

node main memory and the GPU’s device memory via the PCI-E bus.

We see that applications with a low communication-to-computation

ratio scales better in our cluster environment. A GPU device exe-

cutes the kernel in MatrixMul 30 times faster than a CPU device but

the GPU device has 30% longer data transfer time than the CPU

device. With one GPU device, MatrixMul has a communication-to-

computation ratio of 13%. As the number of GPU devices increases
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to 8 and 32, the ratio increases to 44% and 257%, respectively. On the

other hand, a CPU device has 0.4% communication-to-computation

ratio due to its lower communication overhead and slower computa-

tion than a GPU device. When the number of CPU devices increases

to 8, the ratio increases to only 4.6%. This is the reason why Matrix-

Mul scales better with CPU devices than with GPU devices.

Performance portability. In Figure V.2, with GPU devices, the

speedup of BT, CG, FT, MG and SP is three orders of magnitude

smaller than that of other applications. These applications are from

the NAS Parallel Benchmark suite that is originally targeting CPU

systems, and note that we use the same OpenCL source code for both

CPU devices and GPU devices. Since performance tuning factors, such

as data placement, memory access patterns (e.g., non-coalesced mem-

ory accesses), the number of work-groups in the kernel index space,

the work-group size (the number of work-items in a work-group),

compute-device-specific algorithms, etc., between CPU devices and

GPU devices are significantly different, an optimization for one type

of device may not perform well on another type of device[31].

The kernels in BT, CG, FT, MG, and SP make the GPU devices

suffer from non-coalesced memory accesses. Furthermore, they have

many buffer-copy memory commands. The data transfer cost between

GPU devices is much higher than that between CPU devices. Since

the kernels in CG and MG have small work-group sizes that are not

big enough to make all scalar processors (PEs) of a streaming multi-
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processor (CU) in GPU devices busy, resulting in poor performance.

On the other hand, for CPU devices, each CPU core (CU) emulates

the PEs. It executes each work-item in a work-group one by one se-

quentially using the work-item coalescing technique. Thus, the small

work-group size does not affect the performance of the CPU devices.
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Figure V.3: Normalized throughput of GPU devices over a CPU device.
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Figure V.4: Exploiting both CPU and GPU devices for EP.

Exploiting both types of devices. Figure V.3 shows the nor-

malized throughput (CPU execution time divided by GPU execution

time) of one, two, and four GPU devices over a single CPU device

within the same compute node for each application. The y-axis is in

the logarithmic scale. BT, FT, MG, and SP have no throughput at
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one and two GPU devices because of their memory requirement.

An application that has similar performance between a CPU de-

vice and a GPU device can profit from exploiting both CPU devices

and GPU devices in the cluster because our OpenCL implementation

of the application is portable across both types of devices. If the user

wishes more than 10 percent performance improvement using both

types of devices, the normalized throughput between the faster device

and slower device should be less than nine. However, one restriction

is that the application should allow changing the number of devices

used and the amount of workload distributed to each device.

Among those applications, only EP satisfies the condition. We dis-

tribute its workload between CPU devices and GPU devices based on

the throughput. Figure V.4 shows the speedup of EP when both types

of devices are used. We vary the number of compute nodes from 1 to

8. Only one GPU device within each compute node (including one

CPU device) is used for evaluation to manifest the difference. As we

expected from the throughput, compared to the case of GPU devices

only, the performance improvement of EP is 11.4% on average in Fig-

ure V.4.

Scalability. To show the scalability of SnuCL, Figure V.5 shows

the speedups of all applications on Cluster B (a 257-node homoge-

neous cluster). For the applications from the NAS Parallel Benchmark

(NPB) suite, it compares our OpenCL implementations with the un-
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modified original MPI-Fortran versions (MPI-Fortran) from NPB. We

build the MPI-Fortran applications using Intel IFORT 11.1. Since BT

and SP require the number of MPI tasks to be a square number while

CG, FT, and MG require the number of tasks to be a power of two,

we run 4 MPI processes per node for all applications (the Hyper-

Threading mechanism is disabled for the CPU cores of Cluster B). For

fair comparison, the SnuCL runtime configures a CPU device with 4

CPU cores per compute node. We vary the number of compute nodes

from 1 to 256 in powers of four on x-axis. Y-axis shows the speedup in

logarithmic scale over the OpenCL version on a single compute node.

All OpenCL applications scale well up to 64 nodes. The OpenCL

applications from NPB show competitive performance with MPI ver-

sions. However, when the number of compute nodes increases to

256, some OpenCL applications from NPB show poor performance

while MPI-Fortran versions still show good scalability. BinomialOp-

tion, BlackScholes, CP, EP, FT, MatrixMul, and Nbody still scale

well on 256 nodes. They have a small number of commands that take

long time to execute. Their communication-to-computation ratios are

small and their scheduling overhead is negligible.

On the other hand, BT, CG, MG, and SP show performance degra-

dation on 256 nodes. They have a large number of commands that take

very short time to execute. For example, SP has the largest number of

commands to be executed among the applications. Total 90,234,368

commands are enqueued and executed (with the Class D input) on
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Figure V.6: The performance of collective communication extensions. X-
axis shows the number of compute devices.

256 compute nodes while its total execution time is 1,813 seconds.

This means that the host command scheduler schedules about 50,000

commands in a second. As the number of nodes increases, workload

to be executed on each compute device decreases. However, the idle

time of a compute device increases because command scheduling is

centralized to a single host node and it takes time for the host node

to schedule a new command when there are many nodes in the cluster.

This makes compute devices less efficient, resulting in overall perfor-

mance degradation on 256 nodes.

Collective communication extensions. The collective commu-

nication APIs in SnuCL are implemented with MPI collective op-
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erations. In addition, we use a depth tree to implement the broad-

casting mechanism[41] for GPU devices, rather than sending data

directly from the source to the destination. Among the applica-

tions, MatrixMul uses clEnqueueBroadcastBuffer() and FT uses

clEnqueueAlltoAllBuffer(). To compare performance, we imple-

ment another version (P2P) that uses clEnqueueCopyBuffer() in-

stead of using the extensions. We evaluate the performance using

Cluster A for GPUs and Cluster B for CPUs. Figure V.6 shows the per-

formance of SnuCL collective communication extensions to OpenCL

(Collective). We see that Collective achieves much better performance

than P2P as the number of compute devices increases.

As described in Section III.3, clEnqueueAlltoAllBuffer()

has an equivalent meaning of performing N independent

clEnqueueCopyBuffer() to each device, where N is the num-

ber of buffers. To execute N independent commands concurrently,

either the command queue should be out-of-order type or there should

be N command queues per compute device. This makes the OpenCL

program more complex and increases the scheduling overhead. Thus,

SnuCL collective communication extensions provide the programmer

with both high performance and ease of programming in the cluster

environment.
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V.2 SnuCL-D Evaluation

This section presents the evaluation methodology and results for

SnuCL-D.

Table V.3: The target clusters.

Node
Processors 2 × Intel Xeon X5570

Clock frequency 2.93GHz
Number of cores 4

Memory size 24GB
Quantity 256

OS Red Hat Enterprise Linux Server 5.3
Interconnection Mellanox InfiniBand QDR

Cluster A (CPU Cluster)

Node
Processors 2 × Intel Intel Xeon NVIDIA

Xeon E5-2650 Phi 5110P GTX 580
Clock frequency 2.0GHz 1.0GHz 1.5GHz
Number of cores 8 60 512

Memory size 128GB 8GB 1.5GB
Quantity 4

OS Red Hat Enterprise Linux Server 6.3
Interconnection Mellanox InfiniBand QDR

Cluster B (Heterogeneous CPU/Phi/GPU Cluster)

V.2.1 Methodology

Target cluster architecture. We evaluate the performance of

SnuCL-D using two cluster systems (Cluster A and Cluster B). Ta-

ble V.3 summarizes the target clusters.

Underlying OpenCL Implementations. SnuCL-D uses the

underlying OpenCL implementations. We use AMD OpenCL SDK for

CPU devices in Cluster A. In Cluster B, we use Intel OpenCL SDK
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for CPU devices and Intel Xeon Phi coprocessors, and use NVIDIA

OpenCL SDK for GPU devices. SnuCL-D uses Open MPI 1.4.2 in

Cluster A, and Open MPI 1.6.4 in Cluster B as the lower-level com-

munication API.

Application Input Global memory size (MB)

BinomialOption 2097152 samples, 512 steps, 100 iterations 64.0

BlackScholes 33538048 options, 100 iterations 895.6

BT Class D (408x408x408) 30686.7

CG Class D (1500000) or Class E (9000000) 20399.1 or 151536.2

CP 16384x16384, 10000 atoms 4.1

EP Class D (2^36) 0.8

FT Class C (512x512x512) 11264.0

MatrixMul 16384x16384 3072.0

MG Class D (1024x1024x1024) or Class E (2048x2048x2048) 28343.7 or 226749.6

Nbody 1048576 bodies 64.0

SP Class D (408x408x408) 19974.4

Table V.4: Applications used.

Benchmark Applications. We use eleven OpenCL applications

from various sources: AMD[2], NAS[34], NVIDIA[35], Parboil[43], and

PARSEC[5]. The characteristics of the applications and their input

sets are summarized in Table V.4.

V.2.2 Results

Scalability. Figure V.7 shows the speedup of all applications on Clus-

ter A (a 256-node cluster) to show the scalability of our approach. We

compare SnuCL-D with SnuCL[24]. SnuCL is another OpenCL frame-

work for clusters. Unlike SnuCL-D, SnuCL adopts the master/slave

execution model based on the original OpenCL execution model. The
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Figure V.7: Speedup over a single CPU device on Cluster A.

target cluster architecture of SnuCL consists of a single host node and

multiple compute nodes. The host node executes the host program in

an OpenCL application and manages all compute nodes in the cluster.

The compute nodes execute the kernel programs in the application.

For the applications from the NAS Parallel Benchmark (NPB)

suite, it compares our OpenCL implementations with the unmodified

original MPI Fortran versions (MPI-Fortran) from NPB. Since SP

requires the number of MPI tasks to be a square number, we run four

MPI processes per node. For fair comparison, the runtimes of SnuCL

and SnuCL-D configure a CPU device with four CPU cores per node.

We vary the number of nodes from 1 to 256 in powers of four on X-
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axis. Y-axis shows the speedup in logarithmic scale over SnuCL-D on

a single node.

BinomialOption, BlackScholes, CP, EP.D, FT, C, MatrixMul,

Nbody show similar performance and scale well up to 1024 nodes in

both of SnuCL and SnuCL-D. The applications have a small number

of commands that take long time to execute. The runtime overhead

of SnuCL and SnuCL-D are negligible, and thus they show good scal-

ability.

For the memory limitation, SP.D requires minimum four nodes

to run. To show scalability, we assume that the speedup with four

nodes is four times than a single node. SP.D have a large number of

commands that take very short time to execute. In SnuCL, command

scheduling is centralized to a single host node and it takes time for the

host to schedule a new command when there are many nodes in the

cluster. This makes compute devices less efficient, resulting in over-

all performance degradation. SnuCL-D scales up to 256 nodes while

SnuCL does not. With 256 nodes, SnuCL-D shows 24 times better

performance than SnuCL, and 10 percentage worse performance than

MPI-Fortran.

Runtime overhead. Figure V.8 shows the runtime overhead of

SnuCL and SnuCL-D for all applications on Cluster A with 256 nodes.

The runtime overhead for BinomialOptions, BlackScholes, CP, EP.D,

MatrixMul, and Nbody are negligible. These applications have a small
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Figure V.8: Runtime overhead on Cluster A.

number of commands that take long time to execute.

On the other hand, BT.D, CG.D, CG.E, FT.C, MG.D, MG.E, and

SP.D have a large number of commands that take very short time to

execute. The main overhead in SnuCL runtime is inter-node commu-

nication between host node and compute nodes to transfer command

messages and completion messages. Because SnuCL is designed to

centralized execution model, as the number of commands increases,

the host node becomes the communication bottleneck. For example,

SP.D schedules about 50,000 commands in a second. The scheduling

command overhead in SP.D takes about 95.7% in its execution time.

The main overhead in SnuCL-D runtime is checking the event objects
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and memory objects in handling commands for remote devices. As the

number of commands increases, these overhead increases too. SnuCL-

D is designed in completely distributed execution model and checking

the events and memories for remote devices is negligible. SnuCL-D

shows only 4.9% runtime overhead of its total execution time in SP.D

with 256 nodes.

0
8
16
24
32
40
48

CPU Phi GPU ALL CPU Phi GPU ALL CPU Phi GPU ALL

1 Node 2 Nodes 4 Nodes

S
pe

ed
up

 o
ve

r 1
 C

P
U

 d
ev

ic
e

EP.D

Figure V.9: Exploiting CPU, Phi and GPU devices for EP on Cluster B.

Unified OpenCL framework. Cluster B is a heterogeneous clus-

ter that contains CPUs, GPUs and Phi coprocessors. Two OpenCL

implementations are installed in each node in Cluster B. Intel OpenCL

SDK for CPUs and Phi coprocessors, and NVIDIA OpenCL SDK for

GPUs. Figure V.9 shows the speedup (over a single CPU device) of

EP when CPUs only, Phi coprocessors only, GPUs only, and all of

them are used. We distribute its workload across CPUs, GPUs, and

Phi coprocessors based on their throughput. We vary the number of

nodes from 1 to 4. Note that we use only single OpenCL platform pre-

sented by SnuCL-D. This alleviates the programmers from the burden

of managing multiple OpenCL implementations across different plat-

forms and moreover different nodes.
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Chapter VI

Conclusions and Future

Directions

VI.1 Conclusions

In this thesis, we introduce the design and implementation of SnuCL

that provides a system image running a single operating system in-

stance for heterogeneous CPU/GPU clusters to the programmer. It

allows the OpenCL application to utilize compute devices in a remote

compute node as if they were in the host node. The user launches a

kernel to any compute device in the cluster and manipulates mem-

ory objects using standard OpenCL API functions. Our work shows

that OpenCL can be a unified programming model for heterogeneous

CPU/GPU clusters. Moreover, our collective communication exten-

sions to standard OpenCL facilitate ease of programming. SnuCL en-

ables OpenCL applications written for a single node to run on the clus-

ter that consists of multiple such systems without any modification. It
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also makes the application portable not only between heterogeneous

devices in a single node, but also between all heterogeneous devices

in the cluster environment. The experimental result indicates that

SnuCL achieves high performance, ease of programming, and scala-

bility for medium-scale clusters. For large scale clusters, SnuCL may

lead to performance degradation due to its centralized task scheduling

model.

To overcome this limitation, we have designed and implemented

SnuCL-D, a scalable and unified OpenCL framework for heteroge-

neous clusters. The remote device virtualization technique provides

an illusion to the node that the node has all compute devices avail-

able in the cluster. SnuCL-D executes the host program in an OpenCL

application on every node in the cluster using the illusion. SnuCL-D

integrates multiple underlying OpenCL implementations in the sys-

tem into a single OpenCL programming environment. This relieves

the programmer from the burden of managing multiple OpenCL im-

plementations across different platforms and different nodes. The ex-

perimental results indicates that SnuCL-D achieves high performance,

ease of programming, and good scalability. To the best of our knowl-

edge, this is the first work that runs OpenCL applications in a com-

pletely distributed fashion on the clusters and integrates underlying

OpenCL implementations across multiple nodes on the clusters.
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VI.2 Future Directions

While heterogeneous cluster systems with multiple compute devices

are widening their user base, the users still manually write code from

scratch to exploit the multiple compute devices available in the sys-

tem. In addition, converting an application written for a single com-

pute device to run on multiple compute devices generally requires

rewriting the code, and sometimes fairly extensive modifications are

required. The programmer needs to insert code for distributing work-

load across multiple compute devices and managing data between the

host main memory and multiple compute device memories. Guaran-

teeing consistency between the multiple copies of data makes this

process more difficult for the programmer.

An interesting future direction is to introduce an OpenCL frame-

work that provides an illusion of a single compute device to the pro-

grammer for the multiple compute devices available in the hetero-

geneous cluster. It enables OpenCL applications written for a single

compute device to run on the system with multiple compute devices

without any modification.
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초 록

OpenCL은 이종 컴퓨팅 시스템의 다양한 계산 장치를 위한 통합 프

로그래밍 모델이다. OpenCL은 다양한 이기종의 계산 장치에 대한

공통된 하드웨어 추상화 레이어를 프로그래머에게 제공한다. 프로

그래머가 이 추상화 레이어를 타깃으로 OpenCL 어플리케이션을 작

성하면, 이 어플리케이션은 OpenCL을 지원하는 모든 하드웨어에서

실행가능하다.하지만현재 OpenCL은단일운영체제시스템을위한

프로그래밍 모델로 한정된다. 프로그래머가 명시적으로 MPI와 같은

통신라이브러리를사용하지않으면 OpenCL어플리케이션은복수개

의 노드로 이루어진 클러스터에서 동작하지 않는다. 요즘 들어 여러

개의 멀티코어 CPU와 가속기를 갖춘 이종 클러스터는 그 사용자 기

반을넓혀가고있다.이에해당이종클러스터를타깃으로프로그래밍

하기 위해서는 프로그래머는 MPI-OpenCL 같이 여러 프로그래밍 모

델을 혼합하여 어플리케이션을 작성해야 한다. 이는 어플리케이션을

복잡하게 만들어 유지보수가 어렵게 되며 이식성이 낮아진다.

본논문에서는이종클러스터를위한 OpenCL프레임워크, SnuCL

을 제안한다. 본 논문은 OpenCL 모델이 이종 클러스터 프로그래밍

환경에적합하다는것을보인다.이와동시에 SnuCL이고성능과쉬운

프로그래밍을 동시에 달성할 수 있음을 보인다. SnuCL은 타깃 이종
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클러스터에 대해서 단일 운영체제가 돌아가는 하나의 시스템 이미지

를 사용자에게 제공한다. OpenCL 어플리케이션은 클러스터의 모든

계산노드에존재하는모든계산장치가호스트노드에있다는환상을

갖게 된다. 따라서 프로그래머는 MPI 라이브러리와 같은 커뮤니케

이션 API를 사용하지 않고 OpenCL 만을 사용하여 이종 클러스터를

타깃으로 어플리케이션을 작성할 수 있게 된다. SnuCL의 도움으로

OpenCL 어플리케이션은 단일 노드에서 이종 디바이스간 이식성을

가질 뿐만 아니라 이종 클러스터 환경에서도 디바이스간 이식성을

가질 수 있게 된다. 본 논문에서는 총 열한 개의 OpenCL 벤치마크

어플리케이션의 실험을 통하여 SnuCL의 성능을 보인다.
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