91 research outputs found

    ๋‹ค์กฐ์„ฑ๊ณ„ ํ”Œ๋ผ์ฆˆ๋ชฌ ๋‚˜๋…ธ ๊ตฌ์กฐ์˜ ํ™”ํ•™ ๋ฐ ์ „๊ธฐ์  ์‚ฐ๋ž€ ์‹ ํ˜ธ ์กฐ์ ˆ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ์ž์—ฐ๊ณผํ•™๋Œ€ํ•™ ํ™”ํ•™๋ถ€, 2022.2. ๋‚จ์ขŒ๋ฏผ.Plasmon resonance, which is a coherent collective oscillation of conductive electrons in the presence of an external electromagnetic field, effectively enhances various optical processes by means of strong light-matter interactions. Especially, plasmonic nanomaterials scatter light with extraordinary efficiency and the increased far-field radiation intensity can be exploited for the advanced design of biosensors, colorimetric methods for naked-eye detection, and smart displays. However, the full potential of the scattering from plasmonic nanomaterials cannot be fully realized by single component-based nanostructures with monotonic and confined properties. On the contrary, multi-component-based systems exhibit diverse properties and opportunities owing to the synergistically combined physicochemical functions of individual components or new features arising from the integrated structures. In this thesis, I present a chemical and an electrical strategy to modulate scattering response of plasmonic multi-component nanostructures and optimal examples of which showing benefits from the multicomponent systems. Chapter 1 introduces plasmonic properties of multicomponent nanostructures and following advantages of enhanced and modulated plasmonic scattering on applications. In Chapter 2, I developed a highly specific, well-defined Cu polyhedral nanoshell (CuPN) overgrowth chemistry and introduced to enhance light-scattering signal of Au nanoparticle probes for bio-detection. The CuPNs are exclusively formed on the surface of Au nanoparticles in a controllable manner without any noticeable non-specific signal amplification. This newly developed polymer-mediated multicomponent core-shell formation chemistry was shown as a means of the development of the naked-eye-based highly sensitive and quantitative detections of DNA and viruses. Chapter 3 includes new-found anomalous electrochromic behaviors of Au nanocubes. Plasmon scattering of the nanocubes showed higher shift rate of resonance frequency at the highly negative potential range in reversible manner. This unexpected change beyond classical understandings was attributed to the material-specific quantum mechanical electronic structures of the plasmonic materials. The substantial role of quantum capacitance in plasmonic material, which can be derived from the density of states of the composing metals, was able to be verified for the first time by means of altering the surface element by forming Ag-Au core-shell nanocubes.ํ”Œ๋ผ์ฆˆ๋ชฌ ๊ณต๋ช…์€ ์™ธ๋ถ€ ์ „๊ธฐ์žฅ์— ๋”ฐ๋ฅธ ์ „๋„์„ฑ ์ „์ž๋“ค์˜ ์ •ํ•ฉ ์ง„๋™์ด๋ฉฐ, ๋ฌผ์งˆ๊ณผ ๋น›์˜ ๊ฐ•๋ ฅํ•œ ์ƒํ˜ธ์ž‘์šฉ์„ ํ†ตํ•˜์—ฌ ๋‹ค์–‘ํ•œ ๊ด‘ํ•™์  ๊ณผ์ •์„ ํšจ๊ณผ์ ์œผ๋กœ ์ฆ๋Œ€ํ•œ๋‹ค. ํŠนํžˆ ํ”Œ๋ผ์ฆˆ๋ชจ๋‹‰ ๋‚˜๋…ธ๋ฌผ์งˆ์€ ๋น„๋ฒ”ํ•  ์ •๋„์˜ ํšจ์œจ๋กœ ๋น›์„ ์‚ฐ๋ž€ํ•˜๋ฉฐ, ์ฆ๊ฐ€๋œ ์›๊ฑฐ๋ฆฌ์žฅ ๋ฐฉ์‚ฌ ์„ธ๊ธฐ๋Š” ๋ฐ”์ด์˜ค์„ผ์„œ, ์œก์•ˆ ๊ฒ€์ถœ์„ ์œ„ํ•œ ๋น„์ƒ‰๋ถ„์„, ์Šค๋งˆํŠธ ๋””์Šคํ”Œ๋ ˆ์ด ๋“ฑ์˜ ๋ฐœ์ „๋œ ์„ค๊ณ„๋ฅผ ์œ„ํ•ด ํ™œ์šฉํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋‹จ์กฐ๋กญ๊ณ  ์ œํ•œ๋œ ํŠน์„ฑ์„ ๋ณด์ด๋Š” ๋‹จ์ผ ์กฐ์„ฑ์˜ ๋‚˜๋…ธ ๊ตฌ์กฐ๋งŒ์œผ๋กœ๋Š” ํ”Œ๋ผ์ฆˆ๋ชจ๋‹‰ ๋‚˜๋…ธ๋ฌผ์งˆ์˜ ์‚ฐ๋ž€์ด ๊ฐ–๋Š” ๋ชจ๋“  ์ž ์žฌ๋ ฅ์„ ์ถฉ๋ถ„ํžˆ ๋ฐœํœ˜ํ•  ์ˆ˜ ์—†๋‹ค. ๋ฐ˜๋ฉด ๋‹ค์กฐ์„ฑ๊ณ„ ๊ธฐ๋ฐ˜ ์ฒด๊ณ„์—์„œ๋Š” ๊ฐœ๋ณ„ ์š”์†Œ๋กœ๋ถ€ํ„ฐ ์˜ค๋Š” ๋ฌผ๋ฆฌ ํ™”ํ•™์  ํŠน์„ฑ์˜ ์ƒ์Šน์  ์กฐํ•ฉ์ด๋‚˜ ๊ฒฐํ•ฉ๋œ ๊ตฌ์กฐ๋กœ๋ถ€ํ„ฐ ์˜ค๋Š” ์ƒˆ๋กœ์šด ํŠน์„ฑ๊ณผ ๊ฐ™์€ ๋‹ค์–‘ํ•œ ์„ฑ์งˆ๊ณผ ๊ฐ€๋Šฅ์„ฑ์„ ๋ณด์ผ ์ˆ˜ ์žˆ๋‹ค. ์ด ๋…ผ๋ฌธ์—์„œ๋Š” ํ”Œ๋ผ์ฆˆ๋ชจ๋‹‰ ๋‹ค์กฐ์„ฑ๊ณ„ ๋‚˜๋…ธ๊ตฌ์กฐ์˜ ์‚ฐ๋ž€ ์‹ ํ˜ธ๋ฅผ ์กฐ์ ˆํ•˜๊ธฐ ์œ„ํ•œ ํ™”ํ•™์  ๋ฐ ์ „๊ธฐ์  ์ „๋žต๊ณผ ๋‹ค์กฐ์„ฑ๊ณ„ ์‹œ์Šคํ…œ์˜ ์ด์ ์„ ๋ณด์—ฌ์ฃผ๋Š” ์ตœ์ ์˜ ์˜ˆ๋ฅผ ์ œ์‹œํ•œ๋‹ค. ์ œ1 ์žฅ์—์„œ๋Š” ๋‹ค์กฐ์„ฑ๊ณ„ ๋‚˜๋…ธ๊ตฌ์กฐ์˜ ํ”Œ๋ผ์ฆˆ๋ชฌ ํŠน์„ฑ๊ณผ ์ด๋ฅผ ์‘์šฉํ•  ๋•Œ ํ”Œ๋ผ์ฆˆ๋ชจ๋‹‰ ์‚ฐ๋ž€์˜ ์กฐ์ ˆ ๋ฐ ์ฆ๊ฐ•์œผ๋กœ๋ถ€ํ„ฐ ๊ธฐ๋Œ€ํ•  ์ˆ˜ ์žˆ๋Š” ์žฅ์ ์„ ์†Œ๊ฐœํ•œ๋‹ค. ์ œ2 ์žฅ์—์„œ๋Š” ๋งค์šฐ ํŠน์ด์ ์ด๊ณ  ์ž˜ ์ •์˜๋œ ๊ตฌ๋ฆฌ ๋‹ค๋ฉด์ฒด ๋‚˜๋…ธ์‰˜(CuPN)์˜ ๊ณผ์„ฑ์žฅ์„ ์œ„ํ•œ ํ™”ํ•™์  ์ ‘๊ทผ๋ฒ• ๊ฐœ๋ฐœ์„ ์†Œ๊ฐœํ•œ๋‹ค. ์ƒˆ๋กœ์šด ๊ณผ์„ฑ์žฅ ๋ฒ•์€ ๋ฐ”์ด์˜ค ๊ฒ€์ง€๋ฅผ ์œ„ํ•ด ์‚ฌ์šฉ๋˜๋Š” ๊ธˆ ๋‚˜๋…ธ์ž…์ž ํ”„๋กœ๋ธŒ์˜ ๋น› ์‚ฐ๋ž€์— ์ ์šฉํ•˜์˜€๋‹ค. CuPN์€ ๊ธˆ ๋‚˜๋…ธ์ž…์ž ํ‘œ๋ฉด์—์„œ๋งŒ ์„ ํƒ์ ์ด๊ณ  ์ œ์–ด ๊ฐ€๋Šฅํ•˜๋„๋ก ํ˜•์„ฑ๋˜์—ˆ์œผ๋ฉฐ ๋น„ ํŠน์ด์  ์‹ ํ˜ธ ์ฆํญ์„ ๋‚˜ํƒ€๋‚ด์ง€ ์•Š์•˜๋‹ค. ์ด๋ ‡๊ฒŒ ์ƒˆ๋กœ ๊ฐœ๋ฐœ๋œ ๋‹ค์กฐ์„ฑ๊ณ„ ์ฝ”์–ด-์‰˜์„ ํ˜•์„ฑํ•˜๋Š” ๊ณ ๋ถ„์ž ๊ธฐ๋ฐ˜ ํ™”ํ•™์  ํ•ฉ์„ฑ๋ฒ•์ด DNA์™€ ๋ฐ”์ด๋Ÿฌ์Šค์˜ ์ •๋Ÿ‰ ๊ฐ€๋Šฅํ•œ ๊ณ ๊ฐ๋„ ์œก์•ˆ ๊ฒ€์ถœ๋ฒ•์˜ ๊ฐœ๋ฐœ์— ์‚ฌ์šฉ๋จ์„ ๋ณด์˜€๋‹ค. ์ œ3 ์žฅ์€ ๊ธˆ ๋‚˜๋…ธ ํ๋ธŒ์˜ ์ƒ‰์ „ํ˜„์ƒ์—์„œ ์ƒˆ๋กญ๊ฒŒ ๋ฐœ๊ฒฌํ•œ ๋น„์ •์ƒ์  ๊ฑฐ๋™์„ ํฌํ•จํ•œ๋‹ค. ๋‚˜๋…ธ ํ๋ธŒ์˜ ํ”Œ๋ผ์ฆˆ๋ชฌ ์‚ฐ๋ž€์€ ๋†’์€ ์Œ์ „์œ„ ์˜์—ญ์—์„œ ๋” ๋†’์€ ์ง„๋™์ˆ˜ ๋ณ€ํ™”์œจ์„ ๋ณด์˜€๋‹ค. ๊ณ ์ „์ ์ธ ์ดํ•ด๋ฅผ ๋ฒ—์–ด๋‚˜๋Š” ์ด๋Ÿฌํ•œ ์˜ˆ๊ธฐ์น˜ ์•Š์€ ๋ณ€ํ™”๋Š” ํ”Œ๋ผ์ฆˆ๋ชจ๋‹‰ ์žฌ๋ฃŒ์˜ ๋ฌผ์งˆ ํŠน์ด์ ์ธ ์–‘์ž ์—ญํ•™์  ์ „์ž ๊ตฌ์กฐ์— ๊ธฐ์ธํ•œ๋‹ค. ํ”Œ๋ผ์ฆˆ๋ชจ๋‹‰ ์žฌ๋ฃŒ๋ฅผ ๊ตฌ์„ฑํ•˜๋Š” ๊ธˆ์†์˜ ์ƒํƒœ ๋ฐ€๋„๋กœ๋ถ€ํ„ฐ ์œ ๋„๋  ์ˆ˜ ์žˆ๋Š” ์–‘์ž ์ •์ „์šฉ๋Ÿ‰์˜ ์ƒ๋‹นํ•œ ์—ญํ• ์€, ์€-๊ธˆ ์ฝ”์–ด-์‰˜ ๋‚˜๋…ธ ํ๋ธŒ๋ฅผ ํ˜•์„ฑํ•˜์—ฌ ํ‘œ๋ฉด ์›์†Œ๋ฅผ ๋ฐ”๊พธ๋Š” ๋ฐฉ๋ฒ•์„ ํ†ตํ•ด ์ฒ˜์Œ์œผ๋กœ ์ฆ๋ช…ํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค.Abstract i Self-Citations of the Prior Publications iv Chapter 1. Introduction: Plasmonic Scattering of Multicomponent Nanostructures 1 1.1. Light Scattering of Plasmonic Nanomaterials 2 1.2. Plasmonic Multicomponent Nanostructures 7 1.3. Plasmonic Scattering Modulation for Applications 14 Chapter 2. Polyhedral Cu Nanoshell Formation Chemistry for Bio-Detections 23 2.1. Introduction 24 2.2. Experimental Methods 28 2.3. Results and Discussion 40 2.4. Conclusion 66 Chapter 3. Unconventional Electrochromic Behaviors of Plasmonic Au and Au-Ag Core-Shell Nanocubes 71 3.1. Introduction 72 3.2. Experimental Methods 81 3.3. Results and Discussion 90 3.4. Conclusion 115 Bibliography 119 Abstract in Korean 126๋ฐ•

    ์ฒญ์†ก ์ฃผ์‚ฐ์ง€(ๆณจๅฑฑๆฑ )์˜ ์—ญ์‚ฌ์™€ ์ˆ˜๋ฆฌ(ๆฐดๅˆฉ)๊ณต๋™์ฒด

    Get PDF
    Cheongsong Jusanji is an irrigation facility and has a special history and tradition in terms of the establishment of a station. So far Jusanji has been widely known for its outstanding scenic view. The construction process and its operation and management method, however, confirm that it is a valuable cultural heritage in the history of irrigation facilities. The history of the construction process of Jusanji can be seen through the monument which is at the entrance of it. This monument is called โ€˜Lee Gong Je Eon Seong Gong Song Deok Bi(ๆŽๅ…ฌๅ คๅ ฐๆˆๅŠŸ้ Œๅพท็ข‘)โ€™. According to the inscription, Jusanji was constructed in August 1720 and completed in October of the following year. It was built mainly by Lee Jin-pyo, one of the community leaders, the Andong-Im clan led by Im Ji-hwon, and Cho Se-man, etc. It was demolished at some point after the construction and went through a process of reconstruction. According to Eupji(้‚‘่ชŒ) and Yeokji(้ฉ›่ชŒ), etc, the local people suggested to the king the establishment of a new station in the region in 1691 and the Ijeonpyeong Station was established in 1711. Ijeonpyeong Station was an important post connecting the inland area of Andong and the east coast of Yeongdeok across the Taebaek Mountains. Jusanji was built for the management of the station land. The irrigation communityโ€™s culture is well transmitted in today's Jusanji-ri where Ijeonpyeong(or Ijeon) Station was located. Local residents have annually held rituals in front of the monument and have conducted seasonal obligatory labor for the irrigation facilities which are agricultural rites and a water ceremony in the modern sense. The followings are a unique traditional culture of the region: a) all members of the community shared the water resources of Jusanji without receiving any water tax, b) all residents participated in the ceremony regardless of the ownership of the field, and c) the village managed the irrigation facilities without the formation of a separate irrigational organization. The Cheongsong Jusanji has a significant academic value in the irrigation history study in that the station workers played a key role for the establishment and management of the irrigation facility and the station land. So far, the study of irrigation history has focused on the ruling class or the local Confucian intellectuals because many of the cases were conducted by them. However, in case of Cheongsong Jusanji, the key actors were station workers instead of Confucian intellectuals

    ๊ฐ์„ฑ(Sinnlichkeit)์˜ ํ•œ๊ณ„ ์•ˆ์— ์žˆ๋Š” ์นธํŠธ์˜ ์ดˆ์›”์  ๊ด€๋…๋ก 

    Get PDF
    ์นธํŠธ ์ฒ ํ•™์ด ํ•˜๋‚˜์˜ ์ฒด๊ณ„(System)์ผ ์ˆ˜ ์žˆ๋‹ค๋ฉด, ๊ทธ๊ฒƒ์€ ์ดˆ์›”์  ๊ด€๋…๋ก (transzendentaler Idealismus)์ผ ๊ฒƒ์ด๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์นธํŠธ์—๊ฒŒ์„œ ์ดˆ์›”์  ๊ด€๋…๋ก ์˜ ํ•ต์‹ฌ์€, ์šฐ๋ฆฌ์—๊ฒŒ ๊ฒฝํ—˜ ๊ฐ€๋Šฅํ•œ ๋Œ€์ƒ์ด ๋ฌด์—‡์ธ์ง€์— ๊ด€ํ•œ ๊ฐ€๋ฅด์นจ์—์„œ ๊ฐ€์žฅ ์ž˜ ๋“œ๋Ÿฌ๋‚œ๋‹ค. ์ฆ‰ ์šฐ๋ฆฌ์—๊ฒŒ ๊ฒฝํ—˜ ๊ฐ€๋Šฅํ•œ ๋Œ€์ƒ์€, ๊ทธ๊ฒƒ์ด ๊ณต๊ฐ„๊ณผ ์‹œ๊ฐ„ ์ค‘์— ์ง๊ด€๋˜๋Š” ํ•œ์—์„œ ์‚ฌ๋ฌผ ์ž์ฒด(Ding an sich)๊ฐ€ ์•„๋‹ˆ๋ผ ์ธ์‹ ์ฃผ๊ด€์— ๋‚˜ํƒ€๋‚œ ํ˜„์ƒ(Erscheinung), ์ฆ‰ ํ•œ๊ฐ“ ํ‘œ์ƒ์ด๋ผ๋Š” ๊ฐ€๋ฅด์นจ์ด ๋ฐ”๋กœ ๊ทธ๊ฒƒ์ด๋‹ค.(A490/V518f.) ๋”ฐ๋ผ์„œ ์šฐ๋ฆฌ๊ฐ€ ๊ฒฝํ—˜ํ•˜๋Š” ์„ธ๊ณ„๋Š”, ๊ทธ๊ฒƒ์ด ์šฐ๋ฆฌ์—๊ฒŒ ๋‚˜ํƒ€๋‚˜๋Š” ํ˜„์ƒ์ธ ํ•œ์—์„œ ์šฐ๋ฆฌ ์˜์‹์— ์ฃผ์–ด์ง„ ์„ธ๊ณ„์ผ๋ฟ์ด๊ณ , ์ด๋Ÿฐ ์ ์—์„œ ๊ทธ์˜ ์ฒ ํ•™์€ ๊ด€๋…๋ก (Idealismus)์ž„์— ํ‹€๋ฆผ์—†๋‹ค

    Development of micro-spectroscopic ellipsometry for thickness and optical constant measurement of fine patterns on thin film

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€, 2018. 2. ๋ฐ•ํฌ์žฌ.In Display and semiconductor industry, the importance of micro-nano pattern metrology is highlighted as the production process becomes highly integrated. Nowadays, the measurement demands not only requires the thickness of thin-film but also the optical constants. Recently, Ellipsometry is the best and the most commonly used instrument to measure the thickness and the optical constants of the thin-film samples. However, Ellipsometry still carries a limitationif Ellipsometry uses multiple high-resolution lenses for the spot size due to its oblique incident beam, a risk of collision between the sample and the instrument rises. To overcome this limitation, a research of a micro-ellipsometry which uses vertical incident beams has been conducted. In this case, it may minimize the measuring spot size by using vertical incidence, however, the measurement resolution is still large due to single wavelength light source. To improve existing limitations, this research develops a micro-spectroscopic ellipsometry by using a multi-wavelength light source. This method combines a vertical incident light and conoscopy method to decrease the spot-size up to 60um. At the same time, the multi-wavelength light source in a range of 400~800nm increases the measurement resolution by sensitively detecting the change of signals according to the change in material properties of the thin-film. This research introduces a method to analyze the ellipsometry parameters by modeling the measured signals, and multiple variables are implemented to the equation to correctly model signals as the measured ones. A fitting algorithm which enables to precisely calculate the thickness and the optical constants at the same time is developed. Tests are conducted on the SiO2 on Si, SiNx on Glass, and a-si on Glass samples with a thickness range of 500ร… ~ 1.1um, and the results has been verified by comparing with the results of a conventional ellipsometry. The thickness measurements have 1.59% accuracy and 2.1ร… 3ฯƒ repeatability, and the optical constant measurements have 1.31% accuracy and 0.0026 3ฯƒ repeatability.๋””์Šคํ”Œ๋ ˆ์ด ๋ฐ ๋ฐ˜๋„์ฒด ์‚ฐ์—…์—์„œ ๊ณต์ •์ด ๊ฐˆ์ˆ˜๋ก ๊ณ  ์ง‘์ ํ™”๋จ์— ๋”ฐ๋ผ ๋ฏธ์„ธํŒจํ„ด์˜ ๋ฐ•๋ง‰ ์ธก์ • ์ˆ˜์š”๊ฐ€ ๋ฐœ์ƒํ•˜๊ณ  ์žˆ๋‹ค. ์—ฌ๊ธฐ์„œ๋Š” ๋ฐ•๋ง‰์˜ ๋‘๊ป˜ ์ธก์ • ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ๋ฐ•๋ง‰์˜ ์„ฑ๋Šฅ์„ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•œ ๊ด‘ํ•™ ์ƒ์ˆ˜์˜ ์ธก์ • ๋˜ํ•œ ์š”๊ตฌ ๋˜๊ณ  ์žˆ๋‹ค. ์‚ฐ์—…์—์„œ ๋ฐ•๋ง‰ ์ธก์ •์— ์‚ฌ์šฉ๋˜๋Š” ์ตœ๊ณ  ์„ฑ๋Šฅ ์žฅ๋น„๋Š” ํƒ€์›๊ณ„์ด๋‹ค. ํ•˜์ง€๋งŒ ๋น›์„ ๋น„์Šค๋“ฌํ•˜๊ฒŒ ์ž…์‚ฌ ์‹œ์ผœ์•ผ ๋˜๊ธฐ ๋•Œ๋ฌธ์— ๊ณ  ๋ฐฐ์œจ ๋ Œ์ฆˆ๋ฅผ ์กฐํ•ฉ ํ•  ๊ฒฝ์šฐ, ์ถฉ๋Œ ์œ„ํ—˜์„ฑ์œผ๋กœ ์ธํ•ด ์ธก์ • ์˜์—ญ์„ ์ค„์ด๊ธฐ ํž˜๋“  ๋ฌธ์ œ๊ฐ€ ์žˆ๋‹ค. ์ด๋ฅผ ํ•ด๊ฒฐ ํ•˜๊ธฐ ์œ„ํ•ด ์ˆ˜์ง ์ž…์‚ฌ ๋ฐฉ์‹์„ ์ด์šฉํ•œ ๋งˆ์ดํฌ๋กœ ํƒ€์›๊ณ„์˜ ์—ฐ๊ตฌ๊ฐ€ ์ง„ํ–‰ ๋˜์—ˆ๋‹ค. ์ด๋Š” ์ธก์ • ์˜์—ญ์„ ์ค„์ด๋Š” ๋ฐ๋Š” ์šฉ์ด ํ–ˆ์ง€๋งŒ ์ง€๊ธˆ๊นŒ์ง€๋Š” ๋‹จํŒŒ์žฅ ๊ด‘์›๋งŒ ์‚ฌ์šฉ์ด ๊ฐ€๋Šฅํ–ˆ๊ธฐ ๋•Œ๋ฌธ์— ์ธก์ • ๋ถ„ํ•ด๋Šฅ์ด ๋–จ์–ด์ง€๋Š” ๋ฌธ์ œ๊ฐ€ ์žˆ์—ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋“ค์„ ๊ฐœ์„  ์‹œํ‚ค๊ธฐ ์œ„ํ•ด ๋‹คํŒŒ์žฅ ๊ด‘์›์„ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋Š” ๋งˆ์ดํฌ๋กœ ๋ถ„๊ด‘ ํƒ€์›๊ณ„๋ฅผ ๊ตฌ์„ฑํ•˜๊ณ  ์ œ์ž‘ ํ–ˆ๋‹ค. ๋น›์˜ ์ˆ˜์ง ์ž…์‚ฌ์™€ ์ฝ”๋…ธ์Šค์ฝ”ํ”ผ ๋ฐฉ์‹์„ ์กฐํ•ฉํ•ด ์ง๊ฒฝ 60um์˜ ๋ฏธ์„ธ ์˜์—ญ์„ ์ธก์ • ํ•  ์ˆ˜ ์žˆ๋Š” ๋™์‹œ์—, 400 ~ 800nm ์˜์—ญ์˜ ๋‹คํŒŒ์žฅ ๋ฐ์ดํ„ฐ ์‚ฌ์šฉ์œผ๋กœ ๋ฐ•๋ง‰ ํŠน์„ฑ ๋ณ€ํ™”์— ๋”ฐ๋ฅธ ์‹ ํ˜ธ ๋ณ€ํ™”์˜ ๋ฏผ๊ฐ๋„๋ฅผ ํ–ฅ์ƒ ์‹œ์ผœ์„œ ์ธก์ •์˜ ๋ถ„ํ•ด๋Šฅ์„ ํ–ฅ์ƒ์‹œ์ผฐ๋‹ค. ๊ด‘ํ•™๊ณ„์˜ ์ธก์ • ์‹ ํ˜ธ๋ฅผ ๋ชจ๋ธ๋งํ•˜์—ฌ ํƒ€์› ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ๋ถ„์„ ํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์‹œ ํ–ˆ์œผ๋ฉฐ ์—ฌ๋Ÿฌ ์š”์ธ์„ ๋ถ„์„ํ•˜์—ฌ ๋ชจ๋ธ๋ง ์‹ ํ˜ธ์˜ ์˜ค์ฐจ ๋ณด์ •์„ ์‹ค์‹œ ํ•˜์˜€๋‹ค. ๊ทธ๋ฆฌ๊ณ  ๋‘๊ป˜์™€ ๊ด‘ํ•™์ƒ์ˆ˜๋ฅผ ๋™์‹œ์— ์ •ํ™•ํžˆ ์‚ฐ์ถœ ํ•  ์ˆ˜ ์žˆ๋Š” ํ”ผํŒ… ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์™„์„ฑํ•˜์˜€๋‹ค. ์‚ฐ์—… ํ˜„์žฅ์—์„œ ์‹ค์ œ ์ƒ์‚ฐ๋˜๋Š” 500ร… ~ 1.1um ๋‘๊ป˜ ๋ฒ”์œ„์˜ SiO2 on Si, SiNx on Glass, a-si on Glass ์ƒ˜ํ”Œ์— ๋Œ€ํ•ด ๋‘๊ป˜ ๋ฐ ๊ด‘ํ•™ ์ƒ์ˆ˜ ์ธก์ • ํ…Œ์ŠคํŠธ๋ฅผ ํ–ˆ์œผ๋ฉฐ ๊ธฐ์กด์˜ ๊ณ ์„ฑ๋Šฅ ๋ถ„๊ด‘ ํƒ€์›๊ณ„์™€ ๋น„๊ตํ•˜์—ฌ ์ธก์ • ์„ฑ๋Šฅ์„ ๊ฒ€์ฆํ–ˆ๋‹ค. ๋‘๊ป˜์˜ ๊ฒฝ์šฐ ์ตœ๋Œ€ ์ •ํ™•๋„ 1.59%, 3ฯƒ ๋ฐ˜๋ณต๋„ 2.1ร…์ด ๋‚˜์™”๊ณ , ๊ตด์ ˆ๋ฅ ์˜ ๊ฒฝ์šฐ ์ตœ๋Œ€ ์ •ํ™•๋„ 1.31%, 3ฯƒ ๋ฐ˜๋ณต๋„ 0.0026์ด ๋‚˜์™”๋‹ค.์ œ 1 ์žฅ ์„œ๋ก  1 1.1. ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ 1 1.2. ์—ฐ๊ตฌ ๋™ํ–ฅ 4 1.2.1. ๋ฐ˜์‚ฌ๊ณ„ 4 1.2.2. ํƒ€์›๊ณ„ 5 1.2.3. ๋งˆ์ดํฌ๋กœ ํƒ€์›๊ณ„ 8 1.3. ์—ฐ๊ตฌ ๋‚ด์šฉ 12 ์ œ 2 ์žฅ ํƒ€์›๊ณ„ ๊ธฐ๋ณธ ๋ฐฐ๊ฒฝ ์ด๋ก  13 2.1. ๊ธฐ๋ณธ ๊ด‘ํ•™ ์ด๋ก  13 2.1.1. ๋น›์˜ ๊ตด์ ˆ๊ณผ ๋ฐ˜์‚ฌ 13 2.1.2. ๋ฐ•๋ง‰์—์„œ์˜ ๋‹ค์ค‘ ๋ฐ˜์‚ฌ ์ด๋ก  17 2.1.3. Brewster Angle 19 2.1.4. ํƒ€์› ํŒŒ๋ผ๋ฏธํ„ฐ 21 2.2. ํƒ€์›๊ณ„ 23 2.2.1. ๊ธฐ๋ณธ ์ ์ธ ํƒ€์›๊ณ„์˜ ๊ตฌ์„ฑ 23 2.2.2. ํƒ€์› ํŒŒ๋ผ๋ฏธํ„ฐ์˜ ์‚ฐ์ถœ ๋ฐฉ๋ฒ• 25 2.2.3. ํƒ€์› ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์ด์šฉํ•œ ์ธก์ • ๊ฒฐ๊ณผ ๊ฐ’ ์‚ฐ์ถœ 32 2.3. ๋งˆ์ดํฌ๋กœ ํƒ€์›๊ณ„ 33 2.3.1. ๋งˆ์ดํฌ๋กœ ํƒ€์›๊ณ„์˜ ๊ธฐ๋ณธ ์›๋ฆฌ 33 2.3.2. ๋งˆ์ดํฌ๋กœ ํƒ€์›๊ณ„์—์„œ์˜ ํƒ€์› ํŒŒ๋ผ๋ฏธํ„ฐ ์‚ฐ์ถœ 35 ์ œ 3 ์žฅ ๊ด‘์›์— ๋”ฐ๋ฅธ ๋งˆ์ดํฌ๋กœ ํƒ€์›๊ณ„ ์‹ ํ˜ธ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ 42 3.1. ๋‹จํŒŒ์žฅ ๋งˆ์ดํฌ๋กœ ํƒ€์›๊ณ„์˜ ํ•œ๊ณ„ 42 3.2. ๋‹คํŒŒ์žฅ ๋งˆ์ดํฌ๋กœ ํƒ€์›๊ณ„๋ฅผ ํ†ตํ•œ ์„ฑ๋Šฅ ๊ฐœ์„  50 ์ œ 4 ์žฅ ๋งˆ์ดํฌ๋กœ ๋ถ„๊ด‘ ํƒ€์›๊ณ„์˜ ๊ตฌ์„ฑ 60 4.1. ๋‹คํŒŒ์žฅ์„ ์ด์šฉํ•˜๋Š” ๋งˆ์ดํฌ๋กœ ํƒ€์›๊ณ„์˜ ๊ตฌํ˜„ ๋ฐฉ์‹ 60 4.2. ๋งˆ์ดํฌ๋กœ ๋ถ„๊ด‘ ํƒ€์›๊ณ„์˜ ๊ด‘ํ•™๊ณ„ ๊ตฌ์„ฑ 61 4.2.1. ๊ฐœ์š”๋„ 61 4.2.2. ๊ด‘์› 63 4.2.3. ํŽธ๊ด‘ํŒ 64 4.2.4. ๋น” ์Šคํ”Œ๋ฆฌํ„ฐ 66 4.2.5. ๋Œ€๋ฌผ ๋ Œ์ฆˆ 70 4.2.6. ์ŠคํŽ™ํŠธ๋กœ๋ฏธํ„ฐ 71 4.2.7. ์นด๋ฉ”๋ผ 72 4.2.8. ํ•€ํ™€ 73 4.3. ์‹ค์ œ ๊ด‘ํ•™๊ณ„ ์ œ์ž‘ 74 ์ œ 5 ์žฅ ๋งˆ์ดํฌ๋กœ ๋ถ„๊ด‘ ํƒ€์›๊ณ„์˜ ํ•ด์„ 77 5.1. ๊ฐœ์š” 77 5.2. Polarizer์˜ ํšŒ์ „์— ๋”ฐ๋ฅธ ์ถœ์‚ฌ๋™์˜ ๊ด‘ ๊ฐ•๋„ ๋ชจ๋ธ๋ง 78 5.3. ํŽธ๊ด‘ํŒ์˜ ์œ„์น˜๊ฐ ์ •๋ ฌ 87 5.4. ์ธก์ •๋œ ๊ด‘ ๊ฐ•๋„์—์„œ์˜ ํ‘ธ๋ฆฌ์— ๊ณ„์ˆ˜ ์‚ฐ์ถœ 90 5.5. ๋ชจ๋ธ๋ง ์‹ ํ˜ธ ์˜ค์ฐจ ๋ณด์ • 93 5.5.1. ๋น” ์Šคํ”Œ๋ฆฌํ„ฐ์˜ ํƒ€์› ํŒŒ๋ผ๋ฏธํ„ฐ ๋ฌผ์„ฑ์น˜ ๋ณด์ • 93 5.5.2. ์ŠคํŽ™ํŠธ๋กœ๋ฏธํ„ฐ ์ŠคํŒŸ ์˜์—ญ์— ์˜ํ•œ ํšจ๊ณผ ๋ณด์ • 97 ์ œ 6 ์žฅ ํ”ผํŒ… ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๊ตฌํ˜„ 110 6.1. ๊ด‘ํ•™ ์ƒ์ˆ˜ ๋ชจ๋ธ๋ง ์‹ 110 6.1.1. Cauchy 110 6.1.2. Tauc-Lorentz 111 6.2. ๋‘๊ป˜, ๊ด‘ํ•™ ์ƒ์ˆ˜ ๋™์‹œ ํ”ผํŒ… ์•Œ๊ณ ๋ฆฌ์ฆ˜ 114 ์ œ 7 ์žฅ ๋‘๊ป˜ ๋ฐ ๊ด‘ํ•™ ์ƒ์ˆ˜ ์ธก์ • ํ…Œ์ŠคํŠธ 122 7.1. ๊ฐœ์š” 122 7.2. SiO2 on Si ์›จ์ดํผ ์ƒ˜ํ”Œ 123 7.3. SiNx on Glass ์ƒ˜ํ”Œ 129 7.4. a-Si on Glass ์ƒ˜ํ”Œ 135 7.5. ์ •๋ฆฌ 143 ์ œ 8 ์žฅ ๊ฒฐ๋ก  146 REFERENCE 148 APPENDIX 154 A. ๋ Œ์ฆˆ์˜ ๋ณต๊ตด์ ˆ ํ˜„์ƒ ๊ณ ๋ ค 154 ABSTRACT 162Docto

    Who Leaves and Tho Stays? : When Entering College and Finding Job after Graduation

    Get PDF
    ๋ณธ ์—ฐ๊ตฌ๋Š” ๋Œ€ํ•™ ์ง„ํ•™๊ณผ ๋Œ€์กธ ์ทจ์—… ๊ณผ์ •์—์„œ ์šฐ๋ฆฌ๋‚˜๋ผ ์ฒญ๋…„์„ธ๋Œ€์˜ ์ง€์—ญ์ด๋™ ๊ฒฝํ–ฅ์ด ์–ด๋– ํ•œ์ง€ ์‚ดํŽด๋ณด๊ณ , ๊ณ ๋“ฑํ•™๊ต์™€ ๋™์ผ ์ง€์—ญ์œผ๋กœ์˜ ๋Œ€ํ•™์ง„ํ•™ ๋ฐ ๋Œ€์กธ์ทจ์—…์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ์š”์ธ์„ ๋ฐํ˜€๋‚ด๊ณ ์ž ํ•˜๋Š” ๋ชฉ์ ์œผ๋กœ ์ˆ˜ํ–‰๋˜์—ˆ๋‹ค. ์—ฐ๊ตฌ๋Œ€์ƒ์€ 2004๋…„ ๊ณ ๋“ฑํ•™๊ต 3ํ•™๋…„์ด์—ˆ๋˜ ๋Œ€์กธ ์ž„๊ธˆ๊ทผ๋กœ์ž(2012๋…„ ๊ธฐ์ค€) 738๋ช…์ด๋‹ค. ํ•œ๊ตญ๊ต์œก๊ณ ์šฉํŒจ๋„(KEEP) 1์ฐจ๋…„๋„(2004๋…„)~9์ฐจ๋…„๋„(2012๋…„) ๊ณ ๋“ฑํ•™๊ต 3ํ•™๋…„ ์ฝ”ํ˜ธํŠธ ์กฐ์‚ฌ ์ž๋ฃŒ๋ฅผ ํ†ตํ•ด GIS ์ง€๋„ํ™” ๋ฐ ์ด๋ณ€๋Ÿ‰ ํ”„๋กœ๋น— ๋ชจํ˜•์œผ๋กœ ๋ถ„์„ํ•˜์˜€๋‹ค. ์ฃผ์š” ์—ฐ๊ตฌ๊ฒฐ๊ณผ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. ๊ณ ๋“ฑํ•™๊ต ์†Œ์žฌ ๋„์‹œ๊ทœ๋ชจ, ๊ณ 3์‹œ์ ˆ ์›๊ฐ€์กฑ ์›” ํ‰๊ท ์†Œ๋“, ๋Œ€ํ•™๊ต ์ „๊ณต์— ๋”ฐ๋ผ ๊ณ ๋“ฑํ•™๊ต์™€ ๋™์ผ ์ง€์—ญ์œผ๋กœ์˜ ๋Œ€ํ•™์ง„ํ•™ ์—ฌ๋ถ€์— ์ฐจ์ด๊ฐ€ ๋‚ฌ๊ณ , ์ด๋Ÿฌํ•œ ๋Œ€ํ•™์ง„ํ•™ ์—ฌ๋ถ€๋Š” ๊ณ ๋“ฑํ•™๊ต ๋™์ผ ์ง€์—ญ์œผ๋กœ ๋Œ€์กธ์ทจ์—… ํ•˜๋Š”๋ฐ๋„ ์˜ํ–ฅ์„ ๋ฏธ์ณค๋‹ค. ๊ณ ๋“ฑํ•™๊ต ๋™์ผ ์ง€์—ญ์œผ๋กœ์˜ ๋Œ€์กธ์ทจ์—… ์—ฌ๋ถ€์—๋Š” ๊ณ ๋“ฑํ•™๊ต ์†Œ์žฌ ๋„์‹œ๊ทœ๋ชจ, ๋Œ€ํ•™๊ต ์†Œ์žฌ ๋„์‹œ๊ทœ๋ชจ, ๋Œ€ํ•™๊ต ์ „๊ณต์— ๋”ฐ๋ผ์„œ ์ฐจ์ด๊ฐ€ ๋‚ฌ๋‹ค. 4๋…„์ œ ๋Œ€ํ•™๊ต์™€ 2โˆผ3๋…„ ์ „๋ฌธ๋Œ€ํ•™์œผ๋กœ ๊ตฌ๋ถ„ํ•˜์—ฌ ๋ถ„์„ํ•œ ๊ฒฐ๊ณผ, ์ธ๋ฌธ๊ณ„ ๊ณ ๋“ฑํ•™๊ต ์—ฌ๋ถ€, ๊ณ 3์‹œ์ ˆ ์›๊ฐ€์กฑ ์›” ํ‰๊ท ์†Œ๋“, ์„ฑ๋ณ„, ๋Œ€ํ•™๊ต ์†Œ์žฌ ๋„์‹œ๊ทœ๋ชจ๊ฐ€ 4๋…„์ œ ๋Œ€ํ•™๊ต ์กธ์—…์ž์—๊ฒŒ๋งŒ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ์š”์ธ์ด์—ˆ๋‹ค. ์ธ๋ฌธ๊ณ„ ๊ณ ๋“ฑํ•™๊ต์™€ ์ „๋ฌธ๊ณ„ ๊ณ ๋“ฑํ•™๊ต๋กœ ๊ตฌ๋ถ„ํ•œ ๋ถ„์„์—์„œ๋Š” ๊ณ ๋“ฑํ•™๊ต ์†Œ์žฌ ๋„์‹œ๊ทœ๋ชจ, ๊ณ 3์‹œ์ ˆ ์›๊ฐ€์กฑ ์›” ํ‰๊ท ์†Œ๋“, ๋Œ€ํ•™๊ต ์†Œ์žฌ ๋„์‹œ๊ทœ๋ชจ, ๋Œ€ํ•™๊ต ์œ ํ˜•, ๋Œ€ํ•™๊ต ์ „๊ณต, ์ง์žฅ์œ ํ˜•์ด ์ธ๋ฌธ๊ณ„ ๊ณ ๋“ฑํ•™๊ต์—์„œ๋งŒ ์˜ํ–ฅ๋ ฅ ์žˆ๋Š” ์š”์ธ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค.This study examines the tendency of geographical mobility at the time of entering college and getting a job after graduation, and the factors that have effects on going to college and finding a job in the same province as where the high school is located. The study was conducted on 738 participants who were employed in 2012, referring to Korean Education & Employment Panel (KEEP). GIS mapping analysis reveals that young adults flew into big cities, flowing out from small and medium-sized cities and rural communities when entering college and finding a job after graduation. Bivariate probit model reveals that geographical mobility of entering a college had an influence on geographical mobility of getting a job after graduation. Results of these analyses were closely related to the groups of four-year-course colleges and academic high schools

    The Starting-point in Kants Opus postumum โ€•About 23 of the Early Leaves of the โ…ฃth Fascicleโ€•

    No full text
    ใ€ŽํŒ๋‹จ๋ ฅ๋น„ํŒใ€์˜ ์ถœ๊ฐ„์œผ๋กœ ํ•œ๋•Œ ๋น„ํŒ์  ๊ณผ์—…์˜ ์™„์„ฑ์„ ๋ฏฟ์—ˆ๋˜ ์นธํŠธ๋Š” ๋„๋Œ€์ฒด ์–ด๋–ค ์ด์œ ๋กœ ์ž์‹ ์˜ ์ฒ ํ•™์  ์ฒด๊ณ„๋ฅผ ๋‹ค์‹œ ์„ธ์šฐ๋Š” ๋งˆ์ง€๋ง‰ ์ €์„œ๋ฅผ ์ค€๋น„ํ•˜๊ฒŒ ๋œ ๊ฒƒ์ผ๊นŒ? ๋‹ค์‹œ ๋งํ•ด, ใ€Ž์œ ์ž‘ใ€์—์„œ์˜ ์นธํŠธ์˜ ๋ฌธ์ œ์˜์‹์€ ๋„๋Œ€์ฒด ์–ด๋””๋กœ๋ถ€ํ„ฐ ์ƒ๊ฒจ๋‚œ ๊ฒƒ์ด๋ฉฐ, ๊ตฌ์ฒด์ ์œผ๋กœ๋Š” ๊ทธ์˜ ์–ด๋–ค ์ด์ „ ์ž‘ํ’ˆ์˜ ๋ฌธ์ œ๋“ค๊ณผ ์—ฐ๊ด€๋œ ๊ฒƒ์ผ๊นŒ? ์นธํŠธ ์œ ์ž‘์˜ ์‹œ๋ฐœ์  ๋ฌธ์ œ๋Š” ๋ฐ”๋กœ ์ด ์งˆ๋ฌธ๋“ค์— ๊ด€ํ•œ ๋…ผ์˜์ด๋‹ค. ๊ทธ๋Ÿฐ๋ฐ ์ด ์‹œ๋ฐœ์  ๋ฌธ์ œ๋Š” ์ด๋ฏธ ํ˜„์กดํ•˜๋Š” ใ€Ž์œ ์ž‘ใ€ ํŽธ์ง‘์˜ ์—ญ์‚ฌ ์†์— ์ด๋ฏธ ๋ฐ˜์˜๋˜์–ด ๋‚˜ํƒ€๋‚˜๊ณ  ์žˆ๋‹ค. ๊ทธ ๋Œ€ํ‘œ์  ์˜ˆ๋Š” ใ€Ž์œ ์ž‘ใ€์˜ ๊ฐ€์žฅ ์˜ค๋ž˜๋œ ๋ฌธ์„œ๋“ค๋กœ ์•Œ๋ ค์ง„ ํ•ฉ๋ณธ IV์˜ 23๊ฐœ ๋‚ฑ์žฅ๋ฌธ์„œ๋“ค์˜ ํŽธ์ง‘๋ฌธ์ œ์ด๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ ๋Š” ์ด๋“ค 23๊ฐœ ๋‚ฑ์žฅ๋ฌธ์„œ ์ค‘ 5๊ฐœ๋งŒ์„ ใ€Ž์œ ์ž‘ใ€์— ํฌํ•จ์‹œํ‚จ ์•„๋””์ผ€์Šค ์—ฐ๊ตฌ์˜ ๋ฌธ์ œ์ ์„ ์‚ดํŽด๋ณด๊ณ  ์ด๋ฅผ ํ†ตํ•ด ใ€Ž์œ ์ž‘ใ€์—์„œ ์นธํŠธ์˜ ๋ฌธ์ œ์˜์‹์˜ ์ถœ๋ฐœ์ ์„ ์ถ”๋ก ํ•ด ๋ณด๊ณ ์ž ํ•œ๋‹ค. ๋˜ํ•œ ใ€Ž์œ ์ž‘ใ€์˜ ์‹œ๋ฐœ์ ์„ ใ€ŽํŒ๋‹จ๋ ฅ๋น„ํŒใ€์—์„œ ์ฐพ์•˜๋˜ ๋ ˆ๋งŒ(Lehmann)์˜ ์ž…์žฅ์„ ๋น„ํŒ์ ์œผ๋กœ ๊ฒ€ํ† ํ•จ์œผ๋กœ์จ ใ€Ž์œ ์ž‘ใ€ ํ•ด์„์˜ ๋ฐ”๋žŒ์งํ•œ ๋ฐฉํ–ฅ์„ ์ œ์‹œํ•˜๊ณ ์ž ํ•œ๋‹ค. In 1790, in the preface to his Critique of Judgement, Kant had written: With this then, I bring my entire critical undertaking to a close. Yet, later, Kant mentioned a gap in the critical philosophy, which now stands open will be filled. Why has Kant, then, tried to reconstruct his system of critical philosophy? Why has Kant decided to engage in another major work, especially the Transition-Project in his opus postumum? In other words, where is the opus postumum located in the context of Kant's other writings? The issue of the starting-point in Kant's opus postumum is concerned with these questions. However, this issue of the starting-point in Kant's opus postumum was already applied to the history of editions of Kant's original manuscripts. A typical example is the early 23 leaves of the IVth fascicle. In this paper I have tried to investigate the problem of Adickes' research, which excluded 18 leaves of the IVth fascicle from "Vorarbeiten" to the opus postumum, and from this I tried to infer the 'starting-point' of the opus postumum

    ์‹œํ”„๋ฆฐ์Šคํ˜ธ์˜ ์กฐ๋‚œ๊ณผ ๋ฐฉ์ œ

    No full text
    • โ€ฆ
    corecore