34 research outputs found

    Meta-Analysis of Differentially Expressed Genes in the Substantia Nigra in Parkinson's Disease Supports Phenotype-Specific Transcriptome Changes

    Get PDF
    Background: Studies regarding differentially expressed genes (DEGs) in Parkinson's disease (PD) have focused on common upstream regulators or dysregulated pathways or ontologies; however, the relationships between DEGs and disease-related or cell type-enriched genes have not been systematically studied. Meta-analysis of DEGs (meta-DEGs) are expected to overcome the limitations, such as replication failure and small sample size of previous studies. Purpose: Meta-DEGs were performed to investigate dysregulated genes enriched with neurodegenerative disorder causative or risk genes in a phenotype-specific manner. Methods: Six microarray datasets from PD patients and controls, for which substantia nigra sample transcriptome data were available, were downloaded from the NINDS data repository. Meta-DEGs were performed using two methods, combining p-values and combing effect size, and common DEGs were used for secondary analyses. Gene sets of cell type-enriched or disease-related genes for PD, Alzheimer's disease (AD), and hereditary progressive ataxia were constructed by curation of public databases and/or published literatures. Results: Our meta-analyses revealed 449 downregulated and 137 upregulated genes. Overrepresentation analyses with cell type-enriched genes were significant in neuron-enriched genes but not in astrocyte- or microglia-enriched genes. Meta-DEGs were significantly enriched in causative genes for hereditary disorders accompanying parkinsonism but not in genes associated with AD or hereditary progressive ataxia. Enrichment of PD-related genes was highly significant in downregulated DEGs but insignificant in upregulated genes. Conclusion: Downregulated meta-DEGs were associated with PD-related genes, but not with other neurodegenerative disorder genes. These results highlight disease phenotype-specific changes in dysregulated genes in PD.ope

    Alteration of the corpus callosum in patients with Alzheimer's disease: Deep learning-based assessment

    Get PDF
    Background: Several studies have reported changes in the corpus callosum (CC) in Alzheimer's disease. However, the involved region differed according to the study population and study group. Using deep learning technology, we ensured accurate analysis of the CC in Alzheimer's disease. Methods: We used the Open Access Series of Imaging Studies (OASIS) dataset to investigate changes in the CC. The individuals were divided into three groups using the Clinical Dementia Rating (CDR); 94 normal controls (NC) were not demented (NC group, CDR = 0), 56 individuals had very mild dementia (VMD group, CDR = 0.5), and 17 individuals were defined as having mild and moderate dementia (MD group, CDR = 1 or 2). Deep learning technology using a convolutional neural network organized in a U-net architecture was used to segment the CC in the midsagittal plane. Total CC length and regional magnetic resonance imaging (MRI) measurements of the CC were made. Results: The total CC length was negatively associated with cognitive function. (beta = -0.139, p = 0.022) Among MRI measurements of the CC, the height of the anterior third (beta = 0.038, p <0.0001) and width of the body (beta = 0.077, p = 0.001) and the height (beta = 0.065, p = 0.001) and area of the splenium (beta = 0.059, p = 0.027) were associated with cognitive function. To distinguish MD from NC and VMD, the receiver operating characteristic analyses of these MRI measurements showed areas under the curves of 0.65-0.74. (total CC length = 0.705, height of the anterior third = 0.735, width of the body = 0.714, height of the splenium = 0.703, area of the splenium = 0.649). Conclusions: Among MRI measurements, total CC length, the height of the anterior third and width of the body, and the height and area of the splenium were associated with cognitive decline. They had fair diagnostic validity in distinguishing MD from NC and VMD.ope

    Graphene plasmonics for actively tunable integrated photonic devices

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2017. 8. ๋ฐ•๋‚จ๊ทœ.์œก๋ฐฉ ๊ฒฉ์ž ๊ตฌ์กฐ ํ˜•ํƒœ๋กœ ๊ฒฐํ•ฉ๋˜์–ด ์žˆ๋Š” ํƒ„์†Œ ์›์ž๋“ค์˜ ๋‹จ์ผ ๊ฒฉ์ž ์ธต์œผ๋กœ ์ด๋ฃจ์–ด์ง„ ๊ทธ๋ž˜ํ•€์€ ์ด์ฐจ์› (2D) ๊ตฌ์กฐ ํŠน์„ฑ, ์„ ํ˜•์  ๋ถ„์‚ฐ ํŠน์„ฑ (linear dispersion with the massless Dirac point)์— ๋”ฐ๋ฅธ ๋งค์šฐ ๋†’์€ ์ „๊ธฐ ์ „๋„์„ฑ ๋“ฑ์˜ ๋งŽ์€ ์žฅ์ ์„ ๊ฐ€์ง€๊ณ  ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ๊ทนํ•œ ํŒŒ์žฅ ํ•œ๊ณ„ ์ดํ•˜ ์˜์—ญ์˜ ํ”Œ๋ผ์ฆˆ๋ชจ๋‹‰์Šค๋ฅผ ์œ„ํ•œ ์ฐจ์„ธ๋Œ€ ๊ตฌ์„ฑ ๋ฌผ์งˆ๋กœ ๊ฐ๊ด‘์„ ๋ฐ›๊ณ  ์žˆ๋‹ค. ํŠนํžˆ, ๊ทธ๋ž˜ํ•€ ์ž์ฒด์˜ ์ €์ฐจ์› ๊ตฌ์กฐ ํŠน์„ฑ์€ ๊ด‘ํ•™ ์†Œ์ž์˜ ์ง‘์ ๋„๋ฅผ ํ–ฅ์ƒ์‹œํ‚ฌ ์ˆ˜ ์žˆ๊ณ , ๋„ํ•‘ ๋ ˆ๋ฒจ ์กฐ์ ˆ์— ๋”ฐ๋ฅธ ์ „๊ธฐ ์ „๋„๋„์˜ ๋ณ€ํ™” ํŠน์„ฑ์€ ๊ทธ๋ž˜ํ•€์˜ ๊ด‘ํ•™์  ํŠน์„ฑ์— ๋Œ€ํ•œ ๋ณ€์กฐ ๊ฐ€๋Šฅ์„ฑ๊ณผ ์ง๊ฒฐ๋™๊ธฐ ๋•Œ๋ฌธ์— ๊ด‘ ํก์ˆ˜์ฒด, ๊ด‘ ๋ณ€์กฐ๊ธฐ, ๋ฉ”ํƒ€ ๋ฌผ์งˆ ๋“ฑ๊ณผ ๊ฐ™์€ ๋‹ค์–‘ํ•œ ๊ทธ๋ž˜ํ•€ ๊ธฐ๋ฐ˜์˜ ๋Šฅ๋™ ๋ณ€์กฐ ํ”Œ๋ผ์ฆˆ๋ชจ๋‹‰ ์†Œ์ž์—์„œ ํ™”ํ•™์  ๋„ํ•‘์ด๋‚˜ ์ง๋ฅ˜ ์ „๊ธฐ์žฅ ๋ฐ”์ด์–ด์Šค์˜ ์ธ๊ฐ€๋ฅผ ํ†ตํ•ด ๊ทธ๋ž˜ํ•€์˜ ์ „๊ธฐ ์ „๋„๋„๋ฅผ ์กฐ์ ˆํ•จ์œผ๋กœ์จ ๋น›์˜ ํ๋ฆ„์„ ์ œ์–ดํ•˜๊ธฐ ์œ„ํ•œ ์—ฐ๊ตฌ๊ฐ€ ํ™œ๋ฐœํžˆ ์ง„ํ–‰๋˜๊ณ  ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ทธ๋ž˜ํ•€ ํ”Œ๋ผ์ฆˆ๋ชฌ์˜ ํƒ์›”ํ•œ ํŠน์„ฑ๋“ค์„ ํ™œ์šฉํ•˜์—ฌ ๋Šฅ๋™ ๋ณ€์กฐ ์ง‘์  ๊ด‘ ์†Œ์ž๋ฅผ ๊ตฌํ˜„ํ•˜๊ณ  ๋น›์˜ ํ๋ฆ„์„ ๋ณด๋‹ค ํšจ์œจ์ ์œผ๋กœ ์ œ์–ดํ•˜๊ธฐ ์œ„ํ•œ ๋ฐฉ์•ˆ์„ ์ œ์‹œํ•˜๋Š” ๋ฐ์— ์ดˆ์ ์„ ๋‘๊ณ  ์žˆ์œผ๋ฉฐ, ๊ทธ๋ž˜ํ•€ ํ”Œ๋ผ์ฆˆ๋ชฌ ๋ชจ๋“œ์— ๋Œ€ํ•œ ์ œ์–ด ๋ฐ ๋ณ€์กฐ ํšจ์œจ ์ฆ๋Œ€๋ฅผ ์œ„ํ•ด light-graphene ์ƒํ˜ธ์ž‘์šฉ ๋ฐ ๋ชจ๋“œ ๊ตญ์†Œํ™” ํŠน์„ฑ์„ ํ–ฅ์ƒ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋Š” ๊ทธ๋ž˜ํ•€ ํ”Œ๋ผ์ฆˆ๋ชจ๋‹‰ ์‹œ์Šคํ…œ๋“ค์„ ์ œ์•ˆํ•˜๊ณ ์ž ํ•œ๋‹ค. ๋ฐฐ๊ฒฝ ์ด๋ก ์—์„œ๋Š” ๊ทธ๋ž˜ํ•€์˜ ๊ด‘ํ•™์  ์ „๊ธฐ ์ „๋„๋„์— ๋Œ€ํ•œ ์ด๋ก ์  ํ•ด์„ ๋ชจ๋ธ์ธ magneto-optical ์ „๊ธฐ ์ „๋„๋„ ๋ชจ๋ธ์— ๋Œ€ํ•œ ๊ณ ์ฐฐ์„ ๋ฐ”ํƒ•์œผ๋กœ ๊ทธ๋ž˜ํ•€์˜ ๊ด‘ํ•™์  ํก์ˆ˜ ์ „์ด ํŠน์„ฑ๊ณผ ๋ณต์†Œ ํ‘œ๋ฉด ์ „๊ธฐ ์ „๋„๋„ ์‚ฌ์ด์˜ ๊ด€๊ณ„๋ฅผ ๊ทœ๋ช…ํ•˜๊ณ , ์ฃผํŒŒ์ˆ˜ ์‘๋‹ต ํŠน์„ฑ ๋ฐ ๋„ํ•‘ ๋ ˆ๋ฒจ์— ๋”ฐ๋ฅธ ๋ณ€์กฐ ํŠน์„ฑ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋˜ํ•œ, ์ด๋Ÿฌํ•œ magneto-optical ์ „๊ธฐ ์ „๋„๋„๋ฅผ ๊ฐ–๋Š” ๊ทธ๋ž˜ํ•€ ๋‹จ์ธต ๋ฐ•๋ง‰์˜ ํ‘œ๋ฉด์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๊ทธ๋ž˜ํ•€ ํ”Œ๋ผ์ฆˆ๋ชฌ ๋ชจ๋“œ๋“ค์— ๋Œ€ํ•œ ๊ธฐ์ดˆ ์ด๋ก ๊ณผ ์ˆ˜์น˜ ํ•ด์„ ์ „์‚ฐ ๋ชจ์‚ฌ์—์„œ ๊ทธ๋ž˜ํ•€ ๋‹จ์ธต ๋ฐ•๋ง‰์„ ๋‹ค๋ฃจ๋Š” ๋Œ€ํ‘œ์ ์ธ ๋ฐฉ์‹์„ ์„ค๋ช…ํ•˜์˜€๋‹ค. ๋จผ์ €, ์ด๋Ÿฌํ•œ ์ด๋ก ์  ๋ฐฐ๊ฒฝ์„ ๋ฐ”ํƒ•์œผ๋กœ ๊ทธ๋ž˜ํ•€ ๊ธฐ๋ฐ˜์˜ ์ €์ฐจ์› metal-gap-dielectric (MGD) ๋„ํŒŒ๋กœ ์‹œ์Šคํ…œ์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ €์ฐจ์› MGD ๋„ํŒŒ๋กœ ์‹œ์Šคํ…œ์€ ๋‘ ์ผ์ฐจ์› ๊ฒฝ๊ณ„ ์กฐ๊ฑด์— ์˜ํ•˜์—ฌ, gap ๊ทธ๋ž˜ํ•€ ์ธต์— ๊ฐ•ํ•˜๊ฒŒ ๊ตญ์†Œํ™”๋˜์–ด ์ „ํŒŒํ•˜๋Š” ์ €์ฐจ์› ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ๊ทธ๋ž˜ํ•€ ๊ฐญ ํ”Œ๋ผ์ฆˆ๋ชฌ (H-GGP) ๋ชจ๋“œ๋ฅผ ๋ฐœ์ƒ์‹œํ‚ค๋ฉฐ ์ด๋Ÿฌํ•œ H-GGP ๋ชจ๋“œ์˜ ๋…ํŠนํ•œ ์ „๊ธฐ์žฅ ๋ถ„ํฌ ํŒจํ„ด์— ๊ธฐ์ธํ•˜์—ฌ ๋งค์šฐ ํ–ฅ์ƒ๋œ light-graphene ๊ฒน์นจ ์ˆ˜์น˜๋ฅผ ๊ฐ–๋Š”๋‹ค. ๋˜ํ•œ ์ด์™€ ๊ฐ™์ด ์ฆ๊ฐ€ํ•œ light-graphene ๊ฒน์นจ ์ˆ˜์น˜์˜ ์˜ํ–ฅ์œผ๋กœ, H-GGP ๋ชจ๋“œ๋Š” ๊ทธ๋ž˜ํ•€์˜ ๋„ํ•‘ ๋ ˆ๋ฒจ ๋ณ€์กฐ์— ๋Œ€ํ•˜์—ฌ mode profile์€ ์•ˆ์ •์ ์œผ๋กœ ์œ ์ง€ํ•˜๋ฉด์„œ ์ „ํŒŒ ์ƒ์ˆ˜์˜ ๋ณ€์กฐ ๋ฏผ๊ฐ๋„ ํ–ฅ์ƒ๊ณผ ์„ ํ˜• ๋ณ€์กฐ๊ฐ€ ๊ฐ€๋Šฅํ•œ ํŠน์„ฑ์„ ๋ณด์ธ๋‹ค. ํ•œํŽธ, ๊ทธ๋ž˜ํ•€ ํ”Œ๋ผ์ฆˆ๋ชฌ์˜ lateral ๋ฐฉํ–ฅ ๋ชจ๋“œ ๊ตญ์†Œํ™”๋ฅผ ์œ„ํ•œ ์œ ์ „์ฒด ๋ถ€ํ•˜ ๊ทธ๋ž˜ํ•€ ํ”Œ๋ผ์ฆˆ๋ชฌ (DLGSP) ๋„ํŒŒ๋กœ ๊ตฌ์กฐ๋ฅผ ์ œ์•ˆํ•˜์˜€๋Š”๋ฐ, ์ด๋Š” ๊ทธ๋ž˜ํ•€์„ ์žฌ๋‹จํ•˜๊ฑฐ๋‚˜ ํ‘œ๋ฉด ์ „๊ธฐ ์ „๋„๋„๋ฅผ ๊ณต๊ฐ„์ ์œผ๋กœ ๋ณ€์กฐํ•  ํ•„์š”๊ฐ€ ์—†๊ธฐ ๋•Œ๋ฌธ์— ๋‚˜๋…ธ ๊ณต์ • ๊ธฐ์ˆ ์„ ์ด์šฉํ•œ ์ œ์ž‘์ด ์šฉ์ดํ•˜๊ณ  ๋‹ค์–‘ํ•œ ๊ตฌ์กฐ๋กœ ์‘์šฉ์ด ๊ฐ€๋Šฅํ•œ ์žฅ์ ์„ ๊ฐ–๋Š”๋‹ค. ๋˜ํ•œ DLGSP ๋ชจ๋“œ๋Š” ๋†’์€ ์œ ํšจ ๋ชจ๋“œ ๊ตด์ ˆ๋ฅ  ํŠน์„ฑ์„ ๋ณด์ด๊ณ  ๊ทธ๋ž˜ํ•€์˜ ํ‘œ๋ฉด ์ „๊ธฐ ์ „๋„๋„ ๋ณ€ํ™”์— ๋Œ€ํ•ด ๋งค์šฐ ๋ฏผ๊ฐํ•œ ๋ณ€์กฐ ํŠน์„ฑ์„ ๊ฐ–๊ธฐ ๋•Œ๋ฌธ์— ์ด๋Ÿฌํ•œ ํŠน์„ฑ๋“ค์„ ๊ธฐ๋ฐ˜์œผ๋กœ ์„ค๊ณ„ํ•œ ๊ฒฐํ•ฉ DLGSP ๋„ํŒŒ๋กœ ์‹œ์Šคํ…œ์—์„œ๋Š” ์ฃผ๊ธฐ๊ฐ€ ๋งค์šฐ ์งง์€ ๋ธ”๋กœํ ์ง„๋™ ํ˜„์ƒ์˜ ๊ตฌํ˜„์ด ๊ฐ€๋Šฅํ•˜๋ฉฐ ๊ทธ๋ž˜ํ•€์˜ ๋„ํ•‘ ๋ ˆ๋ฒจ ๋ณ€์กฐ๋ฅผ ํ†ตํ•ด ๋ธ”๋กœํ ์ง„๋™์˜ ์ „ํŒŒ ํŠน์„ฑ (์ฃผ๊ธฐ ๋ฐ ์ง„๋™)์„ ํŒŒ์žฅ ํ•œ๊ณ„ ์˜์—ญ์—์„œ ํšจ์œจ์ ์œผ๋กœ ์ œ์–ดํ•  ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ, ๊ทธ๋ž˜ํ•€์˜ ์ €์ฐจ์› ๊ตฌ์กฐ ํŠน์„ฑ์— ์˜ํ•œ ๊ด‘ ํก์ˆ˜ ํšจ์œจ ๊ฐ์†Œ ๋ฌธ์ œ๋ฅผ ๊ทน๋ณตํ•˜๊ณ  ๊ด‘ ํก์ˆ˜ ํŠน์„ฑ์„ ๊ทน๋Œ€ํ™”ํ•˜๊ธฐ ์œ„ํ•ด ๊ทธ๋ž˜ํ•€-์œ ์ „์ฒด ๋‹ค์ธต ๋ฐ•๋ง‰ ๊ตฌ์กฐ ๊ธฐ๋ฐ˜์˜ ๊ด‘๋Œ€์—ญ ์™„์ „ ๊ด‘ ํก์ˆ˜์ฒด๋ฅผ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ œ์•ˆํ•œ ํ†ฑ๋‚  ํ˜•ํƒœ์˜ ๊ด‘ ํก์ˆ˜ ๊ตฌ์กฐ์ฒด๋Š” ์Œ๊ณก ๋ฉ”ํƒ€๋ฌผ์งˆ ๋„ํŒŒ๋กœ์˜ ๋Š๋ฆฐ ๋น› ๋ชจ๋“œ๋ฅผ ํ™œ์šฉํ•จ์œผ๋กœ์จ ๊ทธ๋ž˜ํ•€์— ์˜ํ•œ ์™„์ „ ๊ด‘ ํก์ˆ˜ ํŠน์„ฑ์ด ๋„“์€ ์ฃผํŒŒ์ˆ˜ ๋Œ€์—ญ์—์„œ ์œ ์ง€ํ•  ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ๊ทธ๋ž˜ํ•€์˜ ๋„ํ•‘ ๋ ˆ๋ฒจ ์กฐ์ ˆ์„ ํ†ตํ•ด ์™„์ „ ๊ด‘ ํก์ˆ˜ ๋Œ€์—ญ์˜ ๋Šฅ๋™ ๋ณ€์กฐ๊ฐ€ ๊ฐ€๋Šฅํ•œ ์žฅ์ ์„ ๊ฐ–๋Š”๋‹ค. ์ด๋Ÿฌํ•œ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋“ค์€ ๊ทธ๋ž˜ํ•€ ์ž์ฒด์˜ ์ €์ฐจ์› ๊ตฌ์กฐ ํŠน์„ฑ์œผ๋กœ ์ธํ•ด ๊ด‘ํ•™ ๋ชจ๋“œ์™€ ๊ทธ๋ž˜ํ•€์˜ ์ƒํ˜ธ ์ž‘์šฉ์ด ๊ฐ์†Œํ•˜๋Š” ๊ทผ๋ณธ์ ์ธ ๋ฌธ์ œ์ ์„ ๋ณด์™„ํ•˜๊ณ  ๊ทธ๋ž˜ํ•€ ํ”Œ๋ผ์ฆˆ๋ชฌ ๋ชจ๋“œ์— ๋Œ€ํ•œ ์ œ์–ด ๋ฐ ๋ณ€์กฐ, ๊ด‘ ํก์ˆ˜ ํšจ์œจ์„ ๊ทน๋Œ€ํ™”ํ•˜๋Š” ๊ธฐ์ˆ ์— ํ™œ์šฉํ•  ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ๋Šฅ๋™ ๋ณ€์กฐ ์ง‘์  ๊ด‘ ์†Œ์ž์˜ ๊ฐœ๋ฐœ ๋ฐ ์„ฑ๋Šฅ ํ–ฅ์ƒ์„ ์œ„ํ•œ ๋‹ค์–‘ํ•œ ์‘์šฉ ๊ฐ€๋Šฅ์„ฑ๊ณผ ์ž์œ ๋„๋ฅผ ์ œ์‹œํ•  ์ˆ˜ ์žˆ๋‹ค.์ œ 1 ์žฅ ์„œ ๋ก  1 1.1 ์—ฐ๊ตฌ์˜ ๋ฐฐ๊ฒฝ 1 1.1.1 ๊ทธ๋ž˜ํ•€ ๊ธฐ๋ฐ˜์˜ ๊ด‘์ „์ž ๋ฐ ๊ด‘ํ•™ ์†Œ์ž ์—ฐ๊ตฌ 3 1.1.2 ๊ทธ๋ž˜ํ•€ ํ”Œ๋ผ์ฆˆ๋ชจ๋‹‰์Šค์™€ ๋ฉ”ํƒ€ ๋ฌผ์งˆ ์—ฐ๊ตฌ 8 1.1.3 ๊ทธ๋ž˜ํ•€/๊ธˆ์† ํ˜ผ์„ฑ ๊ตฌ์กฐ๋ฅผ ์ด์šฉํ•œ ํ”Œ๋ผ์ฆˆ๋ชจ๋‹‰์Šค ์—ฐ๊ตฌ 12 1.2 ์—ฐ๊ตฌ์˜ ๋ชฉ์  15 1.3 ๋…ผ๋ฌธ์˜ ๊ตฌ์„ฑ 17 ์ œ 2 ์žฅ ๋ฐฐ๊ฒฝ ์ด๋ก  18 2.1 ๊ทธ๋ž˜ํ•€์˜ magneto-optical ์ „๊ธฐ ์ „๋„๋„ 19 2.2 ๊ทธ๋ž˜ํ•€์˜ ํ‘œ๋ฉด ํ”Œ๋ผ์ฆˆ๋ชฌ ํŒŒ ๋ถ„์„ 28 2.2.1 ํ‘œ๋ฉด ์ „๊ธฐ ์ „๋„๋„ (surface conductivity) ๋ชจ๋ธ 28 2.2.2 ๋“ฑ๊ฐ€ ์œ ์ „์œจ (equivalent permittivity) ๋ชจ๋ธ 34 2.3 ๊ทธ๋ž˜ํ•€ ๊ธฐ๋ฐ˜์˜ ํ”Œ๋ผ์ฆˆ๋ชจ๋‹‰ ๋„ํŒŒ๋กœ ๊ธฐ์ˆ  40 ์ œ 3 ์žฅ Light-graphene ์ƒํ˜ธ์ž‘์šฉ์˜ ํ–ฅ์ƒ์„ ์œ„ํ•œ ์ €์ฐจ์› hybrid graphene gap plasmon 45 3.1 ์ €์ฐจ์› metal-gap-dielectric (MGD) ๋„ํŒŒ๋กœ ์‹œ์Šคํ…œ 48 3.2 ์ €์ฐจ์› H-GGP ๋ชจ๋“œ์˜ ์ „ํŒŒ ํŠน์„ฑ ๋ถ„์„ 52 3.2.1 H-GGP ๋ชจ๋“œ์˜ ์ „๊ธฐ์žฅ ๋ถ„ํฌ ํŠน์„ฑ 53 3.2.2 Gap ๊ทธ๋ž˜ํ•€ ์˜์—ญ์˜ ๋„ˆ๋น„ ์กฐ์ ˆ์— ๋”ฐ๋ฅธ H-GGP ๋ชจ๋“œ์˜ ์ฃผ์š” ๋ชจ๋“œ ํŠน์„ฑ ๋ณ€ํ™” 57 3.2.3 H-GGP ๋ชจ๋“œ์˜ ์ „๊ธฐ์žฅ ์ง‘์† ํŠน์„ฑ ๋ฐ light-graphene ๊ฒน์นจ ์ˆ˜์น˜ 60 3.2.4 ์ƒ์˜จ (T=300K)์—์„œ์˜ H-GGP ๋ชจ๋“œ ํŠน์„ฑ 64 3.3 ๋„ํ•‘ ๋ ˆ๋ฒจ ๋ณ€ํ™”์— ๋”ฐ๋ฅธ H-GGP ๋ชจ๋“œ์˜ ๋ณ€์กฐ ํŠน์„ฑ 67 3.4 ๊ฒฐ๋ก  71 ์ œ 4 ์žฅ ์œ ์ „์ฒด ๋ถ€ํ•˜ ๊ทธ๋ž˜ํ•€ ํ”Œ๋ผ์ฆˆ๋ชฌ ๋„ํŒŒ๋กœ ์‹œ์Šคํ…œ์˜ ๋ธ”๋กœํ ์ง„๋™ ๋ถ„์„ 72 4.1 ์œ ์ „์ฒด ๊ธฐํŒ์— ์˜ํ•œ ๊ทธ๋ž˜ํ•€ ํ‘œ๋ฉด ํ”Œ๋ผ์ฆˆ๋ชฌ ๋ชจ๋“œ์˜ ์ „ํŒŒ ํŠน์„ฑ ๋ณ€ํ™” 75 4.2 ์œ ์ „์ฒด ๋ถ€ํ•˜ ๊ทธ๋ž˜ํ•€ ํ”Œ๋ผ์ฆˆ๋ชฌ ๋„ํŒŒ๋กœ 77 4.3 ์œ ์ „์ฒด ๋ถ€ํ•˜ ๊ทธ๋ž˜ํ•€ ํ”Œ๋ผ์ฆˆ๋ชฌ ๋ชจ๋“œ๋ฅผ ์ด์šฉํ•œ ๊ฒฐํ•ฉ ๋„ํŒŒ๋กœ ์‹œ์Šคํ…œ์—์„œ์˜ ๋ธ”๋กœํ ์ง„๋™ ํŠน์„ฑ ๋ถ„์„ 83 4.3.1 ์œ ์ „์ฒด ๋ถ€ํ•˜ ๊ทธ๋ž˜ํ•€ ํ”Œ๋ผ์ฆˆ๋ชฌ ๋ชจ๋“œ ๊ธฐ๋ฐ˜์˜ ๊ฒฐํ•ฉ ๋„ํŒŒ๋กœ ์‹œ์Šคํ…œ 83 4.3.2 ๊ฒฐํ•ฉ ๋ชจ๋“œ ์ด๋ก ์„ ์ด์šฉํ•œ ๋ธ”๋กœํ ์ง„๋™ ํ˜„์ƒ ๋ถ„์„ 86 4.3.3 ๋„ํ•‘ ๋ ˆ๋ฒจ ๋ณ€ํ™”์— ๋”ฐ๋ฅธ ๋ธ”๋กœํ ์ง„๋™์˜ ๋ณ€์กฐ ํŠน์„ฑ 91 4.4 ๊ฒฐ๋ก  95 ์ œ 5 ์žฅ ์Œ๊ณก ๋ฉ”ํƒ€๋ฌผ์งˆ ๋„ํŒŒ๋กœ ์ด๋ก ์„ ํ™œ์šฉํ•œ ๊ทธ๋ž˜ํ•€-์œ ์ „์ฒด ๋‹ค์ธต ๋ฐ•๋ง‰ ๊ธฐ๋ฐ˜์˜ ๊ด‘๋Œ€์—ญ ์™„์ „ ๊ด‘ ํก์ˆ˜ ๊ตฌ์กฐ์ฒด 96 5.1 ์Œ๊ณก ๋ฉ”ํƒ€๋ฌผ์งˆ ๋„ํŒŒ๋กœ์˜ ๋ชจ๋“œ ํŠน์„ฑ 97 5.2 ๊ทธ๋ž˜ํ•€-์œ ์ „์ฒด ๋‹ค์ธต ๋ฐ•๋ง‰ ๊ตฌ์กฐ ๊ธฐ๋ฐ˜์˜ ๊ด‘๋Œ€์—ญ ์™„์ „ ๊ด‘ ํก์ˆ˜์ฒด 101 5.2.1 ๊ทธ๋ž˜ํ•€-์œ ์ „์ฒด ๋‹ค์ธต ๋ฐ•๋ง‰ ํ†ฑ๋‚  ๊ตฌ์กฐ์˜ ๊ด‘ ํก์ˆ˜ ํŠน์„ฑ 101 5.2.2 ๊ทธ๋ž˜ํ•€-์œ ์ „์ฒด ๋‹ค์ธต ๋ฐ•๋ง‰ ํ†ฑ๋‚  ๊ตฌ์กฐ์˜ ํก์ˆ˜ ๋Œ€์—ญ ๋ณ€์กฐ ํŠน์„ฑ 104 5.3 ๊ฒฐ๋ก  106 ์ œ 6 ์žฅ ๊ฒฐ๋ก  107 ์ฐธ๊ณ ๋ฌธํ—Œ 109 Abstract 116Docto

    Accuracy of Machine Learning Using the Montreal Cognitive Assessment for the Diagnosis of Cognitive Impairment in Parkinson's Disease

    Get PDF
    Objective: The Montreal Cognitive Assessment (MoCA) is recommended for assessing general cognition in Parkinson's disease (PD). Several cutoffs of MoCA scores for diagnosing PD with cognitive impairment (PD-CI) have been proposed, with varying sensitivity and specificity. This study investigated the utility of machine learning algorithms using MoCA cognitive domain scores for improving diagnostic performance for PD-CI. Methods: In total, 2,069 MoCA results were obtained from 397 patients with PD enrolled in the Parkinson's Progression Markers Initiative database with a diagnosis of cognitive status based on comprehensive neuropsychological assessments. Using the same number of MoCA results randomly sampled from patients with PD with normal cognition or PD-CI, discriminant validity was compared between machine learning (logistic regression, support vector machine, or random forest) with domain scores and a cutoff method. Results: Based on cognitive status classification using a dataset that permitted sampling of MoCA results from the same individual (n = 221 per group), no difference was observed in accuracy between the cutoff value method (0.74 ยฑ 0.03) and machine learning (0.78 ยฑ 0.03). Using a more stringent dataset that excluded MoCA results (n = 101 per group) from the same patients, the accuracy of the cutoff method (0.66 ยฑ 0.05), but not that of machine learning (0.74 ยฑ 0.07), was significantly reduced. Inclusion of cognitive complaints as an additional variable improved the accuracy of classification using the machine learning method (0.87-0.89). Conclusion: Machine learning analysis using MoCA domain scores is a valid method for screening cognitive impairment in PD.ope

    Genome-wide Association and Meta-analysis of Age at Onset in Parkinson Disease: Evidence From the COURAGE-PD Consortium

    Get PDF
    Background and objectives: Considerable heterogeneity exists in the literature concerning genetic determinants of the age at onset (AAO) of Parkinson disease (PD), which could be attributed to a lack of well-powered replication cohorts. The previous largest genome-wide association studies (GWAS) identified SNCA and TMEM175 loci on chromosome (Chr) 4 with a significant influence on the AAO of PD; these have not been independently replicated. This study aims to conduct a meta-analysis of GWAS of PD AAO and validate previously observed findings in worldwide populations. Methods: A meta-analysis was performed on PD AAO GWAS of 30 populations of predominantly European ancestry from the Comprehensive Unbiased Risk Factor Assessment for Genetics and Environment in Parkinson's Disease (COURAGE-PD) Consortium. This was followed by combining our study with the largest publicly available European ancestry dataset compiled by the International Parkinson Disease Genomics Consortium (IPDGC). Results: The COURAGE-PD Consortium included a cohort of 8,535 patients with PD (91.9%: Europeans and 9.1%: East Asians). The average AAO in the COURAGE-PD dataset was 58.9 years (SD = 11.6), with an underrepresentation of females (40.2%). The heritability estimate for AAO in COURAGE-PD was 0.083 (SE = 0.057). None of the loci reached genome-wide significance (p < 5 ร— 10-8). Nevertheless, the COURAGE-PD dataset confirmed the role of the previously published TMEM175 variant as a genetic determinant of the AAO of PD with Bonferroni-corrected nominal levels of significance (p < 0.025): (rs34311866: ฮฒ(SE)COURAGE = 0.477(0.203), p COURAGE = 0.0185). The subsequent meta-analysis of COURAGE-PD and IPDGC datasets (Ntotal = 25,950) led to the identification of 2 genome-wide significant association signals on Chr 4, including the previously reported SNCA locus (rs983361: ฮฒ(SE)COURAGE+IPDGC = 0.720(0.122), p COURAGE+IPDGC = 3.13 ร— 10-9) and a novel BST1 locus (rs4698412: ฮฒ(SE)COURAGE+IPDGC = -0.526(0.096), p COURAGE+IPDGC = 4.41 ร— 10-8). Discussion: Our study further refines the genetic architecture of Chr 4 underlying the AAO of the PD phenotype through the identification of BST1 as a novel AAO PD locus. These findings open a new direction for the development of treatments to delay the onset of PD..ope
    corecore