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INTRODUCTION

More than 20 causative genes/loci showing Mendelian inheri-
tance have been shown to be associated with familial Parkin-
son’s disease (PD), and these genes have been assigned a locus 
symbol prefix, “PARK”.1 In hereditary atypical parkinsonian 
disorders, also known as heredodegenerative parkinsonian 
disorders, parkinsonism is either concomitant or predomi-
nant with other phenotypes of movement disorders, and the 
causative genes are not assigned the PARK prefix (non-PARK 
genes). Typically, PARK genes are considered as Mendelian 
genes in PD because their mutations are associated with key 
features of idiopathic PD, including levodopa-responsiveness; 
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whereas, in cases with non-PARK gene mutations, either no 
response or a transient response to levodopa is observed. Re-
cent studies have shown that non-PARK genes are related to 
idiopathic PD at the phenotypic, gene expression, and genomic 
levels.2-4 However, to date, no study has investigated the con-
nectivity between PARK and non-PARK genes at the protein-
protein interaction (PPI) level.

PPIs are pivotal for the proper functioning of a biological 
system. Understanding PPIs can help in predicting the biolog-
ical functions of a protein and improving the characterization 
of pathways or functional modules.5 A PPI network (PPIN) can 
be used to identify novel drugs and new disease-related genes, 
subnetworks, and molecular mechanisms.6 Although PPINs 
have been used to explore PD-related functional pathways and 
discover novel genes, no study has investigated the relation-
ship between PARK and non-PARK genes.7-9 Moreover, no 
study has systematically analyzed PPINs formed by proteins 
encoded by all PARK and non-PARK genes. Meanwhile, Goh, 
et al.10 applied graph theory to Mendelian genes and disorders 
from the Online Mendelian Inheritance in Man (OMIM) data-
base and suggested that genes associated with similar disorders 

show a higher likelihood of physical interactions among their 
products. Given that both PARK and non-PARK genes share the 
parkinsonism phenotype, we speculate that their encoded pro-
teins may interact often and may be involved in the same func-
tional modules of PD pathogenesis. 

Here, we systematically curated PARK and non-PARK genes 
and performed functional annotation analyses to explore func-
tional and physical connectivity between the hereditary parkin-
sonism genes. We also analyzed PPINs between PARK and 
non-PARK proteins and showed that hereditary parkinsonism 
genes are highly connected in a hierarchical scale-free network. 

MATERIALS AND METHODS

Constructing gene sets
A custom gene set of hereditary parkinsonism genes, consist-
ing of 96 causative genes for Mendelian disorders with a par-
kinsonism phenotype, was constructed via manual curation 
from the OMIM database11 and previous studies2,4 (Table 1 
and Supplementary Table 1, only online). We also included 

Table 1. List of Genes in the Hereditary Parkinsonism Gene Set 

Gene sets Genes
Hereditary 

  parkinsonism 
  genes (n=96)

PARK genes 
(n=19)

SNCA, UCHL1, EIF4G1, VPS35, PARK7, PRKN, PLA2G6, SYNJ1, FBXO7, HTRA2, PINK1, DNAJC6, VPS13C, LRRK2, 
ATP13A2, GIGYF2, DNAJC13, CHCHD2, TMEM230

Non-PARK 
genes 
(n=77)

PSEN1, APP, ANG, SLC6A3, PDYN, FTL, GRN, MAPT, SLC20A2, CSF1R, PDGFRB, POLG, PRNP, SPR, ATP1A3, PDGFB, 
TH, SLC18A2, MECP2, SLC6A8, PLP1, WDR45, ATP6AP2, RAB39B, FMR1, TAF1, TBP, GCH1, NOTCH3, UBTF, PPT1, 
PSEN2, CACNA1A, VCP, DCTN1, ATXN2, SQSTM1, CHD3, SNCB, KIF5A, PDE8B, PRKRA, PPP2R2B, AFG3L2, TOR1A, 
XPR1, JPH3, OPA1, AAAS, VPS13A, DNAJC12, TWNK, PANK2, GBA, ATP7B, LYST, CLN3, ATXN3, ATM, SMPD1, 
NPC1, SLC39A14, COASY, LRP10, RNF216, PDE10A, SLC30A10, DNAJC5, GLB1, PTS, HTT, AP5Z1, C9orf72, C19orf12, 
CHCHD10, TMEM240, ATXN10

PD-related genes 
  from meta-GWAS (n=86)

GRN, SNCA, GCH1, UBTF, DYRK1A, SCARB2, GBA, GALC, VPS13C, LRRK2, MCCC1, ASXL3, BAG3, BIN3, BST1, 
C5orf24, CAB39L, CAMK2D, CASC16, CD19, CHD9, CHRNB1, CLCN3, CRHR1, CRLS1, CTSB, DEG2, DNAH17, EL0VL7, 
FAM47E, FAM47E-STBD1, FAM49B, FBRSL1, FCGR2A, FGF20, FYN, GAK, GBF1, GPNMB, GS1-124K5.11, HIP1R, HLA-
DRB5, IGSF9B, INPP5F, IP6K2, ITGA8, ITPKB, KCNIP3, KCNS3, KPNA1, KRTCAP2, LCORL, LINC00693, LOC100131289, 
MAP4K4, MBNL2, MED12L, MED13, MEX3C, MIP0L1, NOD2, NUCKS1, PAM, PMVK, RAB29, RETREG3, RIMS1, RIT2, 
RNF141, RPS12, RPS6KL1, SATB1, SCAF11, SETD1A, SH3GL2, SIPA1L2, SPPL2B, SPTSSB, STK39, SYT17, TMEM163, 
TMEM175, TRIM40, UBAP2, VAMP4, WNT3

AD-related genes 
  from meta-GWAS (n=129)

ABCA7, ABI3, ACE, ADAM10, ADAMTS1, ADAMTS4, AGFG2, ALPK2, AP4M1, APH1B, APOC1, APOC2, APOC4, APOE, 
BCAM, BCKDK, BCL3, BCL7C, BIN1, BTNL2, BZRAP1, C14orf93, C1orf116, C6orf10, CASS4, CBLC, CCDC6, CD2AP, 
CD33, CD3EAP, CEACAM16, CEACAM19, CEACAM20, CELF1, CHRNA2, CKM, CLASRP, CLNK, CLPTM1, CLU, CNN2, 
CNTNAP2, CR1, CR1L, CSTF1, CYB561, DEDD, ECHDC3, EED, ENAH, EPHA1, ERCC1, ERCC2, EXOC3L2, FBXL19, 
FERMT2, GATS, GEMIN7, GPC2, GPR141, HESX1, HLA-DQA1, HLA-DRA, HLA-DRB1, ICA1L, IGSF23, IL34, INPP5D, 
IQCK, KAT8, KLC3, MARK4, MEF2C, MINDY2, MS4A2, MS4A3, MS4A4A, MS4A4E, MS4A6A, MS4A6E, NECTIN2, 
NKPD1, NYAP1, OARD1, PICALM, PILRA, PLCG2, PLCH1, PLD3, PPP1R37, PRL, PSMC3, PTK2B, PVR, PVRIG, PVRL2, 
RAB8B, RABEP1, RELB, RP11-81K2.1, SCARA3, SCIMP, SLC24A4, SLC39A13, SLTM, SORL1, SPI1, SPPL2A, STAG3, 
STYX, TAOK2, TMEM184A, TOMM40, TRAPPC6A, TREM2, TREML2, UNC5CL, USP6, USP6NL, WDR12, WIPI2, WWOX, 
ZCWPW1, ZFP3, ZKSCAN1, ZNF232, ZNF646, ZNF652, ZYX

Parkinson’s disease (PD)-related genes and Alzheimer’s disease (AD)-related genes were acquired from the meta-analysis of genome-wide association studies 
(meta-GWAS): PARK genes indicate causative genes of familial PD with a locus prefix symbol, “PARK.” Non-PARK genes indicate causative genes of hereditary 
atypical parkinsonian disorders accompanied by atypical features. Gene/locus Mendelian Inheritance in Man (MIM) number and phenotype MIM number for indi-
vidual genes are shown in Supplementary Table 1 (only online).
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DNAJC13, TMEM230, LRP10, and ATXN10,4 which are recently 
reported genes. Albeit somewhat controversial, DNAJC13 and 
TMEM230 have been assigned to the PARK21 loci [Mendelian 
Inheritance of Man (MIM) number: %616361]. LRP10 has 
been reported in cases with familial PD and dementia with 
Lewy bodies, although no PARK locus has been assigned for it. 
ATXN10 mutations present with levodopa-responsive parkin-
sonism with presynaptic loss of dopamine, as documented with 
99mTc-TRODAT-1 SPECT.12 The final gene set consisted of 19 
PARK genes and 77 non-PARK genes. Genes with more than 
two OMIM phenotype IDs, such as assignment of PARK loci and 
hereditary atypical parkinsonian disorders (e.g., ATP13A2 and 
PLA2G6), were categorized as PARK genes. For comparison, 
a gene set of PD risk genes (n=86 in 90 loci) was sourced from 
a meta-analysis of a genome-wide association study (meta-
GWAS),13 and a gene set of Alzheimer’s disease (AD) risk genes 
(n=129) was constructed based on recent meta-GWAS.14 The 
AD gene set included genes that were nearest to the GWAS loci, 
had rare variant association, or documented gene-based asso-
ciation in AD. Genes expressed in the central nervous system 
were derived from the Human Protein Atlas.15

Gene ontology analysis 
To identify the biological processes enriched in the hereditary 
parkinsonism genes, we used g:Profiler, a web-based gene 
ontology (GO) analysis tool16 (archive: Ensembl 100, Ensembl 
Genomes 47, rev f46603d; database built on 2020-09-21). For 
functional annotation, we compared the enrichment results of 
all hereditary parkinsonism genes, only PARK genes, and only 
non-PARK genes with each other. The g:Profiler settings used 
were as follows: GO enrichment restricted to biological pro-
cesses (GO-BP), Fisher’s one-tailed test as the statistical meth-
od, Bonferroni correction for multiple testing correction, statis-
tical domain size comprising only annotated genes, and no 
hierarchical filtering. Bonferroni corrected p<0.05 were con-
sidered significant. Fold enrichment of the GO terms was cal-
culated as follows: (a/b)/{(c−a)/(d−b)}, where a is the number 
of genes in a gene set associated with a GO term, b is the total 
number of genes in that gene set, c is the total number of genes 
in the genome associated with that GO term, and d is the total 
number of annotated human genes present in Ensembl. We 
further filtered overrepresented GO-BP terms by considering a 
small term size with the number of genes associated with a 
GO term as ≤3 and a broader GO-BP term with >1000 genes. 

Construction of PPINs for the hereditary 
parkinsonism genes
For constructing PPINs, only direct PPIs of human proteins 
were downloaded as an MITAB 2.5 file from the IntAct data-
base17 (accessed on 2020-08-27) using the PSICQUIC platform 
(http://www.ebi.ac.uk/Tools/webservices/psicquic/view/
main.xhtml). The IntAct database is one of the most compre-
hensive databases in terms of number of PPIs, species, and mo-

lecular interaction data.17,18 An MITAB file is a tab-delimited 
text file wherein each row represents one interaction between 
two proteins, reporting the features of the interaction and the 
PubMed identifier. Uniprot protein identifiers were mapped to 
HGNC gene symbols using the human proteome annotation 
table downloaded from Uniprot (https://www.uniprot.org/
uniprotkb?facets=model_organism%3A9606&query=Human; 
accessed on 2020-09-01). This translation ensured that each 
protein was mapped to a unique gene symbol. Next, the PPI an-
notations underwent quality control and filtering, as previously 
described.8,12 Briefly, all non-human TaxID annotations, all 
annotations with non-assigned interaction detection methods 
or PubMed identifiers, all annotations with generic specifica-
tions, and all proteins whose transcripts were not expressed in 
the brain (https://www.proteinatlas.org/humanproteome/
brain/human+brain) were removed. Then, a threshold was de-
termined, and the filtered interactions were scored by evaluat-
ing the number of publications and detection methods report-
ing an interaction. A final score (number of PubMed IDs+ 
number of methods) was calculated, and a score ≥2 was con-
sidered. We referred to this quality-controlled PPI network as 
“Human_brain_PPI.” The Human_brain_PPI network con-
tained 200398 interactions with a score ≥2 between 14326 pro-
teins and 55582 interactions with a score ≥3 between 9688 pro-
teins. Here, we used Human_brain_PPI with an interaction 
score ≥2 as the general PPI network. Next, we constructed sub-
networks by including all protein interactions from the gene 
sets of all hereditary parkinsonism genes, PARK genes, non-
PARK genes, PD risk genes, and AD risk genes. In the heredi-
tary parkinsonism gene network, encoded proteins were 
identified as “seeds” and their interactions as undirected edges. 
We also built an extended network that comprised the seed 
proteins, their direct neighboring proteins, and the PPIs be-
tween them. 

Analysis of PPIN topology 
Four measurement criteria, degree (k), betweenness centrality 
(BC), closeness centrality (CC), and clustering coefficient, were 
used to evaluate the PPIN nodes.19,20 The degree (k) of a node is 
defined as the number of edges adjacent to that node. Analyz-
ing the degree distribution can capture the structure and mod-
ular organization of a network. A node with a high k is identified 
as a “hub” that has many neighbors. The BC of a node is defined 
as the sum of the fraction of the shortest paths that pass through 
a node and measures how often a node acts as a “bridge” along 
the shortest paths between two other nodes. A node with a 
high BC denotes a bottleneck node that has greater control 
over a network than a node with low BC. The CC of a node, a 
measure of network centrality, is defined as the reciprocal of 
the sum of the shortest paths from a node to all other nodes in 
the network. Since the sum of the distances depends upon the 
number of nodes in a network, closeness is normalized by the 
total number of nodes in a network. A node with higher CC is 
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closer to other nodes and is more central in the network. Final-
ly, the clustering coefficient of a node is the fraction of the pair 
of a node’s neighbors that are adjacent to each other. A node 
with a high clustering coefficient has a small “world,” and its 
neighbors are closer to each other. 

Global topological measurements of a network include aver-
age degree (<k>), which is the mean of all degrees in a network; 
diameter (D), which is the maximum shortest path length be-
tween a pair of nodes in a network; mean shortest path length 
(mspl), which is the average of the path distances required to 
connect every pair of nodes via their shortest path and indi-
cates the network’s overall connectedness; and average clus-
tering coefficient (acc), which is the normalized sum of all the 
clustering coefficients of individual nodes and indicates the lo-
cal interconnectedness of a network. According to the Watts and 
Strogatz model,21 a network is referred to as a “small-world net-
work” if it has a high clustering coefficient and a low mspl. 

Calculation of physical interaction enrichment
Physical cohesiveness of the PPINs was assessed using a PIE 
analysis.22 A set of proteins of interest is more functionally co-
hesive if it has a higher interaction enrichment in the PPIN. 
However, PPINs show interaction enrichment biases for pro-
teins that are often studied. To address this, we utilized the PIE 
algorithm described by Sama and Huynen,22 which extracts 
random sets of proteins from the general PPINs that have the 
same node (protein) and edge (interaction) biases as that in a 
set of proteins of interest. The PIE algorithm then measures 
whether the proteins in a set of proteins of interest have more 
interactions among themselves than with proteins in random 
sets. The PIE score for randomly chosen proteins is 1.0. In total, 
we generated 100000 random protein sets with the same size 
and degree distribution as that in the set of proteins of interest 
and analyzed the number of interactions in the random sets 
to obtain a frequency distribution. This distribution was used 
to calculate the physical cohesiveness (PIE score) of the set of 
proteins of interest and its significance (p-value). All calcula-
tions and algorithms were implemented using custom Python 
scripts. 

RESULTS

Enriched biological processes shared by PARK and 
non-PARK genes
To investigate whether the hereditary parkinsonism genes were 
associated with distinct biological processes, we performed 
functional annotation and gene set enrichment analyses of all 
hereditary parkinsonism genes (both PARK and non-PARK 
genes) and PARK and non-PARK genes, separately. Overall, 303 
GO-BP terms were found enriched in the hereditary parkin-
sonism genes (Supplementary Table 2, only online). A total of 
241 GO-BP terms was significantly enriched in PARK genes 

(n=175 GO-BP terms) or non-PARK genes (n=90 GO-BP terms), 
wherein 24 GO-BP terms were commonly enriched in both 
PARK and non-PARK genes. GO-BP terms with significant en-
richment only in PARK genes also included non-PARK genes 
and vice versa. In total, 121 of 175 (69.1%) GO-BP terms en-
riched in PARK genes included non-PARK genes, and 77 of 90 
(85.6%) GO-BP terms enriched in non-PARK genes included 
PARK genes. When all hereditary parkinsonism genes (both 
PARK and non-PARK genes combined) were analyzed, gene 
set enrichment analysis revealed an additional 62 significantly 
enriched GO-BP terms, which were not enriched in the analy-
ses using PARK gene or non-PARK genes only. 

The enriched GO-BP terms could be categorized into the 
following functional semantic clusters: 1) autophagy/cellular 
catabolic processes, 2) mitochondria or lysosome organiza-
tion, 3) dopamine- or catecholamine-containing compound 
metabolic processes, 4) synapse organization and chemical 
synaptic transmission, 5) response to oxidative stress, 6) neu-
ron apoptosis process/neuronal death, 7) regulation of cellu-
lar protein catabolic processes, and 8) transport of lysosomes or 
mitochondria and vesicle-mediated transport in synapse (Table 
2 and Fig. 1). Taken together, both PARK and non-PARK genes 
were involved in common functional modules in the cells.

PPINs of proteins encoded by PARK and non-PARK 
genes 
Given that enriched biological processes were shared by PARK 
and non-PARK genes, we hypothesized that the PPINs formed 
by proteins encoded by PARK or non-PARK genes (PARK or 
non-PARK proteins) were close to each other. We first construct-
ed independent PPINs using PARK, non-PARK, and both 
PARK and non-PARK proteins as the seed proteins (Fig. 2 and 
Supplementary Table 3, only online). From a total of 19 PARK 
proteins, 11 proteins formed a single PPIN with 12 PPIs. After 
removing five controversial PARK proteins (UCHL1, GIGYF2, 
HTRA2, EIF4G1, and TMEM230), a single PPIN with seven 
proteins and eight PPIs was formed (Fig. 2A and B). The PPIN 
of the non-PARK proteins (n=77) consisted of 28 proteins with 
36 PPIs and small modules, including one PPI trimer and four 
PPI pairs (Fig. 2C). The PPIN comprising both PARK and non-
PARK proteins (n=96) consisted of a giant component with 51 
proteins connected via 83 PPIs and three PPI pairs (Fig. 2D). 
Twenty-five (30.1%) of the 83 PPIs in the giant component were 
direct interactions between PARK and non-PARK proteins, and 
six proteins in the 25 PPIs were linked to the giant component 
only when both PARK and non-PARK proteins were used. The 
probability of degree distribution P(k) of a PPIN follows a pow-
er-law scaling behavior represented by P(k)~k-r, where r is an 
order parameter. In a hierarchical network (r<2), however, the 
network loses various scale-free features and becomes ran-
dom if r>3.19,23 In the PPIN consisting of PARK and non-PARK 
proteins, the probability of degree distribution P(k) followed a 
power-law scaling behavior, P(k)~k-γ, with degree exponent γ= 
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1.24, where a straight line qualified as the fitted curve for the 
data points (P(k)~k-1.24) and correlation coefficient r2=0.92 (Fig. 
2G). In contrast, in the PPIN constructed using 86 proteins 
encoded by genes associated with risk alleles,13 a single PPIN 
with 17 proteins, 18 PPIs, and three PPI pairs was formed (Fig. 
2E). After removing seven proteins that overlapped with PARK 
or non-PARK proteins, 13 proteins were connected in small 
modules, including three pairs, one trimer, and one tetramer 
(Fig. 2F). A comparison of global topological measurements ob-
served between the PPINs formed by PARK and/or non-PARK 
proteins is summarized in Supplementary Table 3 (only on-
line). In the PPIN formed by both PARK and non-PARK proteins, 
the top five proteins with the highest degree connectivity (k) 
were LRRK2, MAPT, APP, HTT, and SNCA (Supplementary Ta-
ble 4, only online). The top five proteins with the highest BC, 
which formed the backbone network,24 were LRRK2, APP, 
MAPT, HTT, and FMR1 (Supplementary Fig. 1A, only online). 
Additionally, we found two cliques comprising four proteins 
(LRRK2-SNCA-MAPT-FMR1 and MAPT-APP-PRNP-PLP1), 
where all proteins were connected with each other (Supple-
mentary Fig. 1B, only online). Chemical synaptic transmission 
was the common GO-BP term shared by all proteins in both 
cliques (Supplementary Table 2, only online). Taken together, 
these results suggested that the PPIN formed by both PARK and 
non-PARK proteins is a single hierarchical scale-free network, 
where both PARK and non-PARK proteins are hub proteins in-
volved in a backbone network and functional modules (Sup-
plementary Fig. 1C, only online). 

Next, we constructed an extended PPIN using PARK and non-
PARK proteins and their direct interacting neighbor proteins 
(first neighbors). This single giant PPIN consisted of 4493 pro-
teins connected via 75125 PPIs (Supplementary Table 3, only 
online). As expected, the probability of degree distribution of 
the extended PPIN also followed a power-law scaling behav-
ior with γ=1.34 and r2=0.82 (Fig. 2H). The backbone network of 
the extended PPIN consisted of the top 1% nodes with the high-
est BC and included both PARK and non-PARK proteins, in-
cluding LRRK2, APP, PRNP, MAPT, FMR1, HTT, PLP1, DCTN1, 
VCP, GRN, and SQSTM1 (Supplementary Table 5, only online).

Next, we calculated the PIE scores and associated p-values 
for all hereditary parkinsonism proteins, PARK proteins, and 
non-PARK proteins, separately (Table 3). The PIE score was sig-
nificant for PARK and non-PARK proteins, independently. No-
tably, the PIE score of both PARK and non-PARK proteins as a 
single group was highly significant (p=0.00018), suggesting 
that these proteins interacted more than randomly expected, 
and this cannot be attributed to publication bias. In contrast, 
analyses of PIE scores between the PD GWAS proteins and AD 
GWAS proteins were not significant. On applying more strin-
gent data curation criteria (quality score ≥3), the results re-
mained the same except for PD GWAS proteins (before exclud-
ing PARK and non-PARK proteins), which were marginally 
significant (Supplementary Table 6, only online). Ta
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Autophagy

Positive regulation of cellular 
catabolic process

Negative regulation of 
cellular catabolic process

Mitochondrione organization

Lysosome organization

Dopamine metabolic process

Catechol-containing 
compound metabolic process

Synapse organization

Chemical synaptic
transmission

Response to oxidative stress

Neuron apoptotic process

Hereditary 
atypical 

Parkinsonian 
disoders 

(non-PARK)

Familial 
Parkinson’s

disease 
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Lysosomal transport

Mitochondrial transport

Vesicle-mediated transport 
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Fig. 1. Schematic representation of a tripartite network of hereditary parkinsonian disorders, biological processes, and genes. The first layer repre-
sents two groups of hereditary parkinsonian disorders: familial Parkinson’s disease (PD) associated with PARK genes and hereditary atypical parkin-
sonian disorders caused by mutations in non-PARK genes. The second layer represents the major gene ontology-biological process terms (GO-BP), 
which were significantly enriched in either PARK or non-PARK genes. GO-BP terms enriched in PARK genes were connected to the familial PD node, 
whereas those enriched in the non-PARK genes were connected to the hereditary atypical parkinsonian disorder node. The third layer represents the 
causative genes of hereditary parkinsonian disorders. Nodes and edges of PARK genes are red and those of non-PARK genes are blue.
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Fig. 2. Protein-protein interaction networks (PPINs) of PARK (red) and/or non-PARK proteins (blue). Nodes represent the proteins that encode Parkin-
son’s disease (PD)-related genes, and edges represent known protein-protein interactions with a quality score ≥2. Each PPIN was constructed using 
Cytoscape v3.8.2. with the following proteins: PARK proteins (A), PARK proteins excluding those encoded by controversial genes (B), non-PARK pro-
teins (C), all hereditary parkinsonism proteins i.e., both PARK and non-PARK proteins (D), proteins encoded by PD-related genes (gray) from meta-anal-
ysis of genome-wide association studies (GWAS) (E), and proteins encoded by PD-related genes, with PARK and non-PARK proteins excluded (F). 
Probabilities of degree distribution P(k) with the degree exponent (γ) and correlation coefficient values (r2) of the PPIN formed by PARK and non-PARK 
proteins (G) and the PPIN formed by PARK, non-PARK, and direct interacting first neighbor proteins (H).
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DISCUSSION

To the best of our knowledge, this is the first study to systemati-
cally analyze the PPINs and PIE scores of PARK and non-PARK 
proteins and demonstrate that both PARK and non-PARK  pro-
teins are highly connected at the PPI level and form a hierar-
chical scale-free PPIN. Moreover, GO functional enrichment 
analysis revealed that both PARK and non-PARK  proteins are 
involved in shared functional modules. Several studies corre-
lating genotype with phenotype have shown that mutations in 
non-PARK genes may present with idiopathic PD.25-27 At the 
pathological level as well, there are overlapping features be-
tween PARK and non-PARK gene mutations: for instance, loss 
of dopaminergic neurons is common in hereditary parkinso-
nian disorders caused by non-PARK mutations. Lewy body pa-
thology, which is a pathological hallmark of idiopathic PD, is 
found in some hereditary atypical parkinsonian disorders.28-32 
Furthermore, a close relationship between PARK and non-
PARK genes has also been found in other system layers. At the 
gene expression level, meta-analyses have shown that PARK 
and non-PARK genes are overrepresented in dysregulated 
genes in the substantia nigra of patients with idiopathic PD, 
particularly as downregulated genes.2,3 Recent studies have 
suggested that the burden of rare coding variants in non-PARK 
and PARK genes is increased in idiopathic PD genome, thereby 
supporting the possible role of non-PARK genes in the patho-
genesis of idiopathic PD.4 

The purpose, methods, and results of the PPIN analysis in 
our study differ from those in previous studies. The primary 
aim of our study was to explore the relationship between PARK 
and non-PARK proteins in a PPIN; whereas, previous studies 
have constructed PPINs to find novel PD-related genes8,9 or to 
explore the functional connectivity of newly identified genes 
with PD-related genes.33 In previous studies, the criteria for 
defining PD genes were unclear, and only a small number of 
non-PARK genes was included in the analyses. In contrast, we 
performed systematic curation from public databases and lit-
erature to accumulate an unbiased set of 77 non-PARK genes. 
Although we considered controversial genes, their inclusion/

exclusion did not affect our results. 
Our results suggested that the PPINs of PARK and non-PARK 

proteins are a part of a single scale-free hierarchical network, 
rather than two independent networks. In the gigantic compo-
nent of the PPIN consisting of both PARK and non-PARK pro-
teins, the network topology measures and probability of degree 
distribution, which followed a power-law scaling behavior, 
strongly suggested that these proteins were nodes of a single 
hierarchical network. The PIE results revealed that after merging 
the PARK and non-PARK proteins, they interacted 1.28 times 
more than what is randomly expected, supporting the fact that 
these proteins form a single hierarchical PPIN. As PIE analysis 
precludes any publication biases, this interaction enrichment 
was not due to a bias of proteins that have been studied often.22 
Further, the close relationship between PARK and non-PARK 
proteins at the PPIN level adhered to the results of our GO func-
tional enrichment analysis. Both PARK and non-PARK genes 
belonged to all eight major functional clusters of the enriched 
GO terms. In contrast to that in the PARK and non-PARK pro-
teins, there was no enrichment of the PPIs in proteins encoded 
by PD-related risk alleles, regardless of the inclusion/exclusion 
of the PARK and non-PARK genes in the GWAS-related genes. 
This may be because genes near statistically-associated risk 
alleles, which we selected as PD-related genes, were not nec-
essarily candidate genes for a disease.14,34 Another possible ex-
planation is that the risk alleles modulate PD-related genetic 
network indirectly, but are not a part of it per se. Recently, Li, et 
al.33 showed that PD-associated risk alleles influence innate-im-
mune mechanisms by modulating gene expression in mono-
cytes and lysosomal function via changes in gene expression 
or RNA splicing in dorsolateral prefrontal cortex.

In biological networks, degree, CC, and BC have been used to 
identify influential nodes that can be used for biomarker dis-
covery, drug designing, and drug repurposing.35,36 In the gigan-
tic component of the PPIN formed by PARK and non-PARK 
proteins, LRRK2, MAPT, APP, HTT, SNCA, and FMR1 were 
identified as hub proteins. Among these, LRRK2 had the high-
est degree and BC; thus, we suggest that LRRK2 may be the 
best target for designing and repurposing drugs for parkinso-

Table 3. Physical Cohesiveness between the Proteins Encoded by PD-Related Genes and AD-Related Genes

Category No. of nodes Means of interactions PIE score p value
PARK proteins   19 1.26 1.53 0.00058
PARK proteins excluding controversial genes   14 1.14 1.43 0.01083
Non-PARK proteins   77 1.09 1.21 0.00587
Both PARK and non-PARK proteins   96 1.79 1.28 0.00018
Both PARK and non-PARK proteins excluding controversial genes   91 1.67 1.22 0.00225
Proteins encoded by PD-related genes from meta-GWAS   86 0.54 1.07 0.18961
Proteins encoded by PD-related genes from meta-GWAS excluding PARK and non-PARK proteins   79 0.23 1.06 0.18617
Proteins encoded by AD-related genes from meta-GWAS 129 0.25 1.07 0.09377
PD, Parkinson’s disease; AD, Alzheimer’s disease; meta-GWAS, meta-analysis of genome-wide association studies.
Physical cohesiveness in a gene set was measured by protein interaction enrichment score and p-value. Protein-protein interactions with a quality score of two or 
more were subjected to further analysis.
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nian disorders. An unstable trinucleotide repeat expansion in 
the 5'-UTR of FMR1 causes fragile X syndrome or fragile X trem-
or/ataxia syndrome.37 The relationship between FMR1 and idio-
pathic PD has been studied previously. Reduced FMR1 expres-
sion and reduced FMRP encoded by FMR1 have been observed 
in the substantia nigra of idiopathic PD and in incidental Lewy 
body disease, which is considered as a preclinical stage of idio-
pathic PD.2,38 FMRP reduction is mediated by inhibition of PKC-
CREB signaling by alpha-synuclein.38

Although there are exceptions, patients with non-PARK gene 
mutations generally present with broader phenotypes of par-
kinsonism and additional movement disorders with or without 
cognitive dysfunction. Given the close physical connectivity in 
the PPIN between PARK and non-PARK proteins and shared 
functional modules (i.e., overlapping clinical features between 
“pure” parkinsonism and parkinsonism with additional fea-
tures, as well as shared biological processes), lumping a group 
of hereditary parkinsonian disorders caused by PARK or non-
PARK gene mutations mimics a recently suggested a concept of 
ataxia-spasticity disease spectrum.39 Hereditary ataxias and 
hereditary spastic paraplegias share common phenotypes, 
pathophysiological pathways, mechanisms, and PPINs.39,40 The 
concept suggests a descriptive, unbiased approach of modular 
phenotyping, instead of divisive diagnosis-driven ataxia and 
hereditary spastic paraplegia classification system. Therefore, 
it may be reasonable to include non-PARK genes in the PD-re-
lated genome along with PARK genes and PD risk alleles discov-
ered by GWAS, although mutations in non-PARK genes in idio-
pathic PD have not been systematically studied. 

The limitations of our study must be acknowledged. Although 
IntAct is frequently used as a gold standard in various applica-
tions, this was the only PPI database we used in this study. We 
analyzed proteins that are expressed only in the brain. Given 
that molecular functions and biological processes of genes in-
volved in the hereditary parkinsonism are not necessarily limit-
ed to the brain level, PPINs and related pathogeneses in non-
nervous tissue might have been missed. Further, a functional 
analysis of the PPIN of PARK and non-PARK proteins was not 
included in this study. Despite these limitations, we believe that 
our PPIN comprising PARK and non-PARK proteins can be used 
in future studies to explore novel PD-related genes or for drug 
discovery and repurposing.

In conclusion, our results suggest that both PARK and non-
PARK proteins constitute a single hierarchical PPIN and share 
molecular mechanisms in the pathogenesis of idiopathic PD.
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