55 research outputs found

    ๊ฐœ์—์„œ์˜ Mycobacterium avium complex ๊ฐ์—ผ์— ๋Œ€ํ•œ ์ˆ™์ฃผ ๋ฉด์—ญ๋ฐ˜์‘ ๊ทœ๋ช…

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ์ˆ˜์˜๊ณผ๋Œ€ํ•™ ์ˆ˜์˜ํ•™๊ณผ, 2022.2. ์œ ํ•œ์ƒ.๋น„๊ฒฐํ•ต ํ•ญ์‚ฐ๊ท  (nontuberculous mycobacteria, NTM)์€ ํ† ์–‘ ๋ฐ ์ž์—ฐ์ˆ˜ ๋“ฑ ์ž์—ฐ ํ™˜๊ฒฝ์— ๋„๋ฆฌ ๋ถ„ํฌํ•˜๊ณ  ์žˆ๋Š” ๊ธฐํšŒ ๊ฐ์—ผ๊ท ์ด๋‹ค. M. avium ๋ฐ M. intracellulare๋Š” NTM ํ์งˆํ™˜์„ ์ผ์œผํ‚ค๋Š” ์ฃผ์š” ์›์ธ๊ท ์œผ๋กœ Mycobacterium avium complex (MAC)์˜ ๋Œ€ํ‘œ์ ์ธ ๊ท ์ฃผ์ด๋‹ค. MAC๋Š” ์‚ฌ๋žŒ์„ ํฌํ•จํ•˜์—ฌ ๋‹ค์–‘ํ•œ ๋™๋ฌผ์—์„œ ๊ฐ์—ผ์ด ๋ณด๊ณ ๋˜์—ˆ์œผ๋ฉฐ ๊ฐœ์—์„œ๋Š” ์‚ฐ๋ฐœ์ ์ธ ๋ฐœ์ƒ์ด ๋ณด๊ณ ๋˜๊ณ  ์žˆ๋‹ค. MAC์— ๊ฐ์—ผ๋œ ๊ฐœ์˜ ๊ฒฝ์šฐ ๋Œ€๋ถ€๋ถ„ ์˜ˆํ›„๊ฐ€ ์ข‹์ง€ ์•Š์•„ ์•ˆ๋ฝ์‚ฌ๋˜๊ฑฐ๋‚˜ ์‚ฌ๋งํ•˜์˜€๋‹ค. ๋˜ํ•œ, MAC ๊ฐ์—ผ์— ๋Œ€ํ•œ ๊ฐœ์—์„œ์˜ ์ธ์ˆ˜๊ณตํ†ต๊ฐ์—ผ๋ณ‘์˜ ๊ฐ€๋Šฅ์„ฑ์€ ํ˜„์žฌ๊นŒ์ง€ ๋ฐํ˜€์ง„ ๋ฐ”๊ฐ€ ์—†์ง€๋งŒ MTBC (Mycobacterium tuberculosis complex)์ค‘ M. tuberculosis, M. bovis ๋ฐ M. microti ๋“ฑ์€ ๊ฐœ์—์„œ ์‚ฌ๋žŒ์œผ๋กœ์˜ ์ „ํŒŒ๊ฐ€ ๋ณด๊ณ ๋œ ๋ฐ” ์žˆ๋‹ค. ํ˜„์žฌ ๊ฐ€์ถ•๊ณผ ์•ผ์ƒ๋™๋ฌผ์— ์˜ํ•œ MAC์˜ ๊ฐ์—ผ ๋ณด๊ณ  ๋˜ํ•œ ์ฆ๊ฐ€ํ•˜๊ณ  ์žˆ๊ธฐ ๋•Œ๋ฌธ์— MAC ๊ฐ์—ผ์— ๋Œ€ํ•œ ๊ฐœ์—์„œ์˜ ๋ฉด์—ญ ๋ฐ˜์‘์„ ์กฐ์‚ฌํ•˜๋Š” ๊ฒƒ์€ ์ง„๋‹จ ๋ฐ ์น˜๋ฃŒ์™€ ๋”๋ถˆ์–ด ์‚ฌ๋žŒ๊ณผ ๊ฐœ ์‚ฌ์ด์˜ ์ž ์žฌ์ ์ธ ์ธ์ˆ˜๊ณตํ†ต ๊ฐ์—ผ์„ ์ œ์–ดํ•˜๋Š” ๋ฐ์—๋„ ํ•„์ˆ˜์ ์ธ ์š”์†Œ๋ผ๊ณ  ํŒ๋‹จ๋œ๋‹ค. ๊ฐœ์—์„œ์˜ MAC ๊ฐ์—ผ์€ ์ฃผ๋กœ M. avium subsp. hominissuis (MAH)๊ฐ€ ์›์ธ๊ท ์œผ๋กœ ์ง€๋ชฉ๋˜์–ด ์™”๋‹ค. ์ด์— ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ฐœ์˜ MAH ๊ฐ์—ผ์— ๋Œ€ํ•œ ์ˆ™์ฃผ ๋ฉด์—ญ๋ฐ˜์‘์„ ๊ฐœ ๋ง์ดˆ ํ˜ˆ์•ก ๋‹จํ•ต์„ธํฌ (peripheral blood mononuclear cells; PBMCs)์˜ ์ „์‚ฌ์ฒด ๋ถ„์„์„ ํ†ตํ•ด ํ™•์ธํ•˜์˜€๋‹ค. ์ „์‚ฌ์ฒด ๋ถ„์„์€ MAH ๊ฐ์—ผ์‹œ Th1 ๋ฐ Th17 ๋ฐ˜์‘๊ณผ ๊ด€๋ จํ•œ T ์„ธํฌ ๋ฉด์—ญ ๋ฐ˜์‘์ด ์œ ๋„๋จ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. Th1 ๊ด€๋ จ ์œ ์ „์ž์˜ ๋ฐœํ˜„์€ ๊ฐ์—ผ ์ดˆ๊ธฐ์— ํ™•์ธ๋œ ๋ฐ˜๋ฉด, Th17 ๊ด€๋ จ ์œ ์ „์ž์˜ ๋ฐœํ˜„์€ ๊ฐ์—ผ 12์‹œ๊ฐ„ ์ดํ›„์— ํ™•์ธ๋˜์—ˆ๋‹ค. ๋˜ํ•œ 24์‹œ๊ฐ„ ๊ฐ์—ผ ์ดํ›„ ํฐํฌ์‹์„ธํฌ (Macrophages) ๋‚ด์—์„œ ์„ธํฌ ์‚ฌ๋ฉธ ๊ด€๋ จ ์œ ์ „์ž์˜ ๋ฐœํ˜„์ด ๊ฐ์†Œ๋˜์—ˆ์œผ๋ฉฐ MAH๊ฐ€ ์ฆ์‹ํ•จ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด MAH ๊ฐ€ ๊ฐœ ๋ง์ดˆ ํ˜ˆ์•ก ๋‹จํ•ต์„ธํฌ์— ์นจ์ž…์‹œ Th1 ๋ฐ Th17 ๋ฉด์—ญ ๋ฐ˜์‘์„ ์œ ๋„ํ•˜๊ณ  ์„ธํฌ ์‚ฌ๋ฉธ ๊ธฐ์ž‘์„ ํ”ผํ•˜๋ฉฐ ๊ฐœ์˜ ํฐํฌ์‹์„ธํฌ ๋‚ด์—์„œ ์ƒ์กดํ•  ์ˆ˜ ์žˆ์Œ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๊ฐœ์—์„œ์˜ MAC ๊ฐ์—ผ์— ๋Œ€ํ•œ ์›์ธ๊ท ์€ MAH ๊ฐ€ ์ฃผ๋กœ ์ง€๋ชฉ๋˜์–ด ์™”์ง€๋งŒ ๋Œ€๋ถ€๋ถ„์˜ ๊ฐ์—ผ ์‚ฌ๋ก€์—์„œ๋Š” ์ข… ๋˜๋Š” ์•„์ข…์ด ์ •ํ™•ํžˆ ํ™•์ธ๋˜์ง€ ์•Š์•˜๋‹ค. ์ด๋Š” ์ƒ˜ํ”Œ ์ˆ˜์ง‘์˜ ์–ด๋ ค์›€, ๋ถˆํŠน์ • ์ž„์ƒ ์ง•ํ›„ ๋ฐ ๊ธด ์ž ๋ณต ๊ธฐ๊ฐ„์œผ๋กœ ์ธํ•˜์—ฌ ์›์ธ๊ท  ๋™์ •์ด ์–ด๋ ต๊ธฐ ๋•Œ๋ฌธ์ธ ๊ฒƒ์œผ๋กœ ์ƒ๊ฐ๋œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ MAC๋Š” ์ข…๋งˆ๋‹ค ๋ณ‘์›์„ฑ์ด ๋‹ค๋ฅด๊ณ  ํ•ญ์ƒ์ œ ๋‚ด์„ฑ์ด ๋‹ค์–‘ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๊ฐ์—ผ ์‹œ ์›์ธ๊ท ์„ ํ™•์ธํ•˜๋Š” ๊ฒƒ์ด ์น˜๋ฃŒ์— ๋งค์šฐ ์ค‘์š”ํ•˜๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” MAH ์™€ ๋”๋ถˆ์–ด ๋ฐ˜๋ ค๊ฒฌ์—์„œ ๊ฐ์—ผ ๊ฐ€๋Šฅ์„ฑ์ด ๋†’์„ ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒ๋˜๋Š” M. intracellulare ๊ฐ์—ผ์— ๋Œ€ํ•œ ๊ฐœ์—์„œ์˜ ์ˆ™์ฃผ ๋ฉด์—ญ ๋ฐ˜์‘์„ ์กฐ์‚ฌํ•˜์˜€๋‹ค. ๊ฐœ์˜ ์ž๊ฐ€ ๋‹จํ•ต๊ตฌ ์œ ๋ž˜ ํฐํฌ์‹์„ธํฌ (monocyte-derived macrophages; MDMs) ๋ฐ ๋ฆผํ”„๊ตฌ์˜ ๊ณต๋™ ๋ฐฐ์–‘์„ ํ†ตํ•ด M. intracellulare ๊ฐ์—ผ์— ๋Œ€ํ•œ ์ˆ™์ฃผ ๋ฉด์—ญ ๋ฐ˜์‘์„ ํ™•์ธํ•˜์˜€๋‹ค. ์ „์‚ฌ์ฒด ๋ถ„์„ ๊ฒฐ๊ณผ๋Š” M. intracellulare ์นจ์ž…์‹œ ๊ฐœ MDMs์ด M1 ์œ ์‚ฌ ํฐํฌ์‹์„ธํฌ๋กœ ๋ถ„ํ™”ํ•˜๊ณ  Th1 ๋ฐ Th17 ์„ธํฌ์˜ ๋ถ„ํ™”๋ฅผ ์œ ๋„ํ•˜๋Š” ์‚ฌ์ดํ† ์นด์ธ์„ ๋ถ„๋น„ํ•˜๋Š” ๊ฒƒ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ๋˜ํ•œ ๊ฐ์—ผ๋œ MDMs ๊ณผ ๊ฐœ ๋ฆผํ”„๊ตฌ์˜ ๊ณต๋™ ๋ฐฐ์–‘์„ ํ†ตํ•ด Th17 ์„ธํฌ๊ฐ€ M. intracellulare ๊ฐ์—ผ์‹œ ์šฐ์„ธํ•˜๊ฒŒ ๋ฐ˜์‘ํ•จ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด M. intracellulare ๊ฐ์—ผ ์‹œ ๊ฐœ์˜ ํฐํฌ์‹์„ธํฌ ํ™œ์„ฑํ™”์— ์˜ํ•ด Th17 ๋ฐ˜์‘์ด ์œ ๋„๋จ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค. ํ˜„์žฌ๊นŒ์ง€๋„ MAC์˜ ์ƒˆ๋กœ์šด ์ข…๊ณผ ์•„์ข…์€ ์—ฌ์ „ํžˆ ๋ฐํ˜€์ง€๊ณ  ์žˆ์œผ๋ฉฐ ์ด๋Š” ์งˆ๋ณ‘ ํ†ต์ œ์— ์ƒˆ๋กœ์šด ์œ„ํ˜‘์ด ๋˜๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ์‹ ์ข…์€ ํ•ญ์ƒ์ œ ๋‚ด์„ฑ, ์ˆ™์ฃผ ํŠน์ด์„ฑ ๋ฐ ๋ณ‘์›์„ฑ๊ณผ ๊ด€๋ จํ•œ ์œ ์ „์  ๋‹ค์–‘์„ฑ์„ ๋‚˜ํƒ€๋‚ธ๋‹ค. ๋”ฐ๋ผ์„œ MAC ๊ฐ์—ผ์— ์˜ํ•œ ์งˆ๋ณ‘์˜ ํ†ต์ œ๋ฅผ ์œ„ํ•ด์„œ๋Š” ์‹ ์ข… ๊ท ์ฃผ์˜ ์œ ์ „์  ํŠน์„ฑ์„ ์ดํ•ดํ•˜๋Š” ๊ฒƒ์ด ํ•„์ˆ˜์ ์ด๋‹ค. ํ˜„์žฌ ์ „์žฅ ์œ ์ „์ฒด ๋ถ„์„์˜ ๋ฐœ๋‹ฌ๋กœ MAC์˜ ์œ ์ „ํ•™์ ์ธ ํŠน์„ฑ์ด ๋ฐํ˜€์ง€๊ณ  ์žˆ์ง€๋งŒ ์•„์ง๊นŒ์ง€๋„ M. intracellulare๋Š” ๋‹ค๋ฅธ MAC ์ข…์— ๋น„ํ•ด ๊ด€๋ จ ์ •๋ณด๊ฐ€ ๋งค์šฐ ๋ถ€์กฑํ•œ ์‹ค์ •์ด๋‹ค. ๊ตญ๋‚ด ๋™๋ฌผ ๋ณดํ˜ธ์†Œ ๋ฐ ๋ฐ˜๋ ค๋™๋ฌผ ์ถœ์ž… ๊ฐ€๋Šฅ ๊ณต์›์—์„œ ์ƒˆ๋กญ๊ฒŒ ๋ถ„๋ฆฌ๋œ M. intracellulare ๊ฐ€ ๊ฐ ๋ถ„๋ฆฌ์ฃผ ๋ณ„๋กœ ๋‹ค์–‘ํ•œ ํ•ญ์ƒ์ œ ๊ฐ์ˆ˜์„ฑ์„ ๊ฐ€์ง€๊ณ  ์žˆ์Œ์ด ํ™•์ธ๋˜์—ˆ๋‹ค. ์ด์— ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” SMRT (single-molecule real-time) ์‹œํ€€์‹ฑ์„ ํ†ตํ•ด M. intracellulare ๊ตญ๋‚ด ๋ถ„๋ฆฌ์ฃผ๋“ค์˜ ์œ ์ „์  ํŠน์„ฑ์„ ์กฐ์‚ฌํ•˜์˜€๋‹ค. M. intracellulare ๋ถ„๋ฆฌ์ฃผ์˜ ์ „์žฅ์œ ์ „์ฒด ๋น„๊ต ๋ถ„์„์€ Mammalian cell entry ๋ฐ Type VII secretion system ์™€ ๊ด€๋ จํ•œ ๋ณ‘์›์„ฑ ์ธ์ž๋“ค์˜ ์œ ์ „์  ๋‹ค์–‘์„ฑ์„ ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค. ๋˜ํ•œ ์ด๋Ÿฌํ•œ ๋ถ„๋ฆฌ์ฃผ๋“ค์˜ ์œ ์ „์ ์ธ ์ฐจ์ด๋Š” ๋งˆ์šฐ์Šค ํ ํฐํฌ์‹์„ธํฌ์—์„œ์˜ ์‚ฌ์ดํ† ์นด์ธ ์œ ๋„ ๋ฐ ์„ธํฌ๋‚ด ์ƒ์กด์—์„œ๋„ ์ฐจ์ด๋ฅผ ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค. ๋”ฐ๋ผ์„œ ํ™˜๊ฒฝ ๋ถ„๋ฆฌ์ฃผ์˜ ์œ ์ „์  ๋ณ€์ด๋Š” ํ† ์–‘๊ณผ ๊ฐ™์ด ํ™˜๊ฒฝ์— ์‰ฝ๊ฒŒ ๋…ธ์ถœ๋˜๋Š” ๋ฐ˜๋ ค๊ฒฌ์—๊ฒŒ ์ƒˆ๋กœ์šด ์œ„ํ˜‘์ด ๋  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ํŒ๋‹จ๋œ๋‹ค. ๊ฐœ์—์„œ์˜ MAC ๊ฐ์—ผ์ด ๊พธ์ค€ํžˆ ๋ณด๊ณ ๋จ์— ๋”ฐ๋ผ MAC์— ๋Œ€ํ•œ ๊ฐœ์—์„œ์˜ ์ˆ™์ฃผ ๋ฉด์—ญ๋ฐ˜์‘ ๋ถ„์„์€ ์งˆ๋ณ‘์˜ ์˜ˆ๋ฐฉ ๋ฐ ์น˜๋ฃŒ๋ฒ• ๊ฐœ๋ฐœ์— ํฐ ๋„์›€์ด ๋  ๊ฒƒ์ด๋‹ค. ๋˜ํ•œ, ์ „์žฅ ์œ ์ „์ฒด ๋น„๊ต ๋ถ„์„์€ MAC ํ™˜๊ฒฝ ๋ถ„๋ฆฌ์ฃผ์˜ ํŠน์ด์ ์ธ ๋ณ‘์›์„ฑ ์ธ์ž ๋ฐ ์œ ์ „์  ํŠน์„ฑ์„ ์ดํ•ดํ•˜๋Š” ๋ฐ ํ•„์ˆ˜์ ์ธ ์š”์†Œ์ด๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ๋Š” ๊ฐœ์—์„œ์˜ MAC์˜ ๋ณ‘์›์„ฑ ๋ฐ ๊ฐ์ˆ˜์„ฑ์„ ์ดํ•ดํ•˜๊ณ  ์ž ์žฌ์ ์ธ ์ธ์ˆ˜๊ณตํ†ต๊ฐ์—ผ๋ณ‘ ์ „ํŒŒ๋ฅผ ์–ต์ œํ•˜๋Š” ๋ฐ์— ๊ธฐ์—ฌํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ์ƒ๊ฐ๋œ๋‹ค.Nontuberculous mycobacteria (NTM) are ubiquitous bacteria that are widely distributed in natural environments such as soil, water, and dust. Mycobacterium avium complex (MAC), to which M. avium and M. intracellulare belong, is a major opportunistic pathogen causing chronic lung disease in humans. MAC can infect a wide range of hosts, including dogs and there have been sporadic reports of MAC-induced mycobacteriosis in dogs. However, in most cases, infected dogs were euthanized or died due to clinical deterioration, a lack of response to therapy, and poor prognosis. Nevertheless, the underlying mechanisms of MAC infection in dogs have not yet been studied. In addition, dogs represent a reservoir of zoonotic diseases caused by Mycobacterium tuberculosis-complex (MTBC) such as M. tuberculosis, M. bovis and M. microti. The zoonotic potential of MAC has not been elucidated in dogs; however, the zoonotic aspects of MAC transmitted by domestic animals and wildlife have a major impact on human health. Therefore, investigating the canine immune response to MAC infection is important for diagnosis and treatment and can help to control potential zoonotic transmission between humans and dogs. M. avium subsp. hominissuis (MAH) has been identified as a major causative agent of canine mycobacteriosis by members of the MAC family. In this study, the host immune response against MAH infection was investigated by transcriptome analysis of canine peripheral blood mononuclear cells (PBMCs). Transcriptome profiling revealed that MAH infection induced a T cell immune response related to Th1 and Th17 cells. The expression of Th1-associated genes was identified in early infection, while that of Th17-associated genes increased 12 hours after infection. The expression of apoptosis-related genes decreased and the abundance of intracellular MAH increased within macrophages after 24 h. The results showed that MAH induces Th1 and Th17 immune responses and can survive within canine macrophages by avoiding apoptosis signaling. Although MAH appears to be the predominant pathogenic subspecies in canine cases, most case reports have not described the species and subspecies. The identification of species in canine mycobacteriosis is difficult due to sample acquisition, unspecific clinical signs and long incubation periods. However, different treatment regimens are required for each species of MAC because they exhibit differential pathogenicity and antibiotic susceptibilities. In particular, M. intracellulare is a major causative agent of MAC lung disease along with M. avium, and it mainly occurs from environmental sources rather than by infected individuals. In Korea, it was reported that M. intracellulare accounted for the majority of NTM distributed in animal shelters and parks. Therefore, companion animals might easily come in contact with M. intracellulare. In this study, the host immune response to M. intracellulare infection was investigated by coculture systems of canine T helper cells and autologous monocyte-derived macrophages (MDMs). Transcriptome analysis revealed that canine MDMs differentiated into M1-like macrophages and secreted molecules that induced Th1/Th17 cell polarization. The coculture systems showed that Th17 cells predominantly responded to M. intracellulare infection through macrophage activation in dogs. New species and subspecies of MAC are still being identified and pose new threats to disease control. These new species and subspecies of MAC exhibit genetic diversity and evolution with respect to antimicrobial susceptibility, host specificity, and pathogenicity. It is important to understand the genomic characteristics of newly identified species for the control of diseases caused by MAC. The genetic characteristics of MAC have been elucidated with the development of whole genome sequencing. However, M. intracellulare is poorly understood compared to the other MAC species. In Korea, M. intracellulare strains newly isolated from animal shelters and parks indicated various antimicrobial resistance patterns for each species. In this study, the genomic characteristics of these M. intracellulare isolates were investigated by single-molecule real-time (SMRT) sequencing. The comparative analysis of M. intracellulare isolates showed genetic diversity and evolution in relation to virulence factors such as mammalian cell entry and the type VII secretion system. These genetic differences were also associated with cytokine induction and survival in alveolar macrophages. Genetic variation of these environmental isolates will pose a new threat to dogs that are easily exposed to environmental sources. Investigating the host immune response is important for disease prevention and treatment development as MAC infection has been reported in dogs. The findings from this study will contribute to a better understanding of the pathogenesis and susceptibility of MAC in dogs and the control of potential zoonotic transmission.Contents Abstract I Contents V List of Figures VII List of Tables X List of Abbreviation XII General Introduction 1 Literature Review 7 Mycobacterium avium complex 7 I. Differentiation of Mycobacterium avium complex species 8 II. Host immune response to Mycobacterium avium complex 10 III. Mycobacterium avium complex infection in dogs 13 Chapter โ… . Mycobacterium avium subsp. hominissuis modulates the protective immune response in canine peripheral blood mononuclear cells Abstract 20 1.1. Introduction 21 1.2. Materials and Methods 25 1.3. Results 31 1.4. Discussion 38 Chapter โ…ก. Mycobacterium intracellulare induces a Th17 immune response via M1-like macrophage polarization in dogs Abstract 60 2.1. Introduction 61 2.2. Materials and Methods 64 2.3. Results 72 2.4. Discussion 78 Chapter โ…ข. Whole genome analysis of Mycobacterium intracellulare isolates from environment reveals genetic diversity and the evolution of virulence Abstract 103 3.1. Introduction 105 3.2. Materials and Methods 107 3.3. Results 113 3.4. Discussion 121 General Discussion 146 General Conclusion 155 References 157 Abstract in Korean 187๋ฐ•

    In vitro generation of human CD141+ dendritic cells from CD14+ monocytes

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› ๋†์—…์ƒ๋ช…๊ณผํ•™๋Œ€ํ•™ ๋†์ƒ๋ช…๊ณตํ•™๋ถ€, 2017. 8. ์œค์ฒ ํฌ.Human CD141+ (BDCA-3+) dendritic cells (DCs) are specialized to cross-presentation and, thus extensively studied for developing DC-based therapy against cancer. A series of attempts was made to generate CD141+ DCs from cord blood CD34+ hematopoietic progenitors to overcome a practical limitation, in vivo rareness. However, in vitro differentiation of CD141+ DC needs to be further investigated. In the present study, I identified CD141 expression in the well-known culture system that generates DCs from CD14+ monocytes in presence of GM-CSF and IL-4. After 8-days of the culture, CD141 was detected only on the cells which adhered to the bottom of the culture plate. The attached cells exhibited a typical feature of immature monocyte-derived DCs (moDCs), except for higher CD86 expression, more dendrites, and higher granularity compared to those which did not attach. Additional 3 days of culture further increased CD141 expression in the cells retaining adhesion, which partially expressed CELC9A. Indeed, they exhibited relatively effective uptake of dead cells. Interestingly, the attached moDCs differently responded to polyinosinic:polycytidylic acid (poly I:C) stimulation as well as the mixed lymphocyte reaction. Collectively, in vitro generation of human CD141+ DCs from CD14+ monocytes will contribute to further investigation into yielding human CD141+ DCs using peripheral blood monocytes.I. Review of Literature 1 1. Human monocyte-derived DC 1 1.1 Monocyte 1 1.2 In vitro derived moDCs 2 2. Human CD141+ dendritic cell 3 2.1 Introduction 3 2.2 Characterization of CD141+ DCs 5 2.3 The role of CD141+ DCs in T cell responses 6 2.4 Cross-presentation of CD141+ DCs 7 2.5 Development of CD141+ DCs 8 II. Introduction 9 III. Materials and Methods 12 1) Ethical statement 12 2) Isolation of human monocytes 12 3) CD14+ monocyte culture 13 4) WrightGiemsa Staining 13 5) Flow cytometry 14 6) PolyI:C stimulation 14 7) Mixed lymphocyte reaction 15 8) Dead cell uptake 15 9) Enzyme-linked immunosorbent assay (ELISA) 15 10) Statistical analysis 16 IV. Results 17 1) Three different forms of moDCs after the differentiation of peripheral blood CD14+ monocytes 20 2) Attached cells after CD14+ monocyte culture are immature DCs with relatively high expression of CD141 and CD86 23 3) Non-attached cells are not important to CD141 expression of the attached cells in GM-CSF/IL-4-driven culture system 26 4) Adhesive capacity is partially involved in CD141 expression of moDCs 28 5) Dead cells uptake and TLR3 response of Attached CD141+ moDCs 31 6) Allogeneic mixed lymphocyte reaction by attached CD141+ moDCs 34 V. Supplementary results 35 1) The absolute number of nine different subsets after additional 3-day culture 35 2) Surface molecules of nine different subpopulations after additional 3-day culture 36 VI. Discussion 37 VII. Literature Cited 40 VIII. Summary in Korean 47Maste

    ๋Œ€์•ˆ์–ธ๋ก ์˜ ๊ณต์ •์„ฑ ์ธ์‹๊ณผ ์‹ค์ฒœ - ๋‰ด์Šคํƒ€ํŒŒ ์‚ฌ๋ก€๋ถ„์„ -

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์–ธ๋ก ์ •๋ณดํ•™๊ณผ, 2016. 2. ์œค์„๋ฏผ.๋ณธ ์—ฐ๊ตฌ๋Š” ํ•œ๊ตญ ์‚ฌํšŒ์—์„œ ์ ์ฐจ ์˜ํ–ฅ๋ ฅ์„ ํ‚ค์›Œ๋‚˜๊ฐ€๊ณ  ์žˆ๋Š” ๋Œ€์•ˆ์–ธ๋ก ์ด ๊ณผ์—ฐ์–ธ๋ก  ๊ณต์ •์„ฑ์„ ์–ด๋–ป๊ฒŒ ์ดํ•ดํ•˜๊ณ  ์žˆ๋Š”์ง€๋ฅผ ์‚ดํŽด๋ณธ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ๋Œ€์•ˆ์–ธ๋ก ์˜ ๊ณต์ •์„ฑ ์ดํ•ด๊ฐ€ ํ•œ๊ตญ์‚ฌํšŒ์— ์˜๋ฏธํ•˜๋Š” ๋ฐ”๋Š” ๋ฌด์—‡์ด๋ฉฐ ํ•œ๊ณ„๋Š” ๋ฌด์—‡์ธ์ง€ ํ™•์ธํ•˜๋Š” ๊ฒƒ์„ ๋ชฉ์ ์œผ๋กœ ํ•œ๋‹ค. ํ”ํžˆ ๋Œ€์•ˆ์–ธ๋ก ์€ ํŠน์ • ์ง‘๋‹จ์ด๋‚˜ ์กฐ์ง์˜ ์ดํ•ด๊ด€๊ณ„๋ฅผ ์ฃผ์ฐฝํ•˜๋Š” ๋šœ๋ ทํ•œ ํŽธํ–ฅ์„ฑ์„ ๊ฐ–๊ณ  ์žˆ๋Š” ๊ฒƒ์œผ๋กœ ์ธ์‹๋˜๋ฉฐ ์ด์— ๋”ฐ๋ผ ๊ณต์ •ํ•˜์ง€ ์•Š์€ ์–ธ๋ก ํ–‰์œ„๋ผ๋Š” ๋น„ํŒ์„ ๋ฐ›๋Š”๋‹ค. ๊ทธ๋Ÿผ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ๊ณผ์—ฐ ๋Œ€์•ˆ์–ธ๋ก ์ด ์ถ”๊ตฌํ•˜๋Š” ๊ณต์ •์„ฑ์ด๋ž€ ๋ฌด์—‡์ธ์ง€๋ฅผ ์ฒด๊ณ„์ ์œผ๋กœ ๋‹ค๋ฃจ๊ณ  ์žˆ๋Š” ์—ฐ๊ตฌ๋Š” ์ฐพ์•„๋ณด๊ธฐ ํž˜๋“ค๋ฉฐ, ์˜คํžˆ๋ ค ๋Œ€์•ˆ์–ธ๋ก ์€ ๋งˆ์น˜ ๊ณต์ •์„ฑ ๋…ผ์˜์—์„œ ๋ฒ—์–ด๋‚œ ์˜ˆ์™ธ์˜์—ญ์ธ ๊ฒƒ์ฒ˜๋Ÿผ ๋‹ค๋ค„์ง€๊ณ ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ๊ณผ์—ฐ ๋Œ€์•ˆ์–ธ๋ก ์ด ์ฃผ์žฅํ•˜๋Š” ์–ธ๋ก  ๊ณต์ •์„ฑ์ด๋ž€ ๋ฌด์—‡์ด๋ฉฐ, ์–ด๋–ป๊ฒŒ ํ‰๊ฐ€ํ•  ์ˆ˜ ์žˆ์„์ง€์— ๋Œ€ํ•œ ์˜๋ฌธ์ด ์ œ๊ธฐ๋œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ๋Œ€์•ˆ์–ธ๋ก ์„ ๋‹ค๋ฃจ์ง€ ์•Š๊ณ ์„œ๋Š” ํ•œ๊ตญ ์–ธ๋ก  ๊ณต์ •์„ฑ์˜ ์ง€ํ˜•๋„๋ฅผ ๊ทธ๋ฆด ์ˆ˜ ์—†๋‹ค๋Š” ์ž…์žฅ์„ ๊ฒฌ์ง€ํ•˜๋ฉฐ, ์ฃผ๋ฅ˜์–ธ๋ก ๊ณผ ๋Œ€์•ˆ์–ธ๋ก ์„ ๋น„๊ตํ•จ์œผ๋กœ์จ ์ด๋“ค์„ ์ดํ•ดํ•  ์ˆ˜ ์žˆ๋Š” ๊ธฐ๋ณธ์ ์ธ ํ‹€์„ ๋งŒ๋“ค๊ณ ์ž ํ•œ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด Shoemaker & Reese์˜ ๋‹ค์„ฏ๊ฐ€์ง€ ์š”์ธ ์œ„๊ณ„๋ชจ๋ธ์„ ์ฐจ์šฉํ•˜์—ฌ ๋Œ€์•ˆ์–ธ๋ก ์˜ ํŠน์ง•์œผ๋กœ ๋…ผ์˜๋˜์–ด ์™”๋˜ ์†์„ฑ๋“ค์„ ์ฒด๊ณ„์ ์œผ๋กœ ์ •๋ฆฌํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ๊ธฐ์กด์˜ ์ฃผ๋ฅ˜์–ธ๋ก ์— ๋Œ€ํ•ด ํญ๋„“๊ฒŒ ์ ์šฉ๋˜์–ด ์™”๋˜ Shoemaker & Reese์˜ ๋ชจ๋ธ์„ ๋Œ€์•ˆ์–ธ๋ก  ์ ์šฉ์‹œ์ผœ ๋ด„์œผ๋กœ์จ ๋Œ€์•ˆ์–ธ๋ก ์˜ ๋ฉ”์‹œ์ง€๊ฐ€ ์ƒ์‚ฐ๋˜๊ธฐ๊นŒ์ง€์˜ ๊ณผ์ •์„ ์ด๋ก ํ™”ํ•˜์˜€๋‹ค. ์ดํ›„ ๋Œ€์•ˆ์–ธ๋ก ์ด ๋‹ฌ์„ฑํ•˜๊ณ ์ž ํ•˜๋Š” ๊ณต์ •์„ฑ์ด๋ž€ ๋ฌด์—‡์ธ์ง€๋ฅผ ๋…ผํ•œ ํ›„ ์–ด๋–ป๊ฒŒ ํ‰๊ฐ€ํ•  ์ˆ˜ ์žˆ์„์ง€ ์งš์–ด ๋‚˜๊ฐ€๊ณ ์ž ํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ ๋…ผ์˜๋Š” ๋Œ€์•ˆ์–ธ๋ก ์„ ๊ณต์ •์„ฑ ๋…ผ์˜์˜ ๊ณต๋ฐฑ์— ๋จธ๋ฌด๋ฅด๋Š” ๊ฒƒ์„ ๋ง‰๊ธฐ ์œ„ํ•จ์ž„๊ณผ ๋™์‹œ์— ๋Œ€์•ˆ์–ธ๋ก ์˜ ์ง€ํ–ฅ๊ณผ ๋Œ€์ค‘๊ณผ์˜ ๊ด€๊ณ„, ํ˜„์‹ค ์ƒํ™ฉ ๋“ฑ์ด ์ฃผ๋ฅ˜์–ธ๋ก ์˜ ๊ทธ๊ฒƒ๊ณผ ๋‹ค๋ฆ„์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ์ฃผ๋ฅ˜์–ธ๋ก ์˜ ํ‹€์—์„œ ๋…ผ์˜๋˜์–ด ์™”๋˜ ๊ณต์ •์„ฑ ์›์น™์„ ๊ทธ๋Œ€๋กœ ์ ์šฉํ•˜๋Š” ์˜ค๋ฅ˜๋ฅผ ํ”ผํ•˜๊ธฐ ์œ„ํ•จ์ด๋‹ค. ๋Œ€์•ˆ์–ธ๋ก ์˜ ๊ณต์ •์„ฑ์€ ๋‹ค์Œ์˜ ๊ฒƒ๋“ค์ด ์ถฉ์กฑ๋˜์–ด์•ผ ํ•œ๋‹ค๊ณ  ๋ณด์•˜๋‹ค. ์ฒซ์งธ, ๋Œ€์•ˆ์–ธ๋ก ์˜ ๊ณต์ •์„ฑ์€ ๋ฏผ์ฃผ์ฃผ์˜ ๋ฐœ์ „์„ ๊ถ๊ทน์  ๋ชฉํ‘œ๋กœ ์ €๋„๋ฆฌ์ฆ˜ ์›์น™์˜ ๋ณต์›์„ ๋ชฉ์ ์œผ๋กœ ํ•ด์•ผํ•œ๋‹ค. ๋‘˜์งธ, ๋ณด๋„ ๋‚ด์šฉ์˜ ํˆฌ๋ช…์„ฑ์„ ๊ฐ–์ถ”์–ด ์‚ฌ์‹ค๊ณผ ๋ฃจ๋จธ, ๋ฏฟ์„ ์ˆ˜ ์žˆ๋Š” ์ •๋ณด์›๊ณผ ๋ถˆํ™•์‹คํ•œ ์ •๋ณด์›, ๋ถ„์„๊ณผ ์ถ”์ธก์„ ๊ตฌ๋ถ„ํ•ด์•ผ ํ•œ๋‹ค. ์…‹์งธ, ๋Œ€์ค‘๊ณผ์˜ ์†Œํ†ต์„ ์ง€ํ–ฅํ•˜์—ฌ ์ƒํ˜ธ ๊ฐ์‹œ์™€ ๊ฒฌ์ œ๋ฅผ ์ด๋ฃฌ๋‹ค. ์ด ์„ธ ๊ฐ€์ง€๋Š” ๋Œ€์•ˆ์–ธ๋ก ์˜ ๊ณต์ •์„ฑ์„ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•œ ์ตœ์†Œํ•œ์˜ ๊ธฐ์ค€์ด์ž ๋Œ€์•ˆ์–ธ๋ก ์˜ ์กด๋ฆฝ ๊ทผ๊ฑฐ๋ฅผ ๊ฐ•ํ™”ํ•  ์กด๋ฆฝ ์š”๊ฑด์ด๋‹ค. ์ด๋Ÿฌํ•œ ์ด๋ก ์  ํ† ๋Œ€ ์œ„์—์„œ ์‹ค์ œ ๋Œ€์•ˆ์–ธ๋ก ์˜ ์ž‘๋™ ๋ฐฉ์‹๊ณผ ๊ณต์ •์„ฑ ์ธ์‹์€ ์–ด๋– ํ•œ์ง€ ์•Œ์•„๋ณด๊ธฐ ์œ„ํ•ด ๋‰ด์Šคํƒ€ํŒŒ์— ๋Œ€ํ•œ ์‚ฌ๋ก€๋ถ„์„์„ ์ง„ํ–‰ํ•˜์˜€๋‹ค. ์–ธ๋ก  ์กฐ์ง์˜ ๊ณต์ •์„ฑ ์ธ์‹๊ณผ ์‹ค์ฒœ์„ ํ™•์ธํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๊ธฐ์ž ๊ฐœ์ธ์˜ ์‹ ๋…์ด๋‚˜ ๊ฐ€์น˜, ๊ฒฌํ•ด, ๋ณด๋„๋˜๋Š” ๋‚ด์šฉ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์กฐ์ง์˜ ๊ด€ํ–‰๊ณผ ๊ทœ๋ฒ”, ํ†ต์ œ ์—ญ์‹œ ํ™•์ธํ•ด์•ผ ํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ๋‹ค์ฐจ์›์ ์ธ ์ ‘๊ทผ์„ ์œ„ํ•ด ๋‰ด์Šคํƒ€ํŒŒ๋ฅผ ์ฐธ์—ฌ๊ด€์ฐฐํ•˜๊ณ  ๋™์‹œ์— ์‹ฌ์ธต์ธํ„ฐ๋ทฐ์™€ ๋ณด๋„ ๋‚ด์šฉ์— ๋Œ€ํ•œ ๊ฐœ๊ด„์  ๋ถ„์„์„ ์‹œํ–‰ํ•จ์œผ๋กœ์จ ๋‰ด์Šคํƒ€ํŒŒ ๋‚ด๋ถ€์—์„œ ๊ณต์œ ๋˜๊ณ  ์žˆ๋Š” ๊ณต์ •์„ฑ์ด๋ž€ ๊ณผ์—ฐ ๋ฌด์—‡์ด๋ฉฐ ์–ด๋–ป๊ฒŒ ์‹ค์ฒœํ•ด ๋‚˜๊ฐ€๊ณ ์ž ํ•˜๋Š”์ง€๋ฅผ ํ™•์ธํ•˜์˜€๋‹ค. ์ฐธ์—ฌ๊ด€์ฐฐ๊ณผ ์‹ฌ์ธต์ธํ„ฐ๋ทฐ, ๋ณด๋„ ๋‚ด์šฉ์˜ ๊ฐœ๊ด„์  ๋ถ„์„์„ ํ†ตํ•ด ์•Œ ์ˆ˜ ์žˆ๊ฒŒ ๋œ ์‚ฌ์‹ค์€ Shoemaker & Reese์˜ ๋‹ค์„ฏ๊ฐ€์ง€ ์š”์ธ ์œ„๊ณ„๋ชจ๋ธ์— ์ ์šฉํ•˜์—ฌ ์ •๋ฆฌํ•จ์œผ๋กœ์จ ์ด๋“ค์ด ์ฃผ๋ฅ˜์–ธ๋ก  ๊ทธ๋ฆฌ๊ณ  ๋Œ€์•ˆ์–ธ๋ก ๊ณผ ์–ผ๋งˆ๋‚˜ ์œ ์‚ฌํ•˜๊ณ  ๋‹ค๋ฅธ์ง€๋ฅผ ํ™•์ธํ•˜์˜€๋‹ค. ์ตœ์ข…์ ์œผ๋กœ ์•ž์„œ ์ œ์‹œํ•œ ์„ธ ๊ฐ€์ง€ ๊ธฐ์ค€์„ ์ ์šฉํ•˜์—ฌ ๋‰ด์Šคํƒ€ํŒŒ์˜ ๊ณต์ •์„ฑ์„ ํ‰๊ฐ€ํ•˜๊ณ  ์ด๋“ค์ด ํ•œ๊ตญ์‚ฌํšŒ์— ๊ฐ–๋Š” ์˜๋ฏธ๋ฅผ ์งš์–ด๋ณด๊ณ ์ž ํ•˜์˜€๋‹ค.1์žฅ ๋ฌธ์ œ ์ œ๊ธฐ : ๋Œ€์•ˆ์–ธ๋ก ์€ ์–ธ๋ก  ๊ณต์ •์„ฑ์˜ ์˜ˆ์™ธ์˜์—ญ์ธ๊ฐ€? 9 2์žฅ ์„ ํ–‰์—ฐ๊ตฌ ๊ฒ€ํ†  13 1์ ˆ ์ €๋„๋ฆฌ์ฆ˜ ์›์น™์— ๋Œ€ํ•œ ์„ธ ๊ฐ€์ง€ ๋น„ํŒ ์กฐ๋ฅ˜ 15 1. ๊ณต๊ณต์ €๋„๋ฆฌ์ฆ˜(Public Journalism) 17 2. ๊ฐ•ํ•œ ๊ฐ๊ด€์ฃผ์˜(Strong Objectivism) 19 3. ๋Œ€์•ˆ์–ธ๋ก (Alternative Journalism) 21 4. ์†Œ๊ฒฐ 23 2์ ˆ ๋Œ€์•ˆ์–ธ๋ก  ์ด๋ก ํ™” : Shoemaker & Reese ๋‹ค์„ฏ๊ฐ€์ง€ ์š”์ธ ์œ„๊ณ„๋ชจ๋ธ 25 1. ๊ธฐ์ž ๊ฐœ์ธ 32 2. ๋ฏธ๋””์–ด ๊ด€ํ–‰ 34 3. ์กฐ์ง 35 4. ๋Œ€์™ธ๊ด€๊ณ„ 37 5. ์ด๋ฐ์˜ฌ๋กœ๊ธฐ 38 6. ์†Œ๊ฒฐ 39 3์ ˆ ๋Œ€์•ˆ์–ธ๋ก ์˜ ๊ณต์ •์„ฑ์ด๋ž€ ๋ฌด์—‡์ธ๊ฐ€ 41 1. ๋Œ€์•ˆ์–ธ๋ก ์˜ ๊ณต์ •์„ฑ 41 2. ๋Œ€์•ˆ์–ธ๋ก ์˜ ๊ณต์ •์„ฑ ํ‰๊ฐ€ ๊ธฐ์ค€ 46 3์žฅ ์—ฐ๊ตฌ ๋ฌธ์ œ 50 4์žฅ ์—ฐ๊ตฌ ๋ฐฉ๋ฒ• 53 1์ ˆ ์—ฐ๊ตฌ ๋Œ€์ƒ 53 2์ ˆ ์—ฐ๊ตฌ ์ง„ํ–‰ 57 5์žฅ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ 61 1์ ˆ ๋‰ด์Šคํƒ€ํŒŒ์˜ ๊ธฐ์ž ๊ฐœ์ธ 74 2์ ˆ ๋‰ด์Šคํƒ€ํŒŒ์˜ ๋ฏธ๋””์–ด ๊ด€ํ–‰ 79 3์ ˆ ๋‰ด์Šคํƒ€ํŒŒ์˜ ์กฐ์ง 89 4์ ˆ ๋‰ด์Šคํƒ€ํŒŒ์˜ ๋Œ€์™ธ๊ด€๊ณ„ 98 5์ ˆ ๋‰ด์Šคํƒ€ํŒŒ์˜ ์ด๋ฐ์˜ฌ๋กœ๊ธฐ 106 6์žฅ ์—ฐ๊ตฌ ๊ฒฐ๋ก  : ๋‰ด์Šคํƒ€ํŒŒ์˜ ๊ณต์ •์„ฑ ๋…ผ์˜์™€ ํ‰๊ฐ€ 115 ์ฐธ๊ณ ๋ฌธํ—Œ 125 Abstract 138Maste

    ๋†’์€ ํ’ˆ์งˆ ์ธ์ž ๋‹จ์ผ-์—ฐ์‚ฐ์ฆํญ๊ธฐ ๊ธฐ๋ฐ˜์˜ ๊ณต์ง„๊ธฐ๋ฅผ ์ด์šฉํ•œ ๋„“์€ ๋™์ž‘ ๋Œ€์—ญ์˜ ๋‹ค์ค‘ ๋ชจ๋“œ ๋ฐด๋“œ-ํŒจ์Šค ์—ฐ์†-์‹œ๊ฐ„ ๋ธํƒ€-์‹œ๊ทธ๋งˆ ๋ชจ๋“ˆ๋ ˆ์ดํ„ฐ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2018. 8. ๊น€์ˆ˜ํ™˜.Continuous-wave (CW) Doppler signal, which utilizes pencil transducer with the center frequency of a few MHz to tens of MHz range, is suitable for measuring the high blood velocity in the ultrasound imaging system. The CW Doppler received signal consists of a strong signal from stationary tissue and the much weaker Doppler signal from moving blood. Since the Doppler signal is 40โ€“60 dB below the strong signal, CW Doppler receiver is required to achieve a wide dynamic range (DR). The RF-to-baseband mixing process, which limits the performance of the CW Doppler receiver, can be moved from analog domain to digital domain by using a band-pass continuous-time delta-sigma modulator (BPCTDSM). Since the signal processing for correcting I/Q mismatch can be easily implemented in the digital domain, the CW Doppler receiver that uses BPCTDSM is more efficient than the conventional one. The performance of the BPCTDSM depends on the quality factor (Q) of a resonator. When Q falls below the ratio of the center frequency to the signal bandwidth, FC/FB, the performance degradation becomes significant. In CW Doppler receiver, the center frequencies are in the range of up to tens of MHz and the signal bandwidth is typically 200 kHz, which results in large FC/FB and therefore requires high Q resonator. Recently, a single-opamp resonator is widely used to decrease the power consumption. However, compared to a conventional active resonator, which uses two opamps, the single-opamp resonator is more vulnerable to the effect of finite gain-bandwidth (GBW) of an opamp that results in the degradation of Q. Using a multi-stage opamp can be used to achieve high GBW, but requires enhanced specifications for an opamp as FC/FB increases and therefore increases power consumption. Compensating the coefficients of the loop filter that restores the modified noise transfer function of the modulator due to the GBW can be utilized to alleviate to the effect of finite GBW. Additional feedback path can also compensate the loop delay caused by the finite GBW. Although these approaches can be used regardless of FC/FB, the compensated coefficients are not guaranteed to be implemented using unit resistance and unit capacitance, which is important to reduce the mismatch between the passive components. Also, an additional feedback DAC is required to implement the compensation feedback path. To alleviate the effect of finite GBW of an opamp to Q of the resonator, we propose a high Q single-opamp resonator, which compensates the degradation of Q by using a positive feedback resistor while not burdening to the design of an opamp. Also, the passive components that used in the single-opamp resonator are designed by using a unit resistance and a unit capacitance to minimize the effect of mismatch. In this thesis, a multi-mode wide DR BPCTDSM for pencil probe application is presented. Our BPCTDSM can be applied to measure the blood flow in the heart, vessel, and gingiva, which uses the center frequencies of 2 MHz, 5 MHz, and 20 MHz, respectively. By utilizing the proposed high Q single-opamp resonator, it is available to achieve wide DR despite the finite GBW of an opamp. The prototype is implemented in 180 nm CMOS technology with an active area of 0.845 mm2. The experimental results show DRs of 88.15/88.42/90.39 dB and peak signal-to-noise distortion ratios of 70.2/70.03/68.58 dB in cardiac/vascular/ gingival-modes. The power consumptions are 14.73/18.77/25.75 mW in cardiac/vascular/ gingival-modes from the supply voltage of 1.8 V.ABSTRACT 1 CONTENTS 4 LIST OF FIGURES 6 LIST OF TABLES 9 CHAPTER 1 INTRODUCTION 1 1.1 ULTRASOUND IMAGING SYSTEM 1 1.2 ULTRASOUND ACQUISITION MODES 7 1.2.1 BRIGHTNESS MODE 7 1.2.2 DOPPLER MODE 8 1.3 CONTINUOUS-WAVE DOPPLER RECEIVER 16 1.4 THESIS ORGANIZATION 20 CHAPTER 2 FUNDAMENTALS OF BAND-PASS CONTINUOUS-TIME DELTA-SIGMA MODULATOR 21 2.1 DELTA-SIGMA MODULATOR 21 2.2 CONTINUOUS-TIME DELTA-SIGMA MODULATOR 27 2.3 BAND-PASS CONTINUOUS-TIME DELTA-SIGMA MODULATOR 34 2.4 PERFORMANCE METRICS 38 CHAPTER 3 WIDE DYNAMIC RANGE BAND-PASS CONTINUOUS-TIME DELTA-SIGMA MODULATOR WITH HIGH QUALITY FACTOR SINGLE-OPAMP RESONATOR 40 3.1 PRIOR SINGLE-OPAMP RESONATORS 41 3.2 HIGH QUALITY FACTOR SINGLE-OPAMP RESONATOR 49 CHAPTER 4 DESIGN AND IMPLEMENTATION 56 4.1 BEHAVIORAL-LEVEL DESIGN 56 4.2 CIRCUIT-LEVEL DESIGN 66 4.2.1 OPAMP 70 4.2.2 QUANTIZER 75 4.2.3 CURRENT DAC 78 4.2.4 PERIPHERAL BLOCKS 80 4.3 SIMULATION RESULTS 82 CHAPTER 5 MEASUREMENT RESULTS 85 5.1 MEASUREMENT SETUP 85 5.2 MEASUREMENT RESULTS 88 CHAPTER 6 CONCLUSION 97 BIBLIOGRAPHY 99 ํ•œ๊ธ€์ดˆ๋ก 103Docto

    ะŸั€ะธะฝั†ะธะฟ 0 ะฒ ัะพั‡ะธะฝะตะฝะธะธ ะฅะฐั€ะผัะพะผ ะธ ะŸะพะฝะธะผะฐะฝะธะต ะกั‚ะฐั€ัƒั…ะฐ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๋…ธ์–ด๋…ธ๋ฌธํ•™๊ณผ ๋…ธ๋ฌธํ•™์ „๊ณต, 2011.8. ๋ณ€ํ˜„ํƒœ.Maste

    Analyzing price determining factors of logistics center

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ํ™˜๊ฒฝ๋Œ€ํ•™์› ํ™˜๊ฒฝ๊ณ„ํšํ•™๊ณผ, 2022.2. ๊น€๊ฒฝ๋ฏผ.Logistics center, which were simply used for storing, managing, collecting, and delivering goods, have grown into the role as fulfillment center with distribution, information processing functions. Within the new role of logistics center, the logistics center is spotlighted as a new real estate investment product. In the past, the logistics center was responsible for the physical element (point-to-point method or the hub and spoke method), collecting cargo from each region in one hub and spreading it to a destination or delivery area. By the way as each corporate is competing fast delivery service and securing last mile delivery center is coming the core logistics strategy, the demand on logistics center is exploding. At the same time, due to the decrease of profitability of other commercial real estate products, asset management companies investing real estate by fund or REITs turned their portfolio into logistics centers having relative higher capital rate. Unlike in the past, when logistics companies or distributors built their own logistics centers, distributors and e-commerce companies leased logistics center supplied by indirect investment instruments mentioned above. As a result, logistics centers built for external usage is going to be increased more and more due to not the demand for logistics centers but also the money power from investors of fund or REITs. Top of that, this study is meaningful in providing basic data to sort logistics centers as real estate investment product by analyzing the factors influencing transaction prices for rental logistics real estate traded since 2010. As a result of the analysis of the entire metropolitan area at the p<.1 level, the distance to Seoul City Hall gives a negative effect on the transaction price. In addition, the GFA of the building, physical year, and areas other than management planning area had a (-) effect on the transaction price. And the land area, floor area ratio, cold storage, official land prices, locations in industrial estate, investment devices by fund or REITs had a positive effect on that. As a result of the analysis of the southeastern region, it was analyzed that the distance to the IC had a (+) effect on the transaction price. This is a different result from previous studies. With additional analyze by transaction cost per land area showed the opposite result, the discounting effect according to relatively large-scaled logistics center in the area is caused difference. In addition, it was found that the approach to all floors had a positive effect on that. Finally, because of analyzing logistics real estate leased by e-commerce related companies, it was found that location characteristics did not significantly affect transaction prices. In other words, logistics real estate leased by the company is expected to spread throughout the metropolitan area, resulting in no effect of location factors on transaction prices. In addition, it was analyzed that the presence of cold storage and the money power by fund or REITs had a positive effect on transaction prices, and areas other than management planning area had a negative effect. Cold storage as logistics center component is the only one common positive effect on the transaction price. It is because the rent of the cold storage is 20,000 won higher than dry storage. Though the effect of cold storage, suppliers or investors who supply or invest logistics center should decide to area of cold storage into the logistics center by checking the rental demand on that space. Thatโ€™s because it is getting harder to secure cold storage tenants. And they can plan hybrid space which dry storage can be changed into cold storage by thicker wall and floor construction to increase the efficiency of center usage with minimizing construction cost and to prepare for volatility. In addition, the spread between capital rate of prime offices and that of logistics center is going 0, asset management companies should invest logistics center selectively as those investment vehicles gave a positive impact on price of the new real estate investment product, logistics center.๋‹จ์ˆœํžˆ ๋ฌผํ’ˆ์„ ์ €์žฅํ•˜๊ณ , ๊ด€๋ฆฌ, ์ง‘ํ™”, ๋ฐฐ์†ก์„ ์œ„ํ•œ ๋ณด๊ด€์ฐฝ๊ณ ์˜€๋˜ ๋ฌผ๋ฅ˜์ฐฝ๊ณ ๋Š” ์œ ํ†ต ๋ฐ ์ •๋ณด์ฒ˜๋ฆฌ ๊ธฐ๋Šฅ์ด ๋ถ€๊ฐ€๋œ ๋ฌผ๋ฅ˜์„ผํ„ฐ์˜ ๊ฐœ๋…์œผ๋กœ ์„ฑ์žฅํ•˜์˜€์œผ๋ฉฐ, ํ•ด์™ธ ๋ฌผ๋ฅ˜๋ถ€๋™์‚ฐ ๊ธฐ์—…์˜ ๊ตญ๋‚ด์‹œ์žฅ ์ง„์ถœ ๋ฐ ๊ธฐ๊ด€ํˆฌ์ž์ž๋“ค์˜ ๊ฐ„์ ‘ํˆฌ์ž๊ธฐ๊ตฌ๋ฅผ ํ†ตํ•œ ํˆฌ์ž ์ฆ๊ฐ€๋กœ ์ƒˆ๋กœ์šด ๋ถ€๋™์‚ฐ ํˆฌ์ž์ƒํ’ˆ์œผ๋กœ์„œ ๋ฌผ๋ฅ˜๋ถ€๋™์‚ฐ ๊ณต๊ธ‰์ด ์ฆ๊ฐ€ํ•˜๊ณ  ์žˆ๋‹ค. ๊ธฐ์กด์˜ ๋ฌผ๋ฆฌ์ ์ธ ๊ณต๊ธ‰๋ง ๊ด€๋ฆฌ ์ฐจ์›์—์„œ ๋ฌผ๋ฅ˜์„ผํ„ฐ๋Š” point to point ๋ฐฉ์‹ point ๋ผ๋Š” ๋ฌผ๋ฆฌ์  ์š”์†Œ๋ฅผ ๋‹ด๋‹นํ–ˆ๋‹ค๋ฉด, ํ—ˆ๋ธŒ์•ค์Šคํฌํฌ๋ฐฉ์‹์œผ๋กœ ๊ฐ ์ง€์—ญ์—์„œ ์ง‘ํ•˜๋œ ํ™”๋ฌผ์„ ํ•˜๋‚˜์˜ ํ—ˆ๋ธŒ์— ์ง‘๊ฒฐ์‹œํ‚จ ํ›„ ์ด๋ฅผ ๋ชฉ์ ์ง€๋‚˜ ๋ฐฐ์†ก์ง€์—ญ์— ํผํŠธ๋ฆฌ๋Š” ๋ฐฉ์‹์ด ๋ฌผ๋ฅ˜์ธํ”„๋ผ์˜ ์ค‘์‹ฌ์—์„œ, ๋‹คํ’ˆ์ข… ๋Œ€๋Ÿ‰์˜ ๋ฌผ๋ฅ˜์„œ๋น„์Šค๋ฅผ ์ฒ˜๋ฆฌํ•˜๊ธฐ ์œ„ํ•ด ์ž๋™ํ™”์„ค๋น„์™€ IT๊ธฐ์ˆ ์ด ๊ฒฐํ•ฉ๋˜์–ด ์ง์ ‘ ์†Œ๋น„์ž์—๊ฒŒ ๋ฐฐ์†กํ•˜๋Š” Last Mile Delivery์˜ ์ „์ดˆ๊ธฐ์ง€๋กœ์„œ ์—ญํ• ์„ ํ•˜๊ฒŒ ๋œ ํ’€ํ•„๋จผํŠธ์„ผํ„ฐ๋กœ ๋ณ€ํ™”ํ•จ์— ๋”ฐ๋ผ ์ง€๊ฐ€๊ฐ€ ์ €๋ ดํ•˜๊ณ  ๊ตํ†ต์ด ํŽธ๋ฆฌํ•˜๋ฉฐ, ์ธ๋ ฅ์ˆ˜๊ธ‰์ด ๊ฐ€๋Šฅํ•œ ์ง€์—ญ์— ์œ„์น˜ํ•  ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์†Œ๋น„์ž ์ค‘์‹ฌ์˜ ๋ฐฐ์†ก์„ผํ„ฐ๋กœ์„œ ์†Œ๋น„์ž์™€ ๊ฐ€๊นŒ์šด ๋„์‹ฌ์ง€ ์ธ๊ทผ์œผ๋กœ ์ด๋™ํ•˜๊ณ  ๋‹จ์ผ์„ผํ„ฐ ๋‚ด ๋ฌผ๋ฅ˜ํšจ์œจ ์ฆ๋Œ€๋ฅผ ์œ„ํ•˜์—ฌ ๋Œ€ํ˜•ํ™”๋˜๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฌผ๋ฅ˜๋ถ€๋™์‚ฐ์ด ๊ฐ ๊ธฐ์—… ๋ฌผ๋ฅ˜์ „๋žต์˜ ํ•ต์‹ฌ์ด ๋˜๋ฉด์„œ, ์œ ํ†ต์—…์ฒด์™€ ์ „์ž์ƒ๊ฑฐ๋ž˜ ์—…์ฒด๋ฅผ ์ค‘์‹ฌ์œผ๋กœ ๋ฌผ๋ฅ˜๋ถ€๋™์‚ฐ์„ ํ™•๋ณดํ•˜๊ธฐ ์œ„ํ•œ ์ˆ˜์š”๊ฐ€ ์ฆ๊ฐ€ํ•˜๊ณ  ์žˆ๋‹ค. ๋™์‹œ์— ๊ฐ„์ ‘ํˆฌ์ž๊ธฐ๊ตฌ๋ฅผ ํ†ตํ•œ ๋ถ€๋™์‚ฐ ํˆฌ์ž์ฒ˜๋กœ ๋ฌผ๋ฅ˜๋ถ€๋™์‚ฐ์— ๋Œ€ํ•œ ์ˆ˜์š”๋กœ ๋ฌผ๋ฅ˜๋ถ€๋™์‚ฐ์˜ ๊ณต๊ธ‰์ด ์ง€์†์ ์œผ๋กœ ์ฆ๊ฐ€ํ•˜๊ณ  ์žˆ๋‹ค. ๋ฌผ๋ฅ˜์—…์ฒด ๋˜๋Š” ์œ ํ†ต์—…์ฒด๊ฐ€ ์ž์ฒด์ ์œผ๋กœ ๋ฌผ๋ฅ˜์„ผํ„ฐ๋ฅผ ๊ตฌ์ถ•ํ–ˆ๋˜ ๊ณผ๊ฑฐ์™€ ๋‹ฌ๋ฆฌ, ํ˜„์žฌ๋Š” ๊ฐ„์ ‘ํˆฌ์ž๊ธฐ๊ตฌ์— ์˜ํ•ด ์ž„๋Œ€์šฉ ๋ฌผ๋ฅ˜๋ถ€๋™์‚ฐ ๊ณต๊ธ‰๋˜๊ณ  ํ•ด๋‹น ๋ฌผ๋ฅ˜๋ถ€๋™์‚ฐ์˜ ์žฅ๊ธฐ์ž„์ฐจ๋ฅผ ํ†ตํ•ด ์œ ํ†ต์—…์ฒด ๋ฐ ์ „์ž์ƒ๊ฑฐ๋ž˜ ์—…์ฒด๋Š” ์ „์ž์ƒ๊ฑฐ๋ž˜ ์‹œ์žฅ์— ์žˆ์–ด ๋น ๋ฅธ ์‹œ๊ฐ„ ๋‚ด ๋ฐฐ์†ก์„œ๋น„์Šค๋ฅผ ์ œ๊ณตํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ๊ฑฐ์ ์„ ํ™•๋ณดํ•˜๊ณ  ์žˆ๋Š” ๊ฒƒ์ด๋‹ค. ์ด์— ๋ณธ ์—ฐ๊ตฌ๋Š” 2010๋…„ ์ดํ›„ ๊ฑฐ๋ž˜๋œ ์ž„๋Œ€์šฉ ๋ฌผ๋ฅ˜๋ถ€๋™์‚ฐ์„ ๋Œ€์ƒ์œผ๋กœ ๊ฑฐ๋ž˜๊ฐ€๊ฒฉ์— ๋Œ€ํ•œ ์˜ํ–ฅ์š”์ธ์„ ๋ถ„์„ํ•ด ๋ด„์œผ๋กœ์„œ ์ž„๋Œ€์šฉ ๋ฌผ๋ฅ˜๋ถ€๋™์‚ฐ์ด ๊ฐ–๊ณ  ์žˆ๋Š” ํŠน์ง•์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๋ฌผ๋ฅ˜๋ถ€๋™์‚ฐ ํˆฌ์ž์— ๊ธฐ์ดˆ ์ž๋ฃŒ๋ฅผ ์ œ๊ณตํ•˜๋Š” ๋ฐ ์—ฐ๊ตฌ์˜ ์˜์˜๊ฐ€ ์žˆ๋‹ค. p<.1 ์ˆ˜์ค€์—์„œ ์ˆ˜๋„๊ถŒ ์ „์—ญ์„ ๋Œ€์ƒ์œผ๋กœ ํ•œ ๋ถ„์„๊ฒฐ๊ณผ, ์„œ์šธ์‹œ์ฒญ๊นŒ์ง€์˜ ๊ฑฐ๋ฆฌ๊ฐ€ ์งง์„์ˆ˜๋ก ๊ฑฐ๋ž˜๊ฐ€๊ฒจ์ด ๋†’์•„์ง€๋Š” ๊ฒƒ์œผ๋กœ ๋ถ„์„๋˜์—ˆ๋Š”๋ฐ, ์ด์ฒ˜๋Ÿผ ์†Œ๋น„์ž๊นŒ์ง€ ๊ฑฐ๋ฆฌ๊ฐ€ ๊ฐ€๊นŒ์šธ์ˆ˜๋ก ๋ฌผ๋ฅ˜๋ถ€๋™์‚ฐ์˜ ๊ฑฐ๋ž˜๊ฐ€๊ฒฉ์ด ๋†’์•„์ง€๋Š” ๊ฒƒ์„ ๋ณผ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ด์™ธ์—๋„ ๊ฑด์ถ•์—ฐ๋ฉด์ , ๊ฒฝ๊ณผ๊ฐœ์›”, ๊ณ„ํš๊ด€๋ฆฌ ์™ธ ์ง€์—ญ์ด ๊ฑฐ๋ž˜๊ฐ€๊ฒฉ์— (-) ์˜ํ–ฅ์„ ์ฃผ์—ˆ์œผ๋ฉฐ, ๋Œ€์ง€๋ฉด์ , ์šฉ์ ๋ฅ , ์ €์˜จ, ๊ณต์‹œ์ง€๊ฐ€, ์‚ฐ์—…๋‹จ์ง€ ๋‚ด ์œ„์น˜, ๊ฐ„์ ‘ํˆฌ์ž๊ธฐ๊ตฌ๊ฐ€ (+)์˜ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ๊ฒƒ์œผ๋กœ ๋ถ„์„๋˜์—ˆ๋‹ค. ๋™๋‚จ๊ถŒ์—ญ์— ๋Œ€ํ•œ ๋ถ„์„๊ฒฐ๊ณผ IC๊นŒ์ง€์˜ ๊ฑฐ๋ฆฌ๊ฐ€ ๊ฑฐ๋ž˜๊ฐ€๊ฒฉ์— (+)์˜ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ๊ฒƒ์œผ๋กœ ๋ถ„์„๋˜์—ˆ๋‹ค. ์ด๋Š” ๊ธฐ์กด์˜ ์„ ํ–‰์—ฐ๊ตฌ์™€ ๋‹ค๋ฅธ ๊ฒฐ๊ณผ์ธ๋ฐ ํ•ด๋‹น ์˜ํ–ฅ์š”์ธ์˜ ๊ฒฝ์šฐ ํ•ด๋‹น ๊ถŒ์—ญ ๋‚ด ๊ณต๊ธ‰๋œ ๋ฌผ๋ฅ˜์„ผํ„ฐ์˜ ์—ฐ๋ฉด์ ์ด ๋‹ค๋ฅธ ๊ถŒ์—ญ์— ๋น„ํ•ด ์ƒ๋Œ€์ ์œผ๋กœ ๋Œ€ํ˜•์ž„์— ๋”ฐ๋ผ ์—ฐ๋ฉด์ ์— ๋”ฐ๋ฅธ ํ• ์ธํšจ๊ณผ์— ๊ธฐ์ธํ•œ ๊ฒƒ์œผ๋กœ, ๋Œ€์ง€๋ฉด์ ๋‹น ๊ฑฐ๋ž˜๊ฐ€๊ฒฉ์— ๋Œ€ํ•œ ์˜ํ–ฅ์š”์ธ์„ ๋ถ„์„ํ•œ ๊ฒฐ๊ณผ, ๊ธฐ์กด ์„ ํ–‰์—ฐ๊ตฌ์™€ ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ (-)์˜ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ๊ฒƒ์œผ๋กœ ๋ถ„์„๋˜์—ˆ๋‹ค. ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์ „์ธต์ ‘์•ˆ์ด ์ถ”๊ฐ€์ ์œผ๋กœ ๊ฑฐ๋ž˜๊ฐ€๊ฒฉ์— (+)์˜ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ ์œ ํ†ต์—…์ฒด์™€ ์ „์ž์ƒ๊ฑฐ๋ž˜ ์—…์ฒด๊ฐ€ ์ž„์ฐจํ•ด ์žˆ๋Š” ๋ฌผ๋ฅ˜๋ถ€๋™์‚ฐ์„ ๋Œ€์ƒ์œผ๋กœ ๋ถ„์„ํ•œ ๊ฒฐ๊ณผ ์ž…์ง€์  ํŠน์„ฑ์ด ๊ฑฐ๋ž˜๊ฐ€๊ฒฉ์— ์œ ์˜ํ•œ ์˜ํ–ฅ์„ ์ฃผ์ง€ ์•Š๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ด๋Š” ๋‹ฌ๋ฆฌ ๋งํ•˜๋ฉด, ํ•ด๋‹น ์—…์ฒด๊ฐ€ ์ž„์ฐจํ•ด ์žˆ๋Š” ๋ฌผ๋ฅ˜๋ถ€๋™์‚ฐ์ด ์ˆ˜๋„๊ถŒ ์ „์—ญ์— ํผ์ ธ ์žˆ์–ด, ์ž…์ง€์  ์š”์ธ์ด ๊ฑฐ๋ž˜๊ฐ€๊ฒฉ์— ์ฃผ๋Š” ์˜ํ–ฅ์ด ์—†๋Š” ๊ฒฐ๊ณผ๊ฐ€ ๋„์ถœ๋œ ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒ๋œ๋‹ค. ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์ €์˜จ์‹œ์„ค์˜ ์—ฌ๋ถ€์™€ ๊ฐ„์ ‘ํˆฌ์ž๊ธฐ๊ตฌ๋Š” ๊ฑฐ๋ž˜๊ฐ€๊ฒฉ์— (+)์˜ ์˜ํ–ฅ์„, ๊ณ„ํš๊ด€๋ฆฌ ์™ธ ์ง€์—ญ์€ (-)์˜ ์˜ํ–ฅ์„ ์ฃผ๋Š” ๊ฒƒ์œผ๋กœ ๋ถ„์„๋˜์—ˆ๋‹ค. ์ด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๊ณตํ†ต์ ์œผ๋กœ ๊ฑฐ๋ž˜๊ฐ€๊ฒฉ์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ๊ฒƒ์œผ๋กœ ๋ถ„์„๋œ ์ €์˜จ, ์ฆ‰ ๋ƒ‰์žฅ/๋ƒ‰๋™์„ค๋น„ ๋ณด์œ  ์—ฌ๋ถ€๋Š” ๊ฑฐ๋ž˜๊ฐ€๊ฒฉ์— (+)์˜ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋Š”๋ฐ, ์ด๋Š” ์ €์˜จ์ฐฝ๊ณ ์˜ ์ž„๋Œ€๋ฃŒ๊ฐ€ ์ƒ์˜จ์— ๋น„ํ•ด 2~3๋งŒ์› ์ •๋„ ๋†’๊ฒŒ ์ธก์ •์ด ๋˜๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ์ด์— ๋ฌผ๋ฅ˜๋ถ€๋™์‚ฐ์„ ๊ณต๊ธ‰ํ•˜๋Š” ๊ณต๊ธ‰์ฒ˜ ๋˜๋Š” ํˆฌ์ž์ž์˜ ์ž…์žฅ์—์„œ ์ €์˜จ์ฐฝ๊ณ ๊ฐ€ ๋ฐ˜์˜๋œ ๋ฌผ๋ฅ˜๋ถ€๋™์‚ฐ ํˆฌ์ž์— ์žˆ์–ด, ๋†’์€ ๊ฑฐ๋ž˜๊ฐ€๊ฒฉ์„ ์ง€๋ถˆํ•˜๋Š” ๋ฐ ์žˆ์–ด, ํ•ด๋‹น ์ €์˜จ์ฐฝ๊ณ ์˜ ์ž„์ฐจ์ˆ˜์š”์— ๋Œ€ํ•œ ํ™•์ธ์„ ํ†ตํ•˜์—ฌ ๋ฌผ๋ฅ˜๋ถ€๋™์‚ฐ์„ ์„ ๋ณ„ํ•ด์•ผ ํ•  ๊ฒƒ์ด๋‹ค. ๋˜ํ•œ, ๊ฐ„์ ‘ํˆฌ์ž๊ธฐ๊ตฌ๊ฐ€ ๋งค์ˆ˜ํ•œ ๋ฌผ๋ฅ˜๋ถ€๋™์‚ฐ์˜ ๊ฒฝ์šฐ ์ž๊ธˆ์กฐ๋‹ฌ๋ ฅ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๋” ๋†’์€ ๊ฑฐ๋ž˜๊ฐ€๊ฒฉ์ด ํ˜•์„ฑํ•˜๊ณ  ์žˆ๋Š” ๊ฒƒ์œผ๋กœ ๋ถ„์„๋˜์—ˆ๋Š”๋ฐ, ๋ฌผ๋ฅ˜๋ถ€๋™์‚ฐ์˜ ์ „๋ฐ˜์ ์ธ Cap. Rate ํ•˜๋ฝ๊ณผ ํ”„๋ผ์ž„์˜คํ”ผ์Šค ๊ฐ„ Spread๊ฐ€ ์ ์  ๋‚ฎ์•„์ง€๊ณ  ์žˆ๋Š” ํ˜„์ƒ์„ ๊ฐ์•ˆํ–ˆ์„ ์‹œ, ๋ฌผ๋ฅ˜๋ถ€๋™์‚ฐ์— ๋Œ€ํ•œ ํˆฌ์ž์— ์žˆ์–ด, ์•ž์œผ๋กœ ๋” ์„ ๋ณ„์ ์ธ ํˆฌ์ž๊ฐ€ ํ•„์š”ํ•  ๊ฒƒ์œผ๋กœ ํŒ๋‹จ๋œ๋‹ค.์ œ 1 ์žฅ ์„œ๋ก  1 ์ œ 1 ์ ˆ ์—ฐ๊ตฌ์˜ ๋ฐฐ๊ฒฝ ๋ฐ ๋ชฉ์  1 ์ œ 2 ์žฅ ์„ ํ–‰์—ฐ๊ตฌ ๊ฒ€ํ†  4 ์ œ 1 ์ ˆ ๋ฌธํ—Œ์—ฐ๊ตฌ 4 1. ๋ฌผ๋ฅ˜๋ถ€๋™์‚ฐ์˜ ํ˜„ํ™ฉ ๋ฐ ์‹œ์žฅํ˜„ํ™ฉ 4 1) ๋ฌผ๋ฅ˜๋ถ€๋™์‚ฐ์˜ ๊ฐœ๋… ๋ฐ ์ •์˜ 4 2) ๋ฌผ๋ฅ˜์ฐฝ๊ณ ์—… ํ˜„ํ™ฉ 5 3) ๋ฌผ๋ฅ˜๋ถ€๋™์‚ฐ ์‹œ์žฅ ๋™ํ–ฅ 7 2. ์„ ํ–‰์—ฐ๊ตฌ ๊ฒ€ํ†  15 1) ์ „์ž์ƒ๊ฑฐ๋ž˜์˜ ์„ฑ์žฅ์œผ๋กœ ์ธํ•œ ๋ฌผ๋ฅ˜์„œ๋น„์Šค์˜ ๋ณ€ํ™” 15 2) ์ „์ž์ƒ๊ฑฐ๋ž˜๋กœ ์ธํ•œ ๋ฌผ๋ฅ˜๋ถ€๋™์‚ฐ์˜ ๋ณ€ํ™” 16 3) ๋ฌผ๋ฅ˜๋ถ€๋™์‚ฐ ๊ฐ€๊ฒฉ ๊ฒฐ์ •์— ๋Œ€ํ•œ ์—ฐ๊ตฌ 19 ์ œ 2 ์ ˆ ์„ ํ–‰์—ฐ๊ตฌ์™€์˜ ์ฐจ๋ณ„์„ฑ 24 ์ œ 3 ์žฅ ์—ฐ๊ตฌ์˜ ๋ฒ”์œ„ ๋ฐ ๋ฐฉ๋ฒ• 25 ์ œ 1 ์ ˆ ์—ฐ๊ตฌ๋ชจํ˜• 25 1. ํ—ค๋„๋‹‰ ๊ฐ€๊ฒฉ๋ชจํ˜• 25 ์ œ 2 ์ ˆ ์—ฐ๊ตฌ์„ค๊ณ„ 27 1. ์ž๋ฃŒ์˜ ์ˆ˜์ง‘ 31 2. ์—ฐ๊ตฌ๊ฐ€์„ค 33 3. ๋ถ„์„๋ฐฉ๋ฒ• 38 ์ œ 4 ์žฅ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ 40 ์ œ 1 ์ ˆ ํ‘œ๋ณธ์˜ ์†Œ๊ฐœ 40 1. ๊ธฐ์ดˆํ†ต๊ณ„๋Ÿ‰ 40 2. ํ‘œ๋ณธ์˜ ์ง€๋ฆฌ์  ๋ถ„ํฌ 42 3. ํšŒ๊ท€๋ถ„์„ 46 1) ๋ฌผ๋ฅ˜๋ถ€๋™์‚ฐ ๊ฑฐ๋ž˜๊ฐ€๊ฒฉ ์˜ํ–ฅ์š”์ธ ํšŒ๊ท€๋ถ„์„ 46 1-1) ๋ฌผ๋ฅ˜๋ถ€๋™์‚ฐ ๊ฑฐ๋ž˜๊ฐ€๊ฒฉ ๋‹จ๊ณ„์ ๋ถ„์„ 48 2) ๋™๋‚จ๊ถŒ์—ญ ๋ฌผ๋ฅ˜๋ถ€๋™์‚ฐ ๊ฑฐ๋ž˜๊ฐ€๊ฒฉ ์˜ํ–ฅ์š”์ธ ํšŒ๊ท€๋ถ„์„ 49 2-1) ๋™๋‚จ๊ถŒ์—ญ ๋ฌผ๋ฅ˜๋ถ€๋™์‚ฐ ๊ฑฐ๋ž˜๊ฐ€๊ฒฉ ๋‹จ๊ณ„์ ๋ถ„์„ 51 3) ์ „์ž์ƒ๊ฑฐ๋ž˜ ์ž„์ฐจ ๋ฌผ๋ฅ˜๋ถ€๋™์‚ฐ ์˜ํ–ฅ์š”์ธ ํšŒ๊ท€๋ถ„์„ 51 3-1) ์ „์ž์ƒ๊ฑฐ๋ž˜ ์ž„์ฐจ ๋ฌผ๋ฅ˜๋ถ€๋™์‚ฐ ๋‹จ๊ณ„์ ๋ถ„์„ 53 4. ์—ฐ๊ตฌ๊ฒฐ๊ณผ 54 ์ œ 5 ์žฅ ๊ฒฐ๋ก  ๋ฐ ์‹œ์‚ฌ์  61 ์ œ 1 ์ ˆ ์—ฐ๊ตฌ์ข…ํ•ฉ 61 ์ œ 2 ์ ˆ ์‹œ์‚ฌ์  62 ์ œ 3 ์ ˆ ํ•œ๊ณ„์  ๋ฐ ํ–ฅํ›„ ์—ฐ๊ตฌ ๋ฐฉํ–ฅ 66 ์ฐธ๊ณ ๋ฌธํ—Œ 68 Abstract 71์„

    ๋ชจ์ง๋ฌผ์˜ ํŠธ๋ Œ๋“œ ํ‘œํ˜„์šฉ์–ด์™€ ์ง๋ฌผ๊ตฌ์„ฑ์š”์†Œ์™€์˜ ์ƒ๊ด€์„ฑ : fw์šฉ ๋ฐฉ๋ชจ์ง๋ฌผ์„ ์ค‘์‹ฌ์œผ๋กœ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์˜๋ฅ˜ํ•™๊ณผ,2004.Maste

    The role of ascites tumor-microenvironment in ovarian cancer invasion and chemoresistance

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ข…์–‘์ƒ๋ฌผํ•™์ „๊ณต, 2017. 2. ์†ก์šฉ์ƒ.Ovarian cancer is the most lethal gynecologic malignancy, because of asymptomatic nature of this disease, most patients are diagnosed in late stage with peritoneal dissemination and distant metastasis. The importance of tumor microenvironment and cancer progression are increasingly recognized and the abnormal accumulation of fluid in the peritoneal cavity, called ascites is found in almost all recurrent ovarian cancer patients. Indeed, the presence of ascites correlates with peritoneal tumor spread and decreased 5-year survival in ovarian cancer. In current studies, we provide the malignant role of ascites in ovarian cancer progression. The cytokine profiles of ovarian cancer patient derived ascites demonstrated the presence of pro-inflammatory cytokines. Of those, a significantly elevated levels of interleukin 6 (IL-6), increased invasion of ovarian cancer cells. Neutralization of IL-6 in ascites reduced the stimulatory effects of ascites on ovarian cancer cell invasion. Ascites increased invasion through JAK2 and STAT3 signaling pathway, confirmed by use of selective inhibitors. Moreover, the expression of IL-6 receptor (IL-6R) on cell membrane of ovarian cancer cells correlated with ascites-induced invasion. Cholesterol is elevated in ascites and treatment of cholesterol reduced response to cisplatin and increased membrane expression of ATP-binding cassette transporters (ABC transporters), via liver x receptor / (LXR/ in ovarian cancer cells. Similarly, ascites treatment reduced response to cisplatin and increased membrane expression of ABC transporters, with increased LXR/ expression. Excess cellular cholesterol is toxic, a feed-forward regulatory system such as the liver x receptor (LXR) family are activated in response to free cholesterol accumulation. Depletion of free cholesterol reduced ascites mediated increased ABC transporter expression and increased response to cisplatin. Our findings highlight the important role of ascites tumor microenvironment in ovarian cancer invasion and chemoresistance. Hence, better understanding of individual components of ascites in ovarian cancer progression will provide novel therapeutic targets as well as prognostic markers.Chapter 1. Introduction 1 1.1 Ovarian cancer 2 1.2 Tumor microenvironment 2 1.3 Ascites as a tumor microenvironment in ovarian cancer 3 1.4 Components of ascites 3 1.5 Ascites tumor-microenvironment contributing to cancer progression and chemoresistance 6 1.6 References 19 Chapter 2. Malignant ascites enhances migratory and invasive properties of ovarian cancer cells with membrane bound IL-6R in vitro 15 Abstract: 16 2.1 Introduction 17 2.2 Materials and Methods 19 2.2.1 Cell culture, clinical samples and reagents 19 2.2.2 Wound healing assay 20 2.2.3 Invasion assay 20 2.2.4 Western Blotting 21 2.2.5 Reagents and Antibodies 21 2.2.6 Ascites analysis using Proteome Profiler cytokine array 21 2.2.7 Determination of IL-6 concentration by ELISA 22 2.2.8 Depletion of soluble interleukin-6 22 2.2.9 RT-PCR 22 2.2.10 Small interfering RNA transfection 23 2.2.11 Immunofluorescence Microscopy 23 2.2.12 Statistical Analysis 24 2.3 Results 25 2.3.1 Ascites promotes migration and invasion of EOC cells 25 2.3.2 High levels of pro-inflammatory cytokines in malignant ascites from patients with ovarian cancer 30 2.3.3 IL-6 in ascites increases migration and invasion via JAK2-STAT3 signaling 35 2.3.4 Ascites increase invasion only in ovarian cancer cells with IL-6R expression on cell membrane 45 2.4. Discussion 54 2.5. References 56 Chapter 3. Cholesterol in malignant ascites enhances chemoresistance via LXR/ in ovarian cancer cells 61 Abstract: 62 3.1 Introduction 63 3.2 Materials and Methods 65 3.2.1 Cell culture, clinical samples and reagents 65 3.2.2 Cell viability assay 65 3.2.3 Cell death analysis 66 3.2.4 Western Blotting 66 3.2.5 Reagents and Antibodies 66 3.2.6 Nuclear and cytoplasmic protein extraction 67 3.2.7 Ascites cholesterol quantitation 67 3.2.8 Statistical Analysis 67 3.3 Results 69 3.3.1 Response of ovarian cancer cell lines to cisplatin is associated with ABC transporter protein expression 69 3.3.2 Cholesterol pre-treatment increase chemoresistance of ovarian cancer cells 72 3.3.3 Cholesterol increase ABC transporter protein expression 75 3.3.4 Cholesterol increase ABC transporters through sterol sensor 78 3.3.5 Ascites cholesterol increase chemoresistance of ovarian cancer cells 81 3.4 Discussion 85 3.5 References 87 Chapter 4. Conclusion 91 4.1 Conclusion 92 4.2 Therapeutic implication of targeting tumor microenvironment 93 4.2.1 Utility of ascites as a diagnostic factor. 93 4.2.2 Personalized therapy 95 4.3 References 96 ๊ตญ๋ฌธ ์ดˆ๋ก 98Docto
    • โ€ฆ
    corecore