43 research outputs found

    ์ธ๊ณต์ง€๋Šฅ๊ณผ ๋Œ€ํ™”ํ•˜๊ธฐ: ์ผ๋Œ€์ผ ๊ทธ๋ฆฌ๊ณ  ๊ทธ๋ฃน ์ƒ์šฉ์ž‘์šฉ์„ ์œ„ํ•œ ๋Œ€ํ™”ํ˜• ์—์ด์ „ํŠธ ์‹œ์Šคํ…œ ๊ฐœ๋ฐœ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ์‚ฌํšŒ๊ณผํ•™๋Œ€ํ•™ ์–ธ๋ก ์ •๋ณดํ•™๊ณผ, 2022.2. ์ด์ค€ํ™˜."์ธ๊ฐ„-์ปดํ“จํ„ฐ ์ƒํ˜ธ์ž‘์šฉ"๊ณผ "์‚ฌ์šฉ์ž ๊ฒฝํ—˜"์„ ๋„˜์–ด, "์ธ๊ฐ„-์ธ๊ณต์ง€๋Šฅ ์ƒํ˜ธ์ž‘์šฉ" ๊ทธ๋ฆฌ๊ณ  "์•Œ๊ณ ๋ฆฌ์ฆ˜ ๊ฒฝํ—˜"์˜ ์‹œ๋Œ€๊ฐ€ ๋„๋ž˜ํ•˜๊ณ  ์žˆ๋‹ค. ๊ธฐ์ˆ ์˜ ๋ฐœ์ „์€ ์šฐ๋ฆฌ๊ฐ€ ์˜์‚ฌ์†Œํ†ตํ•˜๊ณ  ํ˜‘์—…ํ•˜๋Š” ๋ฐฉ์‹์˜ ํŒจ๋Ÿฌ๋‹ค์ž„์„ ์ „ํ™˜ํ–ˆ๋‹ค. ๊ธฐ๊ณ„ ์—์ด์ „ํŠธ๋Š” ์ธ๊ฐ„ ์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜์—์„œ ์ ๊ทน์ ์ด๋ฉฐ ์ฃผ๋„์ ์ธ ์—ญํ• ์„ ์ˆ˜ํ–‰ํ•œ๋‹ค. ํ•˜์ง€๋งŒ ํšจ๊ณผ์ ์ธ AI ๊ธฐ๋ฐ˜ ์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜๊ณผ ํ† ๋ก  ์‹œ์Šคํ…œ ๋””์ž์ธ์— ๋Œ€ํ•œ ์ดํ•ด์™€ ๋…ผ์˜๋Š” ๋ถ€์กฑํ•œ ๊ฒƒ์ด ์‚ฌ์‹ค์ด๋‹ค. ์ด์— ๋ณธ ์—ฐ๊ตฌ๋Š” ์ธ๊ฐ„-์ปดํ“จํ„ฐ ์ƒํ˜ธ์ž‘์šฉ์˜ ๊ด€์ ์—์„œ ๋‹ค์–‘ํ•œ ํ˜•ํƒœ์˜ ์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜์„ ์ง€์›ํ•  ์ˆ˜ ์žˆ๋Š” ๊ธฐ์ˆ ์  ๋ฐฉ๋ฒ•์„ ํƒ์ƒ‰ํ•˜๋Š” ๊ฒƒ์„ ๋ชฉํ‘œ๋กœ ํ•œ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ์ €์ž๋Š” ์ผ๋Œ€์ผ ๊ทธ๋ฆฌ๊ณ  ๊ทธ๋ฃน ์ƒํ˜ธ์ž‘์šฉ์„ ์ง€์›ํ•˜๋Š” ๋Œ€ํ™”ํ˜• ์—์ด์ „ํŠธ๋ฅผ ์ œ์‹œํ•œ๋‹ค. ๊ตฌ์ฒด์ ์œผ๋กœ ๋ณธ ์—ฐ๊ตฌ๋Š” 1) ์ผ๋Œ€์ผ ์ƒํ˜ธ์ž‘์š”์—์„œ ์‚ฌ์šฉ์ž ๊ด€์—ฌ๋ฅผ ๋†’์ด๋Š” ๋Œ€ํ™”ํ˜• ์—์ด์ „ํŠธ, 2) ์ผ์ƒ์ ์ธ ์†Œ์…œ ๊ทธ๋ฃน ํ† ๋ก ์„ ์ง€์›ํ•˜๋Š” ์—์ด์ „ํŠธ, 3) ์ˆ™์˜ ํ† ๋ก ์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜๋Š” ์—์ด์ „ํŠธ๋ฅผ ๋””์ž์ธ ๋ฐ ๊ฐœ๋ฐœํ•˜๊ณ  ๊ทธ ํšจ๊ณผ๋ฅผ ์ •๋Ÿ‰์  ๊ทธ๋ฆฌ๊ณ  ์ •์„ฑ์ ์œผ๋กœ ๊ฒ€์ฆํ–ˆ๋‹ค. ์‹œ์Šคํ…œ์„ ๋””์ž์ธํ•จ์— ์žˆ์–ด์„œ ์ธ๊ฐ„-์ปดํ“จํ„ฐ ์ƒํ˜ธ์ž‘์šฉ๋ฟ ์•„๋‹ˆ๋ผ, ์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜ํ•™, ์‹ฌ๋ฆฌํ•™, ๊ทธ๋ฆฌ๊ณ  ๋ฐ์ดํ„ฐ ๊ณผํ•™์„ ์ ‘๋ชฉํ•œ ๋‹คํ•™์ œ์  ์ ‘๊ทผ ๋ฐฉ์‹์ด ์ ์šฉ๋˜์—ˆ๋‹ค. ์ฒซ ๋ฒˆ์งธ ์—ฐ๊ตฌ๋Š” ์ผ๋Œ€์ผ ์ƒํ˜ธ์ž‘์šฉ ์ƒํ™ฉ์—์„œ ์‚ฌ์šฉ์ž์˜ ๊ด€์—ฌ ์ฆ์ง„์„ ์œ„ํ•œ ๋Œ€ํ™”ํ˜• ์—์ด์ „ํŠธ์˜ ํšจ๊ณผ๋ฅผ ๊ฒ€์ฆํ–ˆ๋‹ค. ์„ค๋ฌธ์กฐ์‚ฌ๋ผ๋Š” ๋งฅ๋ฝ์—์„œ ์ˆ˜ํ–‰๋œ ์ด ์—ฐ๊ตฌ๋Š” ์›น ์„ค๋ฌธ์กฐ์‚ฌ์—์„œ ์‘๋‹ต์ž์˜ ๋ถˆ์„ฑ์‹ค๋กœ ์ธํ•ด ๋ฐœ์ƒํ•˜๋Š” ์‘๋‹ต ๋ฐ์ดํ„ฐ ํ’ˆ์งˆ์˜ ๋ฌธ์ œ๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ์ธํ„ฐ๋ž™์…˜ ๋ฐฉ๋ฒ•์œผ๋กœ ํ…์ŠคํŠธ ๊ธฐ๋ฐ˜ ๋Œ€ํ™”ํ˜• ์—์ด์ „ํŠธ์˜ ๊ฐ€๋Šฅ์„ฑ์„ ํƒ์ƒ‰ํ•˜๋Š” ๊ฒƒ์„ ๋ชฉํ‘œ๋กœ ํ–ˆ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด 2 (์ธํ„ฐํŽ˜์ด์Šค: ์›น ๅฐ ์ฑ—๋ด‡) X 2 (๋Œ€ํ™” ์Šคํƒ€์ผ: ํฌ๋ฉ€ ๅฐ ์บ์ฅฌ์–ผ) ์‹คํ—˜์„ ์ง„ํ–‰ํ–ˆ์œผ๋ฉฐ, ๋งŒ์กฑํ™” ์ด๋ก ์— ๊ทผ๊ฑฐํ•˜์—ฌ ์‘๋‹ต ๋ฐ์ดํ„ฐ์˜ ํ’ˆ์งˆ์„ ํ‰๊ฐ€ํ–ˆ๋‹ค. ๊ทธ ๊ฒฐ๊ณผ, ์ฑ—๋ด‡ ์„ค๋ฌธ์กฐ์‚ฌ์˜ ์ฐธ์—ฌ์ž๊ฐ€ ์›น ์„ค๋ฌธ์กฐ์‚ฌ์˜ ์ฐธ์—ฌ์ž๋ณด๋‹ค ๋” ๋†’์€ ์ˆ˜์ค€์˜ ๊ด€์—ฌ๋ฅผ ๋ณด์ด๊ณ , ๊ฒฐ๊ณผ์ ์œผ๋กœ ๋” ๋†’์€ ํ’ˆ์งˆ์˜ ๋ฐ์ดํ„ฐ๋ฅผ ์ƒ์„ฑํ•˜๋Š” ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ํ•˜์ง€๋งŒ ์ด๋Ÿฐ ์ฑ—๋ด‡์˜ ๋ฐ์ดํ„ฐ ํ’ˆ์งˆ์— ๋Œ€ํ•œ ํšจ๊ณผ๋Š” ์ฑ—๋ด‡์ด ์นœ๊ตฌ ๊ฐ™๊ณ  ์บ์ฅฌ์–ผํ•œ ๋Œ€ํ™”์ฒด๋ฅผ ์‚ฌ์šฉํ•  ๋•Œ๋งŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ด ๊ฒฐ๊ณผ๋Š” ๋Œ€ํ™”ํ˜• ์ธํ„ฐ๋ž™ํ‹ฐ๋น„ํ‹ฐ๊ฐ€ ์ธํ„ฐํŽ˜์ด์Šค๋ฟ ์•„๋‹ˆ๋ผ ๋Œ€ํ™” ์Šคํƒ€์ผ์ด๋ผ๋Š” ํšจ๊ณผ์ ์ธ ๋ฉ”์„ธ์ง€ ์ „๋žต์„ ๋™๋ฐ˜ํ•  ๋•Œ ๋ฐœ์ƒํ•˜๋Š” ๊ฒƒ์„ ์˜๋ฏธํ•œ๋‹ค. ๋‘ ๋ฒˆ์งธ ์—ฐ๊ตฌ๋Š” ์ผ์ƒ์ ์ธ ์†Œ์…œ ์ฑ„ํŒ… ๊ทธ๋ฃน์—์„œ ์ง‘๋‹จ์˜ ์˜์‚ฌ๊ฒฐ์ •๊ณผ์ •๊ณผ ํ† ๋ก ์„ ์ง€์›ํ•˜๋Š” ๋Œ€ํ™”ํ˜• ์‹œ์Šคํ…œ์— ๋Œ€ํ•œ ๊ฒƒ์ด๋‹ค. ์ด๋ฅผ ์œ„ํ•ด GroupfeedBot์ด๋ผ๋Š” ๋Œ€ํ™”ํ˜• ์—์ด์ „ํŠธ๋ฅผ ์ œ์ž‘ํ•˜์˜€์œผ๋ฉฐ, GroupfeedBot์€ (1) ํ† ๋ก  ์‹œ๊ฐ„์„ ๊ด€๋ฆฌํ•˜๊ณ , (2) ๊ตฌ์„ฑ์›๋“ค์˜ ๊ท ๋“ฑํ•œ ์ฐธ์—ฌ๋ฅผ ์ด‰์ง„ํ•˜๋ฉฐ, (3) ๊ตฌ์„ฑ์›๋“ค์˜ ๋‹ค์–‘ํ•œ ์˜๊ฒฌ์„ ์š”์•ฝ ๋ฐ ์กฐ์งํ™”ํ•˜๋Š” ๊ธฐ๋Šฅ์„ ๊ฐ–๊ณ  ์žˆ๋‹ค. ํ•ด๋‹น ์—์ด์ „ํŠธ๋ฅผ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•ด ๋‹ค์–‘ํ•œ ํƒœ์Šคํฌ (์ถ”๋ก , ์˜์‚ฌ๊ฒฐ์ •, ์ž์œ  ํ† ๋ก , ๋ฌธ์ œ ํ•ด๊ฒฐ ๊ณผ์ œ)์™€ ๊ทธ๋ฃน ๊ทœ๋ชจ(์†Œ๊ทœ๋ชจ, ์ค‘๊ทœ๋ชจ)์— ๊ด€ํ•˜์—ฌ ์‚ฌ์šฉ์ž ์กฐ์‚ฌ๋ฅผ ์‹œํ–‰ํ–ˆ๋‹ค. ๊ทธ ๊ฒฐ๊ณผ ์˜๊ฒฌ์˜ ๋‹ค์–‘์„ฑ ์ธก๋ฉด์—์„œ GroupfeedBot์œผ๋กœ ํ† ๋ก ํ•œ ์ง‘๋‹จ์ด ๊ธฐ๋ณธ ์—์ด์ „ํŠธ์™€ ํ† ๋ก ํ•œ ์ง‘๋‹จ๋ณด๋‹ค ๋” ๋‹ค์–‘ํ•œ ์˜๊ฒฌ์„ ์ƒ์„ฑํ–ˆ์ง€๋งŒ ์‚ฐ์ถœ๋œ ๊ฒฐ๊ณผ์˜ ํ’ˆ์งˆ๊ณผ ๋ฉ”์‹œ์ง€ ์–‘์— ์žˆ์–ด์„œ๋Š” ์ฐจ์ด๊ฐ€ ์—†๋Š” ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๊ท ๋“ฑํ•œ ์ฐธ์—ฌ์— ๋Œ€ํ•œ GroupfeedBot์˜ ํšจ๊ณผ๋Š” ํƒœ์Šคํฌ์˜ ํŠน์„ฑ์— ๋”ฐ๋ผ ๋‹ค๋ฅด๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋Š”๋ฐ, ํŠนํžˆ ์ž์œ  ํ† ๋ก  ๊ณผ์ œ์—์„œ GroupfeedBot์ด ์ฐธ์—ฌ์ž๋“ค์˜ ๊ท ๋“ฑํ•œ ์ฐธ์—ฌ๋ฅผ ์ด‰์ง„ํ–ˆ๋‹ค. ์„ธ ๋ฒˆ์งธ ์—ฐ๊ตฌ๋Š” ์ˆ™์˜ ํ† ๋ก ์„ ์ง€์›ํ•˜๋Š” ๋Œ€ํ™”ํ˜• ์‹œ์Šคํ…œ์— ๋Œ€ํ•œ ๊ฒƒ์ด๋‹ค. ์„ธ ๋ฒˆ์งธ ์—ฐ๊ตฌ์—์„œ ๊ฐœ๋ฐœ๋œ DebateBot์€ GroupfeeedBot๊ณผ ๋‹ฌ๋ฆฌ ๋” ์ง„์ง€ํ•œ ์‚ฌํšŒ์  ๋งฅ๋ฝ์—์„œ ์ ์šฉ๋˜์—ˆ๋‹ค. DebateBot์€ (1) ์ƒ๊ฐํ•˜๊ธฐ-์ง์ง“๊ธฐ-๊ณต์œ ํ•˜๊ธฐ (Think-Pair-Share) ์ „๋žต์— ๋”ฐ๋ผ ํ† ๋ก ์„ ๊ตฌ์กฐํ™”ํ•˜๊ณ , (2) ๊ณผ๋ฌตํ•œ ํ† ๋ก ์ž์—๊ฒŒ ์˜๊ฒฌ์„ ์š”์ฒญํ•จ์œผ๋กœ์จ ๋™๋“ฑํ•œ ์ฐธ์—ฌ๋ฅผ ์ด‰์ง„ํ•˜๋Š” ๋‘ ๊ฐ€์ง€ ์ฃผ์š” ๊ธฐ๋Šฅ์„ ์ˆ˜ํ–‰ํ–ˆ๋‹ค. ์‚ฌ์šฉ์ž ํ‰๊ฐ€ ๊ฒฐ๊ณผ DebateBot์€ ๊ทธ๋ฃน ์ƒํ˜ธ์ž‘์šฉ์„ ๊ฐœ์„ ํ•จ์œผ๋กœ์จ ์‹ฌ์˜ ํ† ๋ก ์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ–ˆ๋‹ค. ํ† ๋ก  ๊ตฌ์กฐํ™”๋Š” ํ† ๋ก ์˜ ์งˆ์— ๊ธ์ •์ ์ธ ํšจ๊ณผ๋ฅผ ๋ฐœํœ˜ํ•˜์˜€๊ณ , ์ฐธ์—ฌ์ž ์ด‰์ง„์€ ์ง„์ •ํ•œ ํ•ฉ์˜ ๋„๋‹ฌ์— ๊ธฐ์—ฌํ•˜์˜€์œผ๋ฉฐ, ๊ทธ๋ฃน ๊ตฌ์„ฑ์›๋“ค์˜ ์ฃผ๊ด€์  ๋งŒ์กฑ๋„๋ฅผ ํ–ฅ์ƒํ–ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ์ด ์„ธ ๊ฐ€์ง€ ์—ฐ๊ตฌ์˜ ๊ฒฐ๊ณผ๋“ค์„ ๋ฐ”ํƒ•์œผ๋กœ ์ธ๊ฐ„-์ธ๊ณต์ง€๋Šฅ ์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜์— ๋Œ€ํ•œ ๋‹ค์–‘ํ•œ ์‹œ์‚ฌ์ ๋“ค์„ ๋„์ถœํ•˜์˜€์œผ๋ฉฐ, ์ด๋ฅผ TAMED (Task-Agent-Message-Information Exchange-Relationship Dynamics) ๋ชจ๋ธ๋กœ ์ •๋ฆฌํ•˜์˜€๋‹ค.The advancements in technology shift the paradigm of how individuals communicate and collaborate. Machines play an active role in human communication. However, we still lack a generalized understanding of how exactly to design effective machine-driven communication and discussion systems. How should machine agents be designed differently when interacting with a single user as opposed to when interacting with multiple users? How can machine agents be designed to drive user engagement during dyadic interaction? What roles can machine agents perform for the sake of group interaction contexts? How should technology be implemented in support of the group decision-making process and to promote group dynamics? What are the design and technical issues which should be considered for the sake of creating human-centered interactive systems? In this thesis, I present new interactive systems in the form of a conversational agent, or a chatbot, that facilitate dyadic and group interactions. Specifically, I focus on: 1) a conversational agent to engage users in dyadic communication, 2) a chatbot called GroupfeedBot that facilitates daily social group discussion, 3) a chatbot called DebateBot that enables deliberative discussion. My approach to research is multidisciplinary and informed by not only in HCI, but also communication, psychology and data science. In my work, I conduct in-depth qualitative inquiry and quantitative data analysis towards understanding issues that users have with current systems, before developing new computational techniques that meet those user needs. Finally, I design, build, and deploy systems that use these techniques to the public in order to achieve real-world impact and to study their use by different usage contexts. The findings of this thesis are as follows. For a dyadic interaction, participants interacting with a chatbot system were more engaged as compared to those with a static web system. However, the conversational agent leads to better user engagement only when the messages apply a friendly, human-like conversational style. These results imply that the chatbot interface itself is not quite sufficient for the purpose of conveying conversational interactivity. Messages should also be carefully designed to convey such. Unlike dyadic interactions, which focus on message characteristics, other elements of the interaction should be considered when designing agents for group communication. In terms of messages, it is important to synthesize and organize information given that countless messages are exchanged simultaneously. In terms of relationship dynamics, rather than developing a rapport with a single user, it is essential to understand and facilitate the dynamics of the group as a whole. In terms of task performance, technology should support the group's decision-making process by efficiently managing the task execution process. Considering the above characteristics of group interactions, I created the chatbot agents that facilitate group communication in two different contexts and verified their effectiveness. GroupfeedBot was designed and developed with the aim of enhancing group discussion in social chat groups. GroupfeedBot possesses the feature of (1) managing time, (2) encouraging members to participate evenly, and (3) organizing the membersโ€™ diverse opinions. The group which discussed with GroupfeedBot tended to produce more diverse opinions compared to the group discussed with the basic chatbot. Some effects of GroupfeedBot varied by the task's characteristics. GroupfeedBot encouraged the members to contribute evenly to the discussions, especially for the open-debating task. On the other hand, DebateBot was designed and developed to facilitate deliberative discussion. In contrast to GroupfeedBot, DebateBot was applied to more serious and less casual social contexts. Two main features were implemented in DebateBot: (1) structure discussion and (2) request opinions from reticent discussants.This work found that a chatbot agent which structures discussions and promotes even participation can improve discussions, resulting in higher quality deliberative discussion. Overall, adding structure to the discussion positively influenced the discussion quality, and the facilitation helped groups reach a genuine consensus and improved the subjective satisfaction of the group members. The findings of this thesis reflect the importance of understanding human factors in designing AI-infused systems. By understanding the characteristics of individual humans and collective groups, we are able to place humans at the heart of the system and utilize AI technology in a human-friendly way.1. Introduction 1.1 Background 1.2 Rise of Machine Agency 1.3 Theoretical Framework 1.4 Research Goal 1.5 Research Approach 1.6 Summary of Contributions 1.7 Thesis Overview 2. Related Work 2.1 A Brief History of Conversational Agents 2.2 TAMED Framework 3. Designing Conversational Agents for Dyadic Interaction 3.1 Background 3.2 Related Work 3.3 Method 3.4 Results 3.5 Discussion 3.6 Conclusion 4. Designing Conversational Agents for Social Group Discussion 4.1 Background 4.2 Related Work 4.3 Needfinding Survey for Facilitator Chatbot Agent 4.4 GroupfeedBot: A Chatbot Agent For Facilitating Discussion in Group Chats 4.5 Qualitative Study with Small-Sized Group 4.6 User Study With Medium-Sized Group 4.7 Discussion 4.8 Conclusion 5. Designing Conversational Agents for Deliberative Group Discussion 5.1 Background 5.2 Related Work 5.3 DebateBot 5.4 Method 5.5 Results 5.6 Discussion and Design Implications 5.7 Conclusion 6. Discussion 6.1 Designing Conversational Agents as a Communicator 6.2 Design Guidelines Based on TAMED Model 6.3 Technical Considerations 6.4 Human-AI Collaborative System 7. Conclusion 7.1 Research Summary 7.2 Summary of Contributions 7.3 Future Work 7.4 Conclusion๋ฐ•

    ํŒŒ๋ž‘ํ•˜์ค‘์„ ๊ณ ๋ คํ•œ ๋ถ€์œ ์‹ ์ˆ˜์ค‘ ํ„ฐ๋„์˜ ์œ ํƒ„์„ฑ ๊ฑฐ๋™ ํ•ด์„

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ๊ฑด์„คํ™˜๊ฒฝ๊ณตํ•™๋ถ€, 2022.2. ๊น€ํ˜ธ๊ฒฝ.This study performs wave-structure interaction analysis of a submerged floating tunnel (SFT) with mooring lines and investigates the effect of structure parameters on dynamic responses under wave loads. Airy wave theory and Morisonโ€™s Equation are used to calculate the wave force. The numerical model of SFT is verified by comparing it with the dynamic response of the experimental model studied by Oh et al. The effect of key design parameters (Buoyancy weight ratio, clearance, tether incline angle) on the performance of SFT under wave load is presented. Even though the SFT natural frequency and wave frequency were not close, Structure response amplification was observed for a particular range of the parameters. It was found that this amplification is due to the time-dependent fluctuating natural frequency of SFT. The results indicate that fluctuating natural frequency should be evaluated properly since severe displacement can occur in such a specific situation.๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ณ„๋ฅ˜์„ ์ด ์žˆ๋Š” ๋ถ€์œ ์‹ ์ˆ˜์ค‘ ํ„ฐ๋„์˜ ์œ ํƒ„์„ฑ ๊ฑฐ๋™ ํ•ด์„์„ ์ˆ˜ํ–‰ํ•˜์˜€๊ณ , ์ฃผ์š” ๋งค๊ฐœ๋ณ€์ˆ˜๊ฐ€ ํŒŒ๋ž‘ํ•˜์ค‘์— ์˜ํ•œ ๋™์  ์‘๋‹ต์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ํ‰๊ฐ€ํ•˜์˜€๋‹ค. ํŒŒ๋ ฅ์„ ์‚ฐ์ •ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์—์–ด๋ฆฌ ์„ ํ˜•ํŒŒ ์ด๋ก ๊ณผ ๋ชจ๋ฆฌ์Šจ ๋ฐฉ์ •์‹์ด ์‚ฌ์šฉ๋˜์—ˆ๋‹ค. ๋˜ํ•œ, ๋ถ€์œ ์‹ ์ˆ˜์ค‘ ํ„ฐ๋„์˜ ์ˆ˜์น˜ ๋ชจ๋ธ์€ ์„ ํ–‰ ์—ฐ๊ตฌ์˜ ์กฐํŒŒ์ˆ˜์กฐ ์‹คํ—˜ ๊ฒฐ๊ณผ์™€ ๋น„๊ตํ•จ์œผ๋กœ์จ ๊ฒ€์ฆํ•˜์˜€๋‹ค. ํŒŒ๋ž‘ ํ•˜์ค‘์ด ๊ฐ€ํ•ด์งˆ ๋•Œ, ์ˆ˜์ค‘ ํ„ฐ๋„์˜ ์ฃผ์š” ์„ค๊ณ„ ๋ณ€์ˆ˜์ธ ๋ถ€๋ ฅ-์ค‘๋Ÿ‰๋น„, ํ„ฐ๋„์˜ ํ˜์ˆ˜, ๊ณ„๋ฅ˜์„ ์˜ ๊ฒฝ์‚ฌ๊ฐ์ด ๋™์  ๊ฑฐ๋™์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์ด ํ‰๊ฐ€๋˜์—ˆ๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ, ๋ถ€์œ ์‹ ์ˆ˜์ค‘ ํ„ฐ๋„์˜ ๊ณ ์œ ์ง„๋™์ˆ˜์™€ ํŒŒ์ง„๋™์ˆ˜๊ฐ€ ๊ทผ์ ‘ํ•˜์ง€ ์•Š์•˜์Œ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ , ๋งค๊ฐœ๋ณ€์ˆ˜์˜ ํŠน์ • ๋ฒ”์œ„์— ๋Œ€ํ•ด ๊ตฌ์กฐ๋ฌผ ์‘๋‹ต ์ฆํญ ํ˜„์ƒ์ด ๊ด€์ฐฐ๋˜์—ˆ๋‹ค. ์ด ์ฆํญ ํ˜„์ƒ์€ P-delta ํšจ๊ณผ์— ์˜ํ•ด ์‹œ๊ฐ„์— ๋”ฐ๋ผ ๋ณ€๋™ํ•˜๋Š” ๊ณ ์œ  ์ง„๋™์ˆ˜๋กœ ์ธํ•œ ๊ฒƒ์œผ๋กœ ๋ฐํ˜€์กŒ๋‹ค.ABSTRACT TABLE OF CONTENTS LIST OF FIGURES LIST OF TABLES CHAPTER 1 INTRODUCTION 1 1.1 Research Background 1 1.2 Research Objective and Layout 4 CHAPTER 2 DESCRIPTION OF NUMERICAL MODEL 5 2.1 Theoretical background 5 2.1.1 Airy linear wave theory 5 2.1.2 Morison's Equation 9 2.2 Calculation of hydrodynamic load 10 2.3 Governing Equation of wave-structure interaction 13 2.4 Description of numerical model 16 CHAPTER 3 VERIFICATION OF NUMERICAL ANALYSIS 19 3.1 Verification of wave force application 19 3.2 Verification of wave-structure interaction 22 CHAPTER 4 PARAMETER STUDY 28 4.1 Parameter's range selection 28 4.1.1 Considered wave cases 28 4.1.2 The considered range for buoyancy weight ratio 32 4.1.3 The considered range for clearance 33 4.1.4 The considered range for tether incline angle 34 4.2 Wave characteristics case study 36 4.3 Buoyancy-weight ratio case study 38 4.4 Clearance case study 42 4.5 Tether incline angle case study 46 CHAPTER 5 CONCLUSION 48 REFERENCE 50 ๊ตญ ๋ฌธ ์ดˆ ๋ก 53์„

    ๊ฑฐ๋ฆฌ์— ๋”ฐ๋ฅธ ์‹ค์™ธ ๊ฐ„์ ‘ํก์—ฐ ๋…ธ์ถœ ํ‰๊ฐ€

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๋ณด๊ฑด๋Œ€ํ•™์› ํ™˜๊ฒฝ๋ณด๊ฑดํ•™๊ณผ, 2023. 8. ์ด๊ธฐ์˜.As there is no safe level of secondhand smoke exposure, many countries have implemented indoor smoke-free policies and some countries have implemented outdoor non-smoking areas. But there is no clear standard about the distance of the outdoor non-smoking area. The aims of this study were to determine outdoor tobacco smoke (OTS) exposure by distance up to 21 m and to identify factors associated with OTS, such as wind direction and wind speed. To determine the OTS levels, PM2.5 concentrations were measured at distances of 6 m, 12 m, 15 m, 18 m, and 21 m by real-time aerosol monitors. A total of 164 measurements were conducted for 5 days from August to October 2022. The measurement included background concentration for 5 minutes before smoking and OTS level for 3 minutes with smoking. The OTS levels were analyzed by calculating the difference between the average background PM2.5 concentration and the average PM2.5 concentration for last two minutes of smoking. One-sampled t-test was conducted to assess that each distance of OTS levels was significantly higher than 0 ยตg/m3, and a multiple linear regression analysis was conducted to determine the factors that affect the OTS levels, such as wind speed, distance, and wind direction. The average OTS levels at all distances were significantly higher than 0 ยตg/m3 in calm wind condition. In the regression model, the OTS levels were significantly associated with the distance. The OTS levels tended to decrease when the distance increased. This study concluded that OTS at 21 m was significantly higher than 0 ยตg/m3. The finding could be used as evidence for regulating the outdoor non-smoking area.๊ฐ„์ ‘ํก์—ฐ์— ๋…ธ์ถœ๋˜๋ฉด ์—ฌ๋Ÿฌ ๊ฑด๊ฐ• ์˜ํ–ฅ์ด ๋‚˜ํƒ€๋‚  ์ˆ˜ ์žˆ์œผ๋ฉฐ ๊ฐ„์ ‘ํก์—ฐ ๋…ธ์ถœ์— ๋Œ€ํ•œ ์•ˆ์ „ ์ˆ˜์ค€์ด ์—†๋‹ค. ์ด์— ์—ฌ๋Ÿฌ ๊ตญ๊ฐ€์—์„œ ๊ฐ„์ ‘ํก์—ฐ์˜ ๋…ธ์ถœ๋กœ๋ถ€ํ„ฐ ๋ณดํ˜ธํ•˜๊ธฐ ์œ„ํ•ด ์‹ค๋‚ด ๊ธˆ์—ฐ ์ •์ฑ…์„ ์‹œํ–‰ํ•˜๊ณ  ์žˆ์œผ๋ฉฐ ์ผ๋ถ€ ๊ตญ๊ฐ€์—์„œ๋Š” ์‹ค์™ธ ๊ธˆ์—ฐ ๊ตฌ์—ญ์„ ์ง€์ •ํ•˜์˜€์ง€๋งŒ ์‹ค์™ธ ๊ธˆ์—ฐ๊ตฌ์—ญ ์ง€์ •์— ๋Œ€ํ•œ ๊ธฐ์ค€์ด ๋ช…ํ™•ํ•˜์ง€ ์•Š๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ์˜ ๋ชฉํ‘œ๋Š” ๊ฑฐ๋ฆฌ์— ๋”ฐ๋ฅธ ์‹ค์™ธ ๊ฐ„์ ‘ํก์—ฐ(OTS) level์„ ์ธก์ •ํ•˜๊ณ  ํ’ํ–ฅ ๋ฐ ํ’์†๊ณผ ๊ฐ™์€ ์‹ค์™ธ ๊ฐ„์ ‘ํก์—ฐ๊ณผ ๊ด€๋ จ๋œ ์š”์ธ์„ ๊ณ ๋ คํ•˜์—ฌ ์‹ค์™ธ ๊ธˆ์—ฐ๊ตฌ์—ญ ๊ด€๋ จ ๊ฑฐ๋ฆฌ ๊ธฐ์ค€์„ ์ œ์•ˆํ•˜๋Š” ๊ฒƒ์ด๋‹ค. OTS level์„ ํŒŒ์•…ํ•˜๊ธฐ ์œ„ํ•ด ์—์–ด๋กœ์กธ ๋ชจ๋‹ˆํ„ฐ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ 6 m, 12 m, 15 m, 18 m, 21 m์˜ ๊ฑฐ๋ฆฌ์—์„œ PM2.5 ๋†๋„๋ฅผ ์ธก์ •ํ•˜์˜€๋‹ค. ์ธก์ •์€ 2022๋…„ 8์›”๋ถ€ํ„ฐ 10์›”๊นŒ์ง€ 5์ผ ๋™์•ˆ ์ด๋ฃจ์–ด์กŒ์œผ๋ฉฐ ๋‹ด๋ฐฐ๋ฅผ ํ”ผ์šฐ๊ธฐ ์ „ 5๋ถ„ ๋™์•ˆ ๋ฐฐ๊ฒฝ๋†๋„๋ฅผ ์ธก์ •ํ•˜๊ณ  ์ธํ˜•์„ ์‚ฌ์šฉํ•˜์—ฌ 3๋ถ„ ๋™์•ˆ ๋‹ด๋ฐฐ๋ฅผ ํ”ผ์› ์œผ๋ฉฐ ๊ฐ ์ธก์ •๋งˆ๋‹ค 2๋ถ„ ์ด์ƒ ๊ฐ„๊ฒฉ์„ ๋‘์–ด ์ด 164ํšŒ ์ธก์ •์„ ์ง„ํ–‰ํ•˜์˜€๋‹ค. OTS level์€ ํก์—ฐ ์‹œ๊ฐ„ 3๋ถ„์—์„œ ์ฒซ 1๋ถ„์„ ์ œ์™ธํ•œ 2๋ถ„ ๋™์•ˆ์˜ ํ‰๊ท  PM2.5 ๋†๋„์™€ 5๋ถ„ ๋™์•ˆ์˜ ๋ฐฐ๊ฒฝ๋†๋„์˜ ํ‰๊ท ์˜ ์ฐจ์ด๋ฅผ ๊ตฌํ•˜์—ฌ ๋ถ„์„ํ•˜์˜€๋‹ค. ๊ฑฐ๋ฆฌ๋ณ„ OTS level์ด 0 ยตg/m3๋ณด๋‹ค ์œ ์˜ํ•˜๊ฒŒ ๋†’์€ ์ง€ ํŒŒ์•…ํ•˜๊ธฐ ์œ„ํ•ด one-sampled t-test๋ฅผ ์‹ค์‹œํ–ˆ์œผ๋ฉฐ, ํ’์†, ๋‹ด๋ฐฐ๋กœ๋ถ€ํ„ฐ์˜ ๊ฑฐ๋ฆฌ, ํ’ํ–ฅ ๋“ฑ OTS level์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ์š”์ธ์„ ํŒŒ์•…ํ•˜๊ธฐ ์œ„ํ•ด ๋‹ค์ค‘ํšŒ๊ท€๋ถ„์„์„ ์‹ค์‹œํ•˜์˜€๋‹ค. ๋ฐ”๋žŒ์˜ ์˜ํ–ฅ์ด ์ ์€ ์กฐ๊ฑด์—์„œ ๋ชจ๋“  ๊ฑฐ๋ฆฌ์—์„œ ํ‰๊ท  OTS level์ด 0 ยตg/m3๋ณด๋‹ค ์œ ์˜ํ•˜๊ฒŒ ๋†’๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๋‹ค์ค‘ํšŒ๊ท€๋ถ„์„ ๊ฒฐ๊ณผ OTS level์€ ๊ฑฐ๋ฆฌ์™€ ์œ ์˜ํ•œ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๊ฐ€์ง€๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ์œผ๋ฉฐ ๊ฑฐ๋ฆฌ๊ฐ€ ์ฆ๊ฐ€ํ• ์ˆ˜๋ก OTS level์ด ๊ฐ์†Œํ•˜๋Š” ๊ฒฝํ–ฅ์„ ๋ณด์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” 21 m์—์„œ ์‹ค์™ธ ๊ฐ„์ ‘ํก์—ฐ์˜ ์˜ํ–ฅ์„ ๋ฐ›์„ ์ˆ˜ ์žˆ์Œ์„ ํ™•์ธํ•˜์˜€์œผ๋ฉฐ ์ถ”ํ›„ ์‹ค์™ธ ๊ธˆ์—ฐ ๊ตฌ์—ญ ์ง€์ •์— ๋Œ€ํ•œ ๊ทผ๊ฑฐ๋กœ ์‚ฌ์šฉ๋  ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๋‹ค.1. Introduction 1 2. Materials and methods 4 2.1 Study site 4 2.2 Measurements 5 2.3 Statistical Analysis 6 3. Results 7 3.1 OTS levels 7 3.2 Multiple regression by wind conditions 13 4. Discussion 22 5. Conclusion 25 References 26 Supplementary Information 31 ๊ตญ๋ฌธ์ดˆ๋ก 34์„

    ๋†์ดŒ๊ด€๊ด‘์—์„œ์˜ ์†Œ๋น„์ž๋“ค์˜ ์‹ํ’ˆ ๊ด€๋ จ ํ–‰๋™

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๋†์—…์ƒ๋ช…๊ณผํ•™๋Œ€ํ•™ ๋†๊ฒฝ์ œ์‚ฌํšŒํ•™๋ถ€(์ง€์—ญ์ •๋ณด์ „๊ณต), 2018. 8. ๋ฌธ์ •ํ›ˆ.As a sustainable strategy to conserve rural environment, agritourism has been gaining attention from many stakeholders and is expected to grow in the future. This study aims to investigate the consumers food-related behavior in agritourism. Essay 1 examines the effect of agritourism experience on consumers grocery purchase patterns. In order to achieve the aim of the research, the food expenditure data from consumer panel is analyzed by using Almost Ideal Demand System (AIDS). As a result, agritourism experience alters the consumers grocery purchase patterns in grain, vegetable, fruit, meat, and fish. In essay 2, the effects of meal type and food preparation activity on food evaluation are investigated. The field experiments are conducted with 130 participants in the restaurant. The results indicate that the food type significantly affects the willingness to pay, in addition, this main effect is moderated by food preparation activity.โ… . Essay 1: The effect of agritourism experience on consumers future food purchase patterns 1 Chapter 1. Introduction 1 Chapter 2. Literature Review 6 2.1. Economic Impact of Agritourism 6 2.2. Effect of agritourism on consumers future purchase 9 2.3. Application of AIDS in relevant studies 13 Chapter 3. Data and Methodology 16 3.1. Data Collection 16 3.2. Methods 20 Chapter 4. Results and Discussion 22 4.1. Parameter and elasticity estimates 22 4.2. Effects of experience of agritourism 28 Chapter 5. Conclusion 32 โ…ก. Essay 2: The effect of meal type and involvement on Consumers evaluation in Agritourism 36 Chapter 1. Introduction 36 1.1. Study Background 36 1.2. Purpose of Research 38 Chapter 2. Theoretical Framework 40 2.1. Involvement and consumer behavior 40 2.2. Extraordinary and Ordinary food 43 Chapter 3. Hypotheses Development 46 Chapter 4. Research Methodology 49 4.1. Experiment Design 49 4.2. Field Experiment Process 52 Chapter 5. Data analysis and Results 57 5.1. Data collection 57 5.2. Demographic information 57 5.3. Manipulation Check 59 5.4. Hypothesis Test 60 Chapter 6. Discussion 65 6.1. Summary of Findings 65 6.2. Contributions and Limitations 67 Reference 71 Appendix A. IRB Documents 83 Appendix B. Recruitment Document 91 Appendix C. Manipulation Material (Agriculture Situation) 94 Appendix D. Survey 100Maste

    ๋ฉ”ํƒ€๊ฒŒ๋†ˆ ์—ผ๊ธฐ์„œ์—ด ํด๋Ÿฌ์Šคํ„ฐ๋ง ๋ฐฉ๋ฒ• ๋น„๊ต

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์‚ฌ๋ฒ”๋Œ€ํ•™ ์ˆ˜ํ•™๊ต์œก๊ณผ, 2019. 2. ์œ ์—ฐ์ฃผ.With the recent advances in next generation sequencing technologies, shotgun metagenomics, direct sequencing of genetic materials from environmental samples, became available. Shotgun metagenomics enables research of previously under-examined or unknown microbes that cannot be cultured in laboratories. Metagenomics therefore has potential to identify novel genomes from samples and its abundance within samples. Since short-read sequencing outputs a large number of reads in a single run, the task is to construct the genome from which the reads originate. However, since the reads produced by next generation sequencing technologies generally have short lengths, assembling reads into contigs cannot reconstruct the sequence of complete genomes. Aligning reads to the reference genome is also hindered if the reference genome is not available or coverage is insufficient. Moreover, since environmental sample contains various microbial species or strains, different reads obtained from metagenomics shotgun sequencing may originate from different taxa. Therefore, clustering contigs into bins, where each bin corresponds to a species, is needed. After sequencing reads from microbial samples, reads are assembled into contigs, which can then be clustered into species to identify which species reside in the samples. Here we compare eight taxonomy independent contig binning methods that utilizes composition and coverage information to bin contigs into clusters. By comparing their performances across 26 in silico datasets with varying parameters, we suggest a guideline of choosing appropriate methods of binning contigs for various datasets.์—ผ๊ธฐ์„œ์—ด ๊ฒฐ์ • ๊ธฐ์ˆ (์‹œํ€€์‹ฑ)์ด ๋ฐœ๋‹ฌํ•˜๋ฉด์„œ ์ž์—ฐํ™˜๊ฒฝ์—์„œ ๋ฏธ์ƒ๋ฌผ์˜ ์—ผ๊ธฐ์„œ์—ด ์ •๋ณด๋ฅผ ์ง์ ‘ ์–ป์„ ์ˆ˜ ์žˆ๋Š” ๋ฉ”ํƒ€๊ฒŒ๋†ˆ์ด ๋ฐœ์ „ํ–ˆ๋‹ค. ๋ฉ”ํƒ€๊ฒŒ๋†ˆ์„ ์ด์šฉํ•˜์—ฌ ์ด์ „์— ์—ฐ๊ตฌ๋˜์ง€ ์•Š์•˜๋˜ ๋ฏธ์ƒ๋ฌผ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋ฅผ ํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋˜์—ˆ๋‹ค. ์‹œํ€€์‹ฑ์œผ๋กœ ์–ป์€ ๋ฏธ์ƒ๋ฌผ ์ƒ˜ํ”Œ์˜ ์—ผ๊ธฐ์„œ์—ด ์กฐ๊ฐ๋“ค์€ ๊ฒน์น˜๋Š” ๊ตฌ๊ฐ„์˜ ์ •๋ณด๋ฅผ ์ด์šฉํ•ด ๊ธด ๊ฐ€๋‹ฅ์˜ ์‹œํ€€์Šค์ธ ์ฝ˜ํ‹ฐ๊ทธ๋กœ ํ•ฉ์น˜๋Š” ๊ณผ์ •์ธ ์–ด์…ˆ๋ธ”๋ฆฌ๋ฅผ ๊ฑฐ์นœ๋‹ค. ํ•ฉ์น˜๋Š” ์–ด์…ˆ๋ธ”๋ฆฌ ๊ณผ์ •์„ ํ†ตํ•ด ์–ป๋Š” ์ฝ˜ํ‹ฐ๊ทธ๋“ค์€ ์‹œํ€€์‹ฑ์œผ๋กœ ์–ป์€ ์กฐ๊ฐ๋“ค์— ๋น„ํ•ด ๊ธด ๊ธธ์ด๋ฅผ ๊ฐ€์ง€์ง€๋งŒ ๊ฒŒ๋†ˆ ์ „์ฒด์˜ ์—ผ๊ธฐ์„œ์—ด์„ ์ƒ์„ฑํ•˜์ง€๋Š” ๋ชปํ•œ๋‹ค. ๋”ฐ๋ผ์„œ ๊ฐ ์ฝ˜ํ‹ฐ๊ทธ๊ฐ€ ์–ด๋–ค ๋ฏธ์ƒ๋ฌผ ์ข…์—์„œ ์œ ๋ž˜ํ•œ ๊ฒƒ์ธ์ง€๋ฅผ ๋ฐํžˆ๊ธฐ ์œ„ํ•ด ์ฝ˜ํ‹ฐ๊ทธ ํด๋Ÿฌ์Šคํ„ฐ๋ง ๋ฐฉ๋ฒ•์„ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋‹ค. ์ฝ˜ํ‹ฐ๊ทธ ํด๋Ÿฌ์Šคํ„ฐ๋ง์„ ํ†ตํ•ด ์ฝ˜ํ‹ฐ๊ทธ๋“ค์„ ํด๋Ÿฌ์Šคํ„ฐ์— ๋‚˜๋ˆ ์„œ ๋‹ด๊ณ , ๊ฐ ํด๋Ÿฌ์Šคํ„ฐ์— ๋Œ€์‘ํ•˜๋Š” ๋ฏธ์ƒ๋ฌผ ์ข…์˜ ์—ผ๊ธฐ์„œ์—ด ์ •๋ณด์™€ ๊ทธ ์ข…์ด ์ƒ˜ํ”Œ ๋‚ด์—์„œ ์กด์žฌํ•˜๋Š” ๋น„์œจ์„ ์ถ”์ •ํ•˜๋Š” ๋ฐฉ๋ฒ•์ด๋‹ค. ์šฐ๋ฆฌ๋Š” ์ปจํ‹ฐ๊ทธ ์ง‘ํ•ฉ์˜ ๊ตฌ์„ฑ๊ณผ ์ปค๋ฒ„๋ฆฌ์ง€์ •๋ณด๋ฅผ ์ด์šฉํ•˜๋Š” ์—ฌ๋Ÿ๊ฐ€์ง€์˜ ์ฝ˜ํ‹ฐ๊ทธ ํด๋Ÿฌ์Šคํ„ฐ๋ง ๋ฐฉ๋ฒ•๋“ค์„ ๋น„๊ตํ•˜์˜€๋‹ค. ์ปดํ“จํ„ฐ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ†ตํ•ด ์„œ๋กœ ๋‹ค๋ฅธ ์ปค๋ฒ„๋ฆฌ์ง€์™€ ์ƒ˜ํ”Œ ์ˆ˜๋ฅผ ๊ฐ€์ง€๋Š” 26๊ฐ€์ง€์˜ ๋ฐ์ดํ„ฐ๋ฅผ ๋งŒ๋“  ํ›„, ์—ฌ๋Ÿ๊ฐ€์ง€์˜ ๋ฐฉ๋ฒ•๋“ค์„ ์ ์šฉํ•ด ๋ณด๊ณ  ๊ฐ ๋ฐฉ๋ฒ•์˜ ์„ฑ๋Šฅ์„ ์ธก์ •ํ•˜๊ณ  ๋ถ„์„ํ•˜์˜€๋‹ค. ์šฐ๋ฆฌ๋Š” ์–ด๋–ค ๋ฐฉ๋ฒ•์ด ์ƒ๋Œ€์ ์œผ๋กœ ๋†’์€ ์„ฑ๋Šฅ์„ ๋ณด์ด๋Š”์ง€, ๊ทธ๋ฆฌ๊ณ  ๊ฐ ํด๋Ÿฌ์Šคํ„ฐ๋ง ๋ฐฉ๋ฒ•๋“ค์ด ์ ์šฉ๋˜๊ธฐ์— ์ ํ•ฉํ•œ ๋ฐ์ดํ„ฐ๋Š” ๋ฌด์—‡์ธ์ง€ ์‚ดํŽด๋ณด๊ณ ์ž ํ•œ๋‹ค.Abstract i Contents iii Contents of Figures v Contents of Tables viii Chapter 1. Introduction 1 1.1. Study Background 1 1.2. Purpose of Research 6 Chapter 2. Body 10 2.1. Methods 10 2.1.1. Data simulation 10 2.1.2. Data preprocessing 13 2.1.3. CONCOCT 15 2.1.4. COCACOLA 18 2.1.5. MetaBAT 22 2.1.6. MaxBin2 24 2.1.7. GroopM 27 2.1.8. BMC3C 29 2.1.9. MyCC 33 2.1.10. GATTACA 35 2.1.11. Evaluation measures 37 2.2. Results 41 2.2.1. Results of data with no strain variation 42 2.2.2. Results of data with multiple strain variations 57 2.3. The performance of each method 71 2.3.1. The performance of CONCOCT 72 2.3.2. The performance of COCACOLA 74 2.3.3. The performance of MetaBAT 76 2.3.4. The performance of MaxBin2 78 2.3.5. The performance of GroopM 80 2.3.6. The performance of BMC3C 82 2.3.7. The performance of MyCC 84 2.3.8. The performance of GATTACA 86 Chapter 3. Conclusion 88 Reference 92 Appendix 102 ๊ตญ๋ฌธ์ดˆ๋ก 180Maste

    The Study on the Recovery of Epidermal Langerhans Cells in C3H Mice After UVA Irradiation

    No full text
    ์˜ํ•™๊ณผ/์„์‚ฌ[์˜๋ฌธ] [ํ•œ๊ธ€] ์ž์™ธ์„  ์กฐ์‚ฌ๋กœ ์ธํ•ด ํ‘œํ”ผ Langerhans์„ธํฌ์˜ ํ˜•ํƒœ์™€ ์ˆ˜์— ๋ณ€ํ™”๊ฐ€ ์ƒ๊ธด๋‹ค๋Š” ์‚ฌ์‹ค์€ ๋„๋ฆฌ ๋ณด๊ณ ๋˜์—ˆ์œผ๋ฉฐ ์ด๋Ÿฌํ•œ Langerhans์„ธํฌ์˜ ๋ณ€ํ™”๋Š” ์กฐ์‚ฌ๋œ ์ž์™ธ์„ ๋Ÿ‰์— ๋น„๋ก€ํ•œ๋‹ค๋Š” ๊ฒƒ๋„ ์•Œ๋ ค ์ ธ ์™”๋‹ค. ์ž์™ธ์„  ์กฐ์‚ฌํ›„ ๊ฐ์†Œ๋œ ํ‘œํ”ผ Langerhans์„ธํฌ์ˆ˜์˜ ์‹œ๊ฐ„๊ฒฝ๊ณผ์— ๋”ฐ๋ฅธ ํšŒ๋ณต ์–‘์ƒ์— ๋Œ€ํ•˜์—ฌ๋Š” ์ž์™ธ์„  B ๋ฐ PUVA์˜ ๊ฒฝ์šฐ ๋งŽ์€ ์—ฐ๊ตฌ๋ณด๊ณ ๋“ค์ด ์žˆ์œผ๋‚˜ ์ž์™ธ์„  A์— ๋Œ€ํ•ด์„œ๋Š” ์ž์„ธ ํ•œ ๋ณด๊ณ ๊ฐ€ ๋ณ„๋กœ ์—†๋‹ค. ๋”์šฐ๊ธฐ ๋™๋Ÿ‰์˜ ์ž์™ธ์„ ์„ ๋ถ„ํ• ํ•˜์—ฌ ์ˆ˜์ผ๊ฐ„ ์กฐ์‚ฌํ•œ ๊ฒฝ์šฐ์™€ 1ํšŒ ๋‹จ์‹œ ๊ฐ„์— ์ง‘์ค‘์กฐ์‚ฌํ•œ ๊ฒฝ์šฐ์˜ ์‹œ๊ฐ„๊ฒฝ๊ณผ์— ๋”ฐ๋ฅธ ํšŒ๋ณต์–‘์ƒ์˜ ๋น„๊ต๋Š” ์•„์ง ์ƒ์„ธํžˆ ์—ฐ๊ตฌ๋˜์–ด์ง„ ๋ฐ” ์—†๋Š” ๊ฒƒ์œผ๋กœ ์ƒ๊ฐ๋œ๋‹ค ์ด์— ์ €์ž๋“ค์€ C^^3 H์ƒ์ฅ์—์„œ ์กฐ์‚ฌ๋Ÿ‰๊ณผ ์กฐ์‚ฌ๋ฐฉ๋ฒ•์„ ๋‹ฌ๋ฆฌํ•˜์—ฌ ์ž์™ธ์„ A๋ฅผ ์กฐ์‚ฌํ•œํ›„ ์‹œ๊ฐ„ ๊ฒฝ๊ณผ์— ๋”ฐ๋ฅธ ํ‘œํ”ผ Langerhans์„ธํฌ์˜ ํšŒ๋ณต์„ ๋ณด๊ณ ์ž C^^3 H์ƒ์ฅ์˜ ๊ท€๋ถ€์œ„์— 200J/ใŽ  ๋ฐ 40 0J/ใŽ ์˜ ์ž์™ธ์„  A๋ฅผ ๊ฐ๊ฐ 1ํšŒ ์ง‘์ค‘์กฐ์‚ฌ ๋ฐ 5์ผ์— ๊ฑธ์ณ 5ํšŒ ๋ถ„ํ• ์กฐ์‚ฌํ•œ ํ›„ ์ž์™ธ์„ ์„ ์กฐ์‚ฌ ๋ฐ›์ง€ ์•Š์€ ์ •์ƒ๋Œ€์กฐ๊ตฐ๊ณผ ์‹คํ—˜๊ตฐ์˜ ๊ท€๋ถ€์œ„๋ฅผ ์ƒ๊ฒ€ํ•˜๊ณ  ๋ฉด์—ญ๊ณผ์‚ฐํ™”ํšจ์†Œ ์—ผ์ƒ‰(immuno-peroxi dase stain)์„ ์‹œํ–‰ํ•˜์—ฌ Ia์–‘์„ฑ ํ‘œํ”ผ Langerhans์„ธํฌ์ˆ˜๋ฅผ ๊ด€์ฐฐํ•œ ๊ฒฐ๊ณผ ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๊ฒฐ๊ณผ ๋ฅผ ์–ป์—ˆ๋‹ค. 1. 200J/ใŽ ์˜ ์กฐ์‚ฌ๊ตฐ์—์„œ๋Š” ์ง‘์ค‘์กฐ์‚ฌ๊ตฐ์—์„œ ๋ถ„ํ• ์กฐ์‚ฌ๊ตฐ์— ๋น„ํ•ด ์กฐ์‚ฌํ›„ 7์ผ, 14์ผ์— Ia ์–‘์„ฑ ํ‘œํ”ผ Langerhans์„ธํฌ์ˆ˜๊ฐ€ ์˜์˜์žˆ๊ฒŒ ๊ฐ์†Œํ•จ์„ ๋ณด์˜€๋‹ค. 2.400J/ใŽ ์˜ ์กฐ์‚ฌ๊ตฐ์—์„œ๋Š” ๋ถ„ํ• ์กฐ์‚ฌ๊ตฐ๊ณผ ์ง‘์ค‘์กฐ์‚ฌ๊ตฐ์‚ฌ์ด์— ์กฐ์‚ฌ 21์ผํ›„๊นŒ์ง€ Ia์–‘์„ฑ ํ‘œ ํ”ผ Langerhans์„ธํฌ์ˆ˜์˜ ๋ณ€ํ™”์— ์˜์˜์žˆ๋Š” ์ฐจ์ด๊ฐ€ ์—†์—ˆ๋‹ค. 3. ์ž์™ธ์„ A์กฐ์‚ฌํ›„ ๊ฐ์†Œ๋œ Ia์–‘์„ฑ ํ‘œํ”ผ Langerhans์„ธํฌ์ˆ˜๋Š” 200J/ใŽ ์กฐ์‚ฌ๊ตฐ์˜ ๋ถ„ํ• ์กฐ์‚ฌ๊ตฐ ์—์„œ ์กฐ์‚ฌํ›„ 14์ผ์— ์ง‘์ค‘์กฐ์‚ฌ๊ตฐ์—์„œ ์กฐ์‚ฌํ›„ 21์ผ์— ์ •์ƒ์œผ๋กœ ํšŒ๋ณต๋˜์—ˆ์œผ๋ฉฐ, 400J/ใŽ ์กฐ์‚ฌ ๊ตฐ์˜ ๋ถ„ํ• ์กฐ์‚ฌ๊ตฐ๊ณผ ์ง‘์ค‘์กฐ์‚ฌ๊ตฐ ๋ชจ๋‘์—์„œ ์กฐ์‚ฌํ›„ 21์ผ์— ์ •์ƒ์œผ๋กœ ํšŒ๋ณต๋˜์—ˆ๋‹ค. ์ด์ƒ์˜ ๊ฒฐ๊ณผ๋กœ ๋ณด์•„ C^^3 H์ƒ์ฅ์—์„œ Ia์–‘์„ฑ ํ‘œํ”ผ Langerhans์„ธํฌ์ˆ˜๋Š” 200J/ใŽ ์˜ ์ž์™ธ์„  A๋ฅผ ์กฐ์‚ฌํ•œ ๊ฒฝ์šฐ ๋ถ„ํ• ์กฐ์‚ฌ๊ตฐ๋ณด๋‹ค ์ง‘์ค‘์กฐ์‚ฌ๊ตฐ์—์„œ ์กฐ์‚ฌํ›„ 7์ผ, 14์ผ์งธ ๋” ๋งŽ์ด ๊ฐ์†Œํ•˜๊ณ  ํšŒ๋ณต๋„ ๋Š๋ฆฌ๋ฉฐ,200J/ใŽ  ๋ฐ 400J/ใŽ  ์กฐ์‚ฌ๊ตฐ ๋ชจ๋‘์—์„œ ์กฐ์‚ฌ 21์ผ ํ›„์—๋Š” ์„ธํฌ์ˆ˜๊ฐ€ ์ •์ƒ์œผ๋กœ ํšŒ๋ณต๋จ์„ ์•Œ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋”ฐ๋ผ์„œ ์ผ์ •๋Ÿ‰์˜ ์ž์™ธ์„  A๋ฅผ ์กฐ์‚ฌํ•˜๋Š” ๊ฒฝ์šฐ ๋ถ„ํ• ์กฐ์‚ฌ๊ฐ€ ์ง‘์ค‘์กฐ ์‚ฌ๋ณด๋‹ค ๋ฉด์—ญํ•™์ ์ธ ์†์ƒ์ด ๋” ์ ์„ ๊ฒƒ์œผ๋กœ ์ƒ๊ฐ๋œ๋‹ค. The Study on the Recovery of Epidermal Langerhans Cells in C^^3 H Mice After UVA Irradiation Soo-Min Kim Department of Medical Science, The Graduate School, Yonsei University (Directed by Professor Yoon-Kee Park, M.D., Ph.D.) It has been reported widely that the changes in morphology and number of epidermal Langerhans cells are brought about by ultraviolet irradiation and it is known that the changes in Langerhans cells are proportional to the amount of ultraviolet irradiation. There have been many studies on the aspect of the recovery of the reduced number of epidermal Langerhans cells in relation to time after ultraviolet B(UVB)and PUVA irradiation, but not many detailed reports about ultraviolet A(UVA) have been made, Besides, no study has been done on the aspect of the recovery in relation to time when an equal amount of ultraviolet rays is exposed in fractionated doses for a few days compared to when it is exposed in one single large dose at one time. To see the recovery in epidermal Langerhans cells in relation to time after UVA irradiation through different amounts and ways of exposure in C^^3 H mice, we irradiated the ears of C^^3 H mice with UVA 200J/ใŽ  and 400J/ใŽ  in a single dose at one time and 5 fractionated doses for 5 days and performed biopsies on the ears of the control and experimental groups after 2, 7, 14, 21 days of irradiation and stained them with immunoperoxidase method. We obtained the following results after observing the number of the la-positive epidermal Langerhans cells, The results are summarized as follows, 1. We observed a significant decrease in the number of the la-positive epidermal Langerhans cells in the single-dose-exposed group compared to the fractionated-dose-exposed group on 7th and 14th days irradiated with UVA 200J/ใŽ . 2. There was no significant difference in the change in the number of the la-positive epidermal Langerhans cells until 21 days of exposure between the single-dose-exposed group and the fractionated-dose-exposed group irradiated with UVA 400J/ใŽ . 3. In the group irradiated with UVA 200J/ใŽ , the reduced number of the la-positive epidermal Langerhans cells returned to normal on the 14th day after irradiation in the fractionated-dose-exposed group and on the 21st day in the single-dose-exposed group. In the group irradiated with 400J/ใŽ , the number returned to normal on the 21st day of irradition both in the fractionated-dose-exposed group and in the single-dose-exposed group. From the results obtained, the number of the la-positive epidermal Langerhans cells in C^^3 H mice is decreased more and also the recovery is slower in the single-dose-exposed group than in the fractionated-dose-exposed group on the 7th and 14th days after irradiation with UVA 200J/ใŽ  and the number of the cells returned to normal after 21days of exposure in both groups irradiated with UVA 200J/ใŽ  and 400J/ใŽ . Therefore, for an equal amount of UVA irradiation it is thought that the fractionated-dose-exposed group received less immunological damage than the single-dose -exposed group.restrictio

    ๊ฑด์ถ•๋‚ด์žฅ์žฌ ํ‘œ๋ฉด ์ ‘์ฐฉ์šฉ ์นœํ™˜๊ฒฝ MFPVAc ์ˆ˜์ง€์˜ ์ ‘์ฐฉํŠน์„ฑ ๋ฐ ์‘์šฉ ๊น€์ˆ˜๋ฏผ.

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) --์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์‚ฐ๋ฆผ๊ณผํ•™๋ถ€(ํ™˜๊ฒฝ์žฌ๋ฃŒ๊ณผํ•™์ „๊ณต),2007.Docto

    ํ—ค๋ฅด๋งŒ ๋ธŒ๋กœํ์˜ ใ€Ž๋ชฝ์œ ๋ณ‘์ž๋“คใ€ ์—ฐ๊ตฌ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๋…์–ด๋…๋ฌธํ•™๊ณผ, 2012. 2. ์ž„ํ™๋ฐฐ.์„ธ๊ธฐ ์ „ํ™˜๊ธฐ์˜ ์˜ค์ŠคํŠธ๋ฆฌ์•„์—์„œ๋Š” ์‹œ๋Œ€ ๋ณ€๋™์— ๋”ฐ๋ฅธ ๋ถˆ์•ˆ๊ณผ ํ˜ผ๋ˆ์„ ์ž‘ํ’ˆ์— ๋ฐ˜์˜ํ•œ ์ž‘๊ฐ€์™€ ์˜ˆ์ˆ ๊ฐ€๋“ค์ด ์ ์ง€ ์•Š์•˜๋‹ค. ์˜ค์ŠคํŠธ๋ฆฌ์•„์˜ ์ž‘๊ฐ€ ํ—ค๋ฅด๋งŒ ๋ธŒ๋กœํ๋Š” ์ฒ ํ•™์ ์ธ ์—์„ธ์ด์™€ ๋ฌธํ•™์ด๋ก  ๊ทธ๋ฆฌ๊ณ  ์†Œ์„ค์„ ํ†ตํ•ด ๋‹น์‹œ์˜ ์‚ฌํšŒ๋ฅผ ๋น„ํŒ์ ์œผ๋กœ ํ†ต์ฐฐํ•˜์˜€๋‹ค. ๊ทธ์˜ ์‚ผ๋ถ€์ž‘ ์†Œ์„ค ใ€Ž๋ชฝ์œ ๋ณ‘์ž๋“คใ€์€ 19์„ธ๊ธฐ ๋ง์—์„œ 20์„ธ๊ธฐ ์ดˆ์— ์ด๋ฅด๋Š” ์‹œ๊ธฐ์— ์œ ๋Ÿฝ ์‚ฌํšŒ๋ฅผ ๋ฐฐ๊ฒฝ์œผ๋กœ ๋“ฑ์žฅํ•œ ์ธ๋ฌผ๋“ค์˜ ๊ฐ€์น˜๋ถ•๊ดด์ ์ธ ๋‚ด๋ฉด์„ ๋ชจ๋”๋‹ˆ์ฆ˜์˜ ์†Œ์„คํ˜•์‹์„ ํ†ตํ•ด ํ‘œํ˜„ํ•˜์˜€๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ๋ธŒ๋กœํ๊ฐ€ ์ด ์†Œ์„ค์—์„œ ๋ชฝ์œ ๋ณ‘์ด๋ผ๋Š” ์ƒ์ง•์„ ํ†ตํ•ด ๋‚˜ํƒ€๋‚ธ ๊ฐ€์น˜๋ถ•๊ดด์ ์ธ ์ธ๊ฐ„ ์„ฑํ–ฅ์„ ์ž‘ํ’ˆ ๋‚ด์ ์ธ ๋ถ„์„์„ ํ†ตํ•ด ์‚ดํ”ผ๊ณ  ์žˆ๋‹ค. ์ด ์ž‘ํ’ˆ์—์„œ ๋ชฝ์œ ๋ณ‘์€ ๋น„์œ ์ ์ธ ์˜๋ฏธ๋ฅผ ์ง€๋‹ˆ๋ฉฐ ์ธ๊ฐ„์ด ์ง€๋‹Œ ์ธ์‹์˜ ํ˜•ํƒœ์™€ ๊ทธ ํ–‰์œ„๋ฅผ ๊ทœ๋ช…ํ•˜๋Š” ๋ง๋กœ ์‚ฌ์šฉ๋˜์—ˆ๋‹ค. 3๋ถ€์ž‘์œผ๋กœ ์ด๋ฃจ์–ด์ง„ ์ด ์†Œ์„ค์˜ ์ฃผ์ธ๊ณต๋“ค์€ ๊ฐ๊ธฐ ์„ธ๊ธฐ ์ „ํ™˜๊ธฐ์˜ ์„œ๊ตฌ ์œ ๋Ÿฝ ์‚ฌํšŒ์— ๋ชธ๋‹ด๊ณ  ์‚ด์•„๊ฐ€๋Š” ์ธ๋ฌผ๋“ค์ด๋ฉฐ ์ด๋“ค์€ ๊ฐ๊ฐ์˜ ์‹œ๋Œ€์— ๋“ฑ์žฅํ•˜๋Š” ํ‰๋ฒ”ํ•œ ์ธ๋ฌผ์˜ ์ „ํ˜•๋“ค์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋“ค์˜ ํ‰๋ฒ”ํ•จ์˜ ์ด๋ฉด์—๋Š” ๊ฐ€์น˜๊ฐ€ ๋ถ•๊ดด๋˜์–ด๊ฐ€๋Š” ์‹œ๊ธฐ๋ฅผ ๊ด€ํ†ตํ•˜๋Š” ์ธ๊ฐ„์˜ ์†๋ฌผ์ ์ธ ๊ทผ์„ฑ๊ณผ ๋น„ํŒ์  ์ธ์‹์ด ๋ถ€์žฌํ•œ ํ˜ผ๋ˆ์Šค๋Ÿฌ์šด ๋‚ด๋ฉด์ด ์ˆจ์–ด์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฉด๋ชจ๋Š” ๋ธŒ๋กœํ๊ฐ€ ์ฃผ์žฅํ•œ ๊ฐ€์น˜๋ถ•๊ดด์ ์ธ ์„ธ๊ณ„ ์ƒํ™ฉ๊ณผ ๋ฌด๊ด€ํ•˜์ง€ ์•Š๋‹ค. ๊ทธ๋Š” 20์„ธ๊ธฐ ์ดˆ์˜ ์ •์น˜ โ€ง ๊ฒฝ์ œ์˜ ๋น ๋ฅธ ์‚ฌํšŒ ๋ณ€๋™๊ณผ ๋”๋ถˆ์–ด ์ด๋Ÿฌํ•œ ์„ธ๊ณ„์˜ ๋ณ€ํ™”์— ๋Œ€์‘ํ•˜๋Š” ์ธ๊ฐ„์˜ ๋ณธ๋ž˜์ ์ธ ์†์„ฑ์„ ๊ฐ€์น˜๋ถ•๊ดด์ ์ธ ์„ธ์†ํ™”์˜ ๊ณผ์ •์ด๋ผ๊ณ  ํ‰๊ฐ€ํ•˜์˜€๋‹ค. ๋งํ•˜์ž๋ฉด ๋ชฝ์œ ๋ณ‘์€ ์„œ๊ตฌ ์œ ๋Ÿฝ์˜ ๊ฐ€์น˜๋ถ•๊ดด์˜ ์–‘์ƒ์ด ์ธ๊ฐ„์˜ ์˜์‹๊ณผ ํ–‰๋™์–‘์‹์˜ ๋น„ํ•ฉ๋ฆฌ์„ฑ์„ ํ†ตํ•ด ๋ฐœํ˜„๋˜๋Š” ๊ฒƒ์„ ๋น„์œ ํ•œ ๊ฒƒ์ด๋‹ค. ๋ธŒ๋กœํ๋Š” ๊ฐ€์น˜๋ถ•๊ดด ์ด๋ก ์„ ํ†ตํ•ด ๋ฅด๋„ค์ƒ์Šค ์ดํ›„๋กœ ๊ทผ๋Œ€ํ™”์˜ ๊ณผ์ •์„ ๊ฒช๋Š” ์œ ๋Ÿฝ์‚ฌํšŒ๋ฅผ ์ฒ ํ•™์ ์ด๋ฉฐ ์‚ฌํšŒ๋น„ํŒ์ ์ธ ์‹œ๊ฐ์œผ๋กœ ๋ถ„์„ํ•˜์˜€๋‹ค. ๊ทธ์— ๋”ฐ๋ฅด๋ฉด ๊ฐ€์น˜๋ถ•๊ดด์ ์ธ ์„ธ์†ํ™”๋Š” ์ธ๊ฐ„์˜ ์ด์„ฑ์ด ์ ๊ทน์ ์œผ๋กœ ํ™œ์šฉ๋˜๊ธฐ ์‹œ์ž‘ํ•œ ๊ทผ๋Œ€์— ์™€์„œ ๊ฐ€์†ํ™” ๋˜์—ˆ๋‹ค. ๋งํ•˜์ž๋ฉด ์ธ๊ฐ„์ด ์ตœ๋Œ€ํ•œ์˜ ์ž์œจ์„ฑ์„ ํ† ๋Œ€๋กœ ์ด์„ฑ์„ ์‚ฌ์šฉํ•จ์œผ๋กœ์จ ๊ทผ๋Œ€์˜ ์‚ฐ์—…์€ ๋ˆˆ๋ถ€์‹œ๊ฒŒ ๋ฐœ์ „ํ•˜์˜€์ง€๋งŒ, ์—ฌ๊ธฐ์—๋Š” ์ด์™€ ๋”๋ถˆ์–ด ํ•ฉ๋ฆฌ์  ์ด์„ฑ์„ ์ ˆ๋Œ€์ ์œผ๋กœ ๋งน์‹ ํ•˜๋Š” ๋ฌด๋น„ํŒ์ ์ธ ํƒœ๋„๊ฐ€ ๋“œ๋Ÿฌ๋‚ฌ๋‹ค. ์ด๋Ÿฌํ•œ ๊ฐ€์น˜๋ถ•๊ดด ์ด๋ก ์„ ๋ธŒ๋กœํ๋Š” ใ€Ž๋ชฝ์œ ๋ณ‘์ž๋“คใ€์„ ํ†ตํ•ด ์†Œ์„ค๋กœ ํ˜•์ƒํ™”ํ•˜์˜€์œผ๋ฉฐ, ์—ฌ๊ธฐ์—์„œ ์ธ๊ฐ„์€ ์ ˆ๋Œ€์„ฑ์„ ์ถ”์ข…ํ•˜์—ฌ ๊ทธ๊ฒƒ์„ ๋งน์‹ ํ•˜๋Š” ๊ฐ€์šด๋ฐ ๊ทธ ๊ณผ์ •์„ ๋น„ํŒ์ ์œผ๋กœ ์ธ์‹ํ•˜์ง€ ๋ชปํ•˜๊ณ , ๋”๋ถˆ์–ด ๊ทธ๋Ÿฌํ•œ ํƒœ๋„์˜ ์˜ณ๊ณ  ๊ทธ๋ฆ„์กฐ์ฐจ ํŒ๋‹จํ•  ์ˆ˜ ์—†๋Š” ์ƒํƒœ์— ๋†“์—ฌ์žˆ๋‹ค. ์ด๋กœ์จ ์†Œ์„ค์˜ ์ธ๋ฌผ๋“ค์€ ๋ฏธ์ฒ˜ ๊ฟˆ์—์„œ ๊นจ์ง€ ๋ชปํ•˜์—ฌ ์˜์‹ํ•˜์ง€ ๋ชปํ•œ ์ฑ„ ํ–‰๋™ํ•˜๋Š” ๋ชฝ์œ ๋ณ‘์ž๋“ค์— ๋น„์œ ๋˜๊ณ  ์žˆ๋‹ค. ๋ชฝ์œ ๋ณ‘์ž๋“ค์˜ ํ–‰์œ„๋Š” ๊ทธ๋“ค์ด ์†ํ•œ ๊ฐ€์น˜์ฒด๊ณ„์˜ ํ•ฉ๋ฆฌ์„ฑ์„ ์ฒ ์ €ํ•˜๊ฒŒ ๋”ฐ๋ฅด๋Š” ๊ฒƒ์œผ๋กœ ๊ฒ‰์œผ๋กœ ๋ณด๊ธฐ์— ํƒ€๋‹นํ•œ ๋“ฏ ๋ณด์ด๋‚˜, ๊ทธ๋Ÿฌํ•œ ์ฒด๊ณ„์˜ ๋…ผ๋ฆฌ์„ฑ๋งŒ์„ ๋ฌด๋น„ํŒ์ ์œผ๋กœ ์ถ”์ข…ํ•˜๋Š” ๊นŒ๋‹ญ์— ๋๋‚ด ๋ถˆํ•ฉ๋ฆฌํ•œ ๊ฒƒ์œผ๋กœ ํŒ๋ช…๋œ๋‹ค. ์ด๋Ÿฌํ•œ ๋ชฝ์œ ๋ณ‘์ž๋“ค์˜ ๋น„ํ•ฉ๋ฆฌ์  ์„ฑํ–ฅ์€ ์ „์ฒด ์„ธ๊ณ„์˜ ํ†ต์ผ์„ฑ์„ ์™€ํ•ด์‹œํ‚ค๋ฉด์„œ ์ธ๊ฐ„๊ฐ€์น˜์˜ ๋ฌดํ™”๋ฅผ ์กฐ์žฅํ•˜๋Š” ๋™์ธ์ด ๋˜๊ณ  ์žˆ๋‹ค. ใ€Ž๋ชฝ์œ ๋ณ‘์ž๋“คใ€์˜ 1๋ถ€์™€ 2๋ถ€์— ๋“ฑ์žฅํ•˜๋Š” ์š”์•„ํž˜ ํฐ ํŒŒ์ œ๋…ธ์™€ ์•„์šฐ๊ตฌ์ŠคํŠธ ์—์‰ฌ๋Š” ๋‘˜ ๋‹ค ์‹œ๋Œ€์— ๋’ค๋–จ์–ด์ง„ ๋‚ก์€ ๊ฐ€์น˜๋ฅผ ๊ณ ์ˆ˜ํ•˜๋ฉด์„œ ๊ทธ๊ฒƒ์— ์ ˆ๋Œ€์„ฑ์„ ๋ถ€์—ฌํ•˜๊ณ  ์žˆ๋‹ค. ์š”์•„ํž˜์€ ํ”„๋กœ์ด์„ผ์˜ ์žฅ๊ต ์ถœ์‹ ์œผ๋กœ ์ž์‹ ์—๊ฒŒ ๋‚ฏ์„  ์‹œ๋ฏผ์„ธ๊ณ„์— ๋Š๋ผ๋Š” ํ˜ผ๋ž€์„ ํ”ผํ•ด ์žฅ๊ต์˜ ์ œ๋ณต์„ ๊ฐ‘์˜ท๊ณผ ๊ฐ™์€ ๋ฐฉํŒจ๋กœ ์ธ์‹ํ•˜๊ณ  ๊ทธ๊ฒƒ์„ ์‹ ๋ด‰ํ•œ๋‹ค. ์—์‰ฌ๋Š” 1๋ถ€์—์„œ์˜ ํ˜ผ๋ž€ํ•œ ์ƒํƒœ์—์„œ ๋” ๋‚˜์•„๊ฐ€ ๊ด‘๊ธฐ๋ฅผ ๋“œ๋Ÿฌ๋‚ธ๋‹ค. ๊ทธ๋Š” ๊ฐœ์ธ์ ์ธ ์ฒดํ—˜์—์„œ ๋น„๋กฏ๋œ ์‚ฌํšŒ์˜ ๋ฌด์งˆ์„œํ•œ ๋ฉด๋ชจ๋ฅผ ์ „์ฒด ์„ธ๊ณ„์˜ ๋ฌด์งˆ์„œ์™€ ์นด์˜ค์Šค๋กœ ์—ฌ๊ธฐ๊ณ , ๊ธฐ๋…๊ต์ ์ธ ๋งน์‹ ์— ์‚ฌ๋กœ์žกํ˜€์„œ ์„ธ๊ณ„๋ฅผ ๊ตฌ์›ํ•˜๋ ค๊ณ  ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๋น„ํ˜„์‹ค์ ์ธ ์š•๋ง์€ ์ธ๊ฐ„๊ฐ€์น˜๋ฅผ ํ•˜๋ฝ์‹œํ‚ค๊ณ  ์ธ๊ฐ„์„ ์‚ฌ๋ฌผํ™” ยท ๋„๊ตฌํ™”ํ•˜๋Š” ๊ณผ์ •์„ ํ†ตํ•ด์„œ ์ด๋ฃจ์–ด์ง„๋‹ค. 3๋ถ€์˜ ์ฃผ์ธ๊ณต ๋นŒํ—ฌ๋ฆ„ ํ›„๊ฒŒ๋‚˜์šฐ๊ฐ€ ์ด๋Ÿฌํ•œ ๋ฉด๋ชจ๋ฅผ ๊ฐ€์žฅ ๊ทน๋ช…ํ•˜๊ฒŒ ๋“œ๋Ÿฌ๋‚ธ๋‹ค. ๊ทธ๋Š” ์ธ๊ฐ„์„ ์‚ดํ•ดํ•˜๋ฉด์„œ๋„ ์ž์‹ ์˜ ํ–‰์œ„๋ฅผ ๋น„ํŒํ•˜๊ฑฐ๋‚˜ ๋ฐ˜์„ฑํ•˜์ง€ ๋ชปํ•˜๋Š” ํƒˆ๊ฐ€์น˜์  ์ธ๋ฌผ์ด๋‹ค. ์š”์ปจ๋Œ€ ๊ทธ๋Š” ์ƒ์ธ์œผ๋กœ์„œ์˜ ๋ฌผ์งˆ์  ์ด์ต๋งŒ์„ ์ ˆ๋Œ€์ ์œผ๋กœ ์ถ”์ข…ํ•  ๋ฟ ์—ฌํƒ€์˜ ๊ฐ€์น˜๋“ค์—๋Š” ๊ด€์‹ฌ์„ ๋‘์ง€ ์•Š๋Š”๋‹ค. ์ด๋ ‡๋“ฏ ์˜ค์ง ๋ฌผ์งˆ์ ์ธ ๊ฐ€์น˜๋งŒ์„ ์ค‘์‹œํ•˜๋Š” ์ฆ‰๋ฌผ์ฃผ์˜์  ํƒœ๋„๋Š” 1์ฐจ๋Œ€์ „์˜ ์ „์‹œ๋ฅผ ๋ฐฐ๊ฒฝ์œผ๋กœ ๋“ฑ์žฅํ•˜๋Š” ๊ธฐํšŒ์ฃผ์˜์ ์ธ ํ–‰์œ„์˜ ์ „ํ˜•์œผ๋กœ ๋– ์˜ค๋ฅด๋ฉฐ ์ธ๊ฐ„๊ฐ€์น˜์˜ ํƒ€๋ฝ๊ณผ ์ข…๋ง์„ ์˜ˆ๊ฒฌํ•˜๋Š” ๊ฐ€์น˜๋ถ•๊ดด์˜ ์‹œ๋Œ€์  ์–‘์ƒ์œผ๋กœ ํ•ด์„๋˜๊ณ  ์žˆ๋‹ค.Um die Jahrhundertwende reflektierten in ร–sterreich nicht wenige Schriftsteller und Kรผnstler in ihren Werken die Unruhe und Zweifel ihrer Epoche. Hermann Broch hat die zeitgenรถssische Gesellschaft in seinen philosophischen Essays und Romanen kritisch analysiert. In seiner Romantrilogie Die Schlafwandler stellt er den โ€žZerfall der Werteโ€Ÿ dar und zeigt Individuen, die von den Symptomen des Zerfalls charakterisiert werden. Die vorliegende Arbeit untersucht das Motiv des โ€žSchlafwandelnsโ€Ÿ als Symptom des Wertezerfalls. โ€žSchlafwandelnโ€Ÿ hat hier einen metaphorischen Sinn und beschreibt die Perzeption und das Handeln der Menschen. Die Protagonisten erscheinen als Durchschnittsbรผrger der damaligen Gesellschaft. Doch hinter den modellhaften Masken verbergen sich Philister ohne eigene Wertevorstellungen. Die Mentalitรคt dieser Menschen befindet sich in einem schlafwandelnden Zustand. Schlafwandler zu sein bedeutet hier das Unvermรถgen, sich selbst und die Realitรคt zu erkennen, die Menschen verfallen dem Wahnsinn. Broch betrachtet die Unruhe der Moderne in Zusammenhang mit den erkenntnistheoretischen Aspekten der Menschen. In dem Roman versucht Broch den Einfluss des Wertezerfalls auf das menschliche Geistesleben kritisch darzustellen. In seiner Theorie รผber den โ€žZerfall der Werteโ€Ÿ setzt sich Broch mit der Entwicklung der europรคischen Moderne seit der Renaissance auseinander. Nach Broch beschleunigt sich der abendlรคndische Wertezerfall durch die Instrumentalisierung der Vernunft. Hinter der konsequenten Applikation der Vernunft steht der blinde Glaube an die Rationalitรคt der Vernunft. Broch gestaltet diesen vernunftskritischen Gedanken in Die Schlafwandler durch die moderne Romanform: die Protagonisten der Trilogie verfolgen das Absolute, aber in ihrer Unreflektiertheit vermรถgen sie nicht, รผber ihr eigenes Verhalten kritisch zu urteilen. Sie verhalten sich, als ob sie aus ihrem Traum noch nicht erwacht wรคren, so sind sie mit Schlafwandlern vergleichbar. Sie zeigen scheinbare Nomalitรคten, da sie die rationalen Gesetze ihres Wertesystems radikal einhalten. Doch durch die radikale Rationalitรคt isolieren sie sich und werden gleichgรผltig gegenรผber anderen Menschen. Nach Broch ist der Schlafwandler in seiner Einsamkeit irrational, und dies ist das Bild einer zerfallenen Welt. Im ersten und zweiten Teil der Trilogie sind Joachim von Pasenow und August Esch jeweils in โ€šMoral-Dogmenโ€› gefangen. Sie versuchen, in den zerfallenen Werten einen absoluten Charakter zu finden. Joachim, ein preuรŸischer Offizier, betrachtet die zivile Welt als eine fremde und chaotische Welt, und fasst seine Uniform als Schutz gegen dieses Durcheinander auf. Er verehrt die Uniform, die als ein Zeichen des wilhelminischen Konservatismus gilt. Diese Verwirrung wird bei August Esch noch gesteigert. Esch verfรคllt dem Wahn, dass ausschlieรŸlich durch die katholische Religion die Erlรถsung der in Chaos zerfallenen Welt mรถglich sei. Solcher Glauben wird auf Kosten der menschlichen Werte erkauft. Diese Symptome kommen bei Wilhelm Huguenau am radikalsten zum Vorschein. Huguenau ist frei von allen moralischen Werten und nur in seinen eigenen Interessen verfangen. Selbst wenn er einen Menschen ermordet, rechnet Huguenau als Geschรคftsmann nur seinen eigenen Gewinn aus. Solche Kรคlte ist vor dem Hintergrund der Zeit des ersten Weltkriegs als ein Vorbote der Vernichtung der menschlichen Werte und eines apokalyptischen Weltunterganges einzuschรคtzenMaste

    (The) effect of various psoralens and ultraviolet A on melanocytes, Langerhans cells and the formation of sunburn cells in C57BL mice

    No full text
    ์˜ํ•™๊ณผ/๋ฐ•์‚ฌ[ํ•œ๊ธ€] ๊ด‘ํ™”ํ•™์š”๋ฒ•์€ ํ”ผ๋ถ€์˜ ์ƒ‰์†Œ ์นจ์ฐฉ ํšจ๊ณผ๋กœ ์ธํ•ด ๋ฐฑ๋ฐ˜์ฆ ์น˜๋ฃŒ์— ์“ฐ์ด๊ณ  ์žˆ๋‹ค. ๊ด‘ํ™”ํ•™์š”๋ฒ•์— ์‚ฌ์šฉ๋˜๋Š” ์•ฝ๋ฌผ์ธ psoralen์€ ์ง์„ ๊ตฌ์กฐ ๋ฐ ๊ฐ๊ตฌ์กฐ๋กœ ๊ตฌ๋ถ„๋œ๋‹ค. ์ง์„ ๊ตฌ์กฐ๋ฅผ ๊ฐ–๋Š” 8-methox ypsoraven(8-MOP) ๋ฐ 5-methoxypsoralen(5-MOP)์€ ์ด์ค‘ ์ž‘์šฉ๊ธฐ (bifunctional) psoralen ์œผ๋กœ ์ž์™ธ์„  A๋ฅผ ์กฐ์‚ฌํ•˜์˜€์„ ๋•Œ ์„ธํฌ DNA ๊ฐ€๋‹ฅ ์‚ฌ์ด์— ๊ต์ฐจ๊ฒฐํ•ฉ์„ ์ผ์œผํ‚ค๋ฉฐ ๋Œ์—ฐ๋ณ€์ด, ๋ฐœ ์•”์„ฑ, ๊ด‘๋…์„ฑ ๋ฐ˜์‘ ๋“ฑ์˜ ๋ถ€์ž‘์šฉ์„ ์ดˆ๋ž˜ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ฐ˜๋ฉด ๊ฐ๊ตฌ์กฐ๋ฅผ ๊ฐ–๋Š” angelicin์€ ๋‹จ์ผ ์ž‘์šฉ๊ธฐ(monofunctional) psoralen์œผ๋กœ ์ž์™ธ์„  A ์กฐ์‚ฌ์‹œ ์„ธํฌ DNA ๊ฐ€๋‹ฅ ์‚ฌ์ด์˜ ๊ต์ฐจ๊ฒฐํ•ฉ ์„ ๊ฑฐ์˜ ํ˜•์„ฑํ•˜์ง€ ์•Š๊ณ  ๋ถ€์ž‘์šฉ์„ ๋น„๊ต์  ์ ๊ฒŒ ์ผ์œผํ‚จ๋‹ค. ์ƒ‰์†Œ ์นจ์ฐฉ์„ ์œ„ํ•œ ๊ด‘ํ™”ํ•™์š”๋ฒ•์— ์„œ๋Š” ๋ฉœ๋ผ๋‹Œ์„ธํฌ์ˆ˜์™€ ํฌ๊ธฐ๋ฅผ ์ฆ๊ฐ€์‹œํ‚ค๋ฉด์„œ ๊ด‘๋…์„ฑ ๋ฐ˜์‘ ๋ฐ ๋ฉด์—ญํ•™์  ๋ณ€ํ™”๋ฅผ ์ ๊ฒŒ ์ผ์œผํ‚ค ๋Š” ์•ฝ์ œ์˜ ์„ ํƒ์ด ๋ฐ”๋žŒ์งํ•˜๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ง์„ ๊ตฌ์กฐ๋ฅผ ๊ฐ–๋Š” 8-MOP๊ณผ, ์—ญ์‹œ ์ง์„ ๊ตฌ์กฐ์ด๋‚˜ 8-MOP์— ๋น„ํ•ด ๋ถ€์ž‘์šฉ์ด ์  ๋‹ค๊ณ  ์•Œ๋ ค์ง„ 5-MOP, ๊ทธ๋ฆฌ๊ณ  ๊ฐ๊ตฌ์กฐ๋ฅผ ๊ฐ–๋Š” angelicin์„ ์ด์šฉํ•œ ๊ด‘ํ™”ํ•™์š”๋ฒ•์„ ์‹œํ–‰ํ•˜์—ฌ 5- MOP๋ฐ angelicin์ด ํ˜„์žฌ ๋ฐฑ๋ฐ˜์ฆ ์น˜๋ฃŒ์— ์‚ฌ์šฉ๋˜๊ณ  ์žˆ๋Š” 8-MOP์— ๋น„ํ•ด ๋ฉœ๋ผ๋‹Œ์„ธํฌ์˜ ์ˆ˜์™€ ํฌ๊ธฐ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์ด ์–ด๋– ํ•œ๊ฐ€๋ฅผ ์•Œ์•„๋ณด๊ณ , ๋˜ํ•œ ๊ด‘ํ™”ํ•™์š”๋ฒ• ํ›„ ์ดˆ๋ž˜๋˜๋Š” ๋ฉด์—ญํ•™์  ์ด์ƒ ์— ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜๋ฆฌ๋ผ ์ƒ๊ฐ๋˜๋Š” ๋ž‘๊ฒŒ๋ฅดํ•œ์Šค์„ธํฌ ๊ฐ์†Œ์™€, ๊ด‘๋…์„ฑ ๋ฐ˜์‘์˜ ์ง€ํ‘œ๊ฐ€ ๋˜๋Š” ์ผ๊ด‘ํ™”์ƒ์„ธํฌ ํ˜•์„ฑ์— ๋ฏธ์น˜๋Š” ๊ฐ ์•ฝ๋ฌผ์˜ ์˜ํ–ฅ์„ ๋น„๊ตํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ์ฆ‰ C57BL ๋งˆ์šฐ์Šค์— 8- MOP, 5-MOP ๋ฐ angelicin์„ ์ด์šฉํ•œ ์ „์‹  ๊ด‘ํ™”ํ•™์š”๋ฒ•์„ ์‹œํ–‰ํ•˜๊ณ  ๊ด‘ํ™”ํ•™์š”๋ฒ• 1์ฃผ, 3์ฃผ ๋ฐ 6์ฃผ์— ํ”ผ๋ถ€๋ฅผ ์ƒ๊ฒ€ํ•œ ํ›„ dihydroxyphenylalanine(DOPA) ์–‘์„ฑ ๋ฉœ๋ผ๋‹Œ์„ธํฌ์˜ ์ˆ˜, ๋ฉด์  ๋ฐ ๋‘˜๋ ˆ๊ธธ์ด์™€ ATPase ์–‘์„ฑ๋ž‘๊ฒŒ๋ฅดํ•œ์Šค์„ผํฌ ์ˆ˜, ๊ทธ๋ฆฌ๊ณ  ํ‘œํ”ผ์˜ ์ผ๊ด‘ํ™”์ƒ์„ธํฌ ์ˆ˜๋ฅผ ์ธก์ •ํ•˜์—ฌ ๋‹ค์Œ์˜ ๊ฒฐ๊ณผ๋ฅผ ์–ป์—ˆ๋‹ค. 1. ๋ฉœ๋ผ๋‹Œ์„ธํฌ ์ˆ˜๋Š” 8-MOP ํˆฌ์—ฌ๊ตฐ, angelicin ํˆฌ์—ฌ๊ตฐ, 5-MOP ํˆฌ์—ฌ๊ตฐ ๋ชจ๋‘์—์„œ ๋Œ€์กฐ๊ตฐ์— ๋น„ํ•ด ์œ ์˜ํ•˜๊ฒŒ ์ฆ๊ฐ€ํ•˜์˜€์œผ๋‚˜ ๊ฐ ์•ฝ๋ฌผ ํˆฌ์—ฌ๊ตฐ๊ฐ„์— ์œ ์˜ํ•œ ์ฐจ์ด๊ฐ€ ์—†์—ˆ๋‹ค. 2. ๋ฉœ๋ผ๋‹Œ์„ธํฌ ๋ฉด์  ๋ฐ ๋‘˜๋ ˆ๊ธธ์ด๋Š” 8-MOP ํˆฌ์—ฌ๊ตฐ, angelicin ํˆฌ์—ฌ๊ตฐ, 5-MOP ํˆฌ์—ฌ๊ตฐ, ๋Œ€ ์กฐ๊ตฐ์˜ ์ˆœ์œผ๋กœ ์ฆ๊ฐ€ํ•˜์˜€์œผ๋ฉฐ ๊ด‘ํ™”ํ•™์š”๋ฒ• 6์ฃผ์— 8-MOP ํˆฌ์—ฌ๊ตฐ ๋ฐ angelicin ํˆฌ์—ฌ๊ตฐ์—์„œ 5- MOPํˆฌ์—ฌ๊ตฐ์— ๋น„ํ•ด ์œ ์˜ํ•˜๊ฒŒ ์ฆ๊ฐ€ํ•˜์˜€๋‹ค. 3. ATPase ์–‘์„ฑ ํ‘œํ”ผ ๋ž‘๊ฒŒ๋ฅดํ•œ์Šค์„ธํฌ ์ˆ˜๋Š” 8-MOP ํˆฌ์—ฌ๊ตฐ, 5-MOP ํˆฌ์—ฌ๊ตฐ, angelicin ํˆฌ ์—ฌ๊ตฐ, ๋Œ€์กฐ๊ตฐ์˜ ์ˆœ์œผ๋กœ ๊ฐ์†Œ๊ฐ€ ๋งŽ์•˜์œผ๋ฉฐ 8-MOP ํˆฌ์—ฌ๊ตฐ์—์„œ 5-MOP ํˆฌ์—ฌ๊ตฐ ๋ฐ angelicin ํˆฌ ์—ฌ๊ตฐ์— ๋น„ํ•ด ์œ ์˜ํ•˜๊ฒŒ ๊ฐ์†Œํ•˜์˜€๋‹ค. 4. ์ผ๊ด‘ํ™”์ƒ์„ธํฌ ์ˆ˜๋Š” 8-MOP ํˆฌ์—ฌ๊ตฐ, 5-MOP ํˆฌ์—ฌ๊ตฐ, angelicin ํˆฌ์—ฌ๊ตฐ, ๋Œ€์กฐ๊ตฐ์˜ ์ˆœ์œผ ๋กœ ์ฆ๊ฐ€ํ•˜์˜€์œผ๋ฉฐ 8-MOP ํˆฌ์—ฌ๊ตฐ์—์„œ 5-MOP ํˆฌ์—ฌ๊ตฐ ๋ฐ angelicin ํˆฌ์—ฌ๊ตฐ์— ๋น„ํ•ด ์œ ์˜ํ•˜๊ฒŒ ๋งŽ์ด ํ˜•์„ฑ ๋˜์—ˆ๋‹ค. ์ด์ƒ์˜ ๊ฒฐ๊ณผ๋กœ ๋ณด์•„ ๋ฉœ๋ผ๋‹Œ์„ธํฌ ์ˆ˜, ๋ฉด์  ๋ฐ ๋‘˜๋ ˆ๊ธธ์ด ์ฆ๊ฐ€๊ฐ€ angelicin ํˆฌ์—ฌ๊ตฐ ๋ฐ 5-M OPํˆฌ์—ฌ๊ตฐ์—์„œ ํ˜„์žฌ ๋ฐฑ๋ฐ˜์ฆ ์น˜๋ฃŒ์— ์‚ฌ์šฉ๋˜๊ณ  ์žˆ๋Š” ์•ฝ๋ฌผ์ธ 8-MOP ํˆฌ์—ฌ๊ตฐ์— ๋น„ํ•ด ์†์ƒ‰์ด ์—† ์—ˆ์œผ๋ฉฐ, ATPase ์–‘์„ฑ ๋ž‘๊ฒŒ๋ฅดํ•œ์Šค์„ธํฌ ๊ฐ์†Œ์™€ ์ผ๊ด‘ํ™”์ƒ์„ธํฌ ํ˜•์„ฑ์€ angelicin ํˆฌ์—ฌ๊ตฐ ๋ฐ 5 -MOP ํˆฌ์—ฌ๊ตฐ์—์„œ 8-MOP ํˆฌ์—ฌ๊ตฐ์— ๋น„ํ•ด ์ ์—ˆ์œผ๋ฏ€๋กœ ์ƒ‰์†Œ ์นจ์ฐฉ์„ ๋ชฉ์ ์œผ๋กœ ํ•˜๋Š” ๋ฐฑ๋ฐ˜์ฆ์˜ ์น˜๋ฃŒ์— angelicin ๋ฐ 5-MOP์„ ์ด์šฉํ•œ ๊ด‘ํ™”ํ™•์š”๋ฒ•์ด ์ข‹์€ ๋ฐฉ๋ฒ•์ด ๋  ๊ฐ€๋Šฅ์„ฑ์ด ์žˆ๋‹ค๊ณ  ์ƒ๊ฐ ๋œ๋‹ค. [์˜๋ฌธ] The combination of psoralen and subsequent exposure of ultraviolet A(UVA) is used with increasing importance in the treatment of vitiligo. There are two forms of psoralens. Linear psoralens and angular psoralens. Linear psoralens, such as 8-methoxypsoralen(8-MOP) and 5-methoxypsoralen (5-MOP),are photochemically bifunctional psoralens which can form interstrand cress-linking with DNA and may induce mutagenic and carcinogenic side effects in the presence of UVA. Angular psoralens, such as angelicin, are photochemically monofunctional psoralens and rarely form interstrnnd cross-linking with DNA on irradiation and consequently lead to less side effects than linear psoralens. For the purpose of increment of pigmentation, photosensitizing agents should be selected which increase the number and size of melanocytes while minimizing phototoxic reactions and immunologic alterations in the presence of UVA.5-MOP, a bifunctional psoralen, showed less side effects such as phototoxic reactions, mutation, and gastrointestinal problems than 8-MOP in the photochemotherapy. Angelicin is a monofunctional psoralen and the effect of angelicin on the number and size of melanocyte with UVA irradiation is still unknown. The objectives of this study are to compare the effects of photochemotherapy of linear psoralens,8-MOP and 5-MOP, and an angular psoralen, angelicin. In particular, the number and size of melanocytes formed, the number of Langerhans cells which are important in immune surveillance system and the number of sunburn cells which are the quantitative index of phototoxic reactions are compared. For this purpose, we injected these psoralens intraperitoneally into C57BL mice and subsequently exposed the mice to 4 J/cm**2 of UVA twice a week for 6weeks. We biopsied the skin at 1,3 and 6weeks of photochemotherapy, and stained them with DOPA stain, ATPase stain, and hematoxylineosin stain to measure the number, area and perimeter of melanocytes formed, the number of ATPase**+ Langerhans cells and the number of sunburn cells. The results are summarized as follows: 1. There were increases in the number of melanocytes in groups treated with 8-MOP, 5-MOP and angelicin compared with the UVA-only treated group. No statistically significant difference between groups treated with phototoxic drugs was observed. 2. There were marked increases in the area and the perimeter of melanocytes in groups treated with 8-MOP, angelicin and 5-MOP compared with the UVA-only treated group. Groups treated with 8-MOP and angelicin showed statistically significant increases in the area and the perimeter of melanocytes than the group treated with 5-MOP in the 6th week of treatment. 3. Threr were marked reductions in the number of ATPase**+ Langerhans cells in groups treated with all of phototoxic drugs compared to the UVA-only treated group. in the group treated with 8-MOP, there was statistically significant decrease in the number of ATPase**+ Langerhans cells than 5-MOP and angelicin treated groups. 4. There were increased formations of sunburn cells in all groups treated with phototoxic drugs compared to the UVA-only treated group. In the 8-MOP treated Broup, the number of sunburn cells was larger than that of 5-MOP and angelicin treated groups. In summary, 5-MOP and angelicin showed similar pigmentation with less side effects than 8-MOP, a commonly used psoralen for the treatment of vitiligo, and we have found encouraging possibilities for 5-MOP and angelicin to be useful photochemotherapeutic drugs.restrictio

    Bioactive glass ์™€ ursolic acid ๋ฅผ ํ•จ์œ ํ•œ ๋ณตํ•ฉ ๋ ˆ์ง„์˜ 6๊ฐœ์›” ์ฆ๋ฅ˜์ˆ˜ ์ €์žฅ ํ›„ Streptococcus mutans ๋ฐ”์ด์˜ค ํ•„๋ฆ„์— ๋Œ€ํ•œ

    No full text
    Dept. of Dentistry/์„์‚ฌ1. Objective The aim of this study was to investigate the S.mutans biofilm formation on composite surface containing bioactive glass and ursolic acid when exposed to distilled water for 6 months compared with fresh antibacterial composite resin specimen. 2. Materials and methods Four experimental groups and one control group were prepared : Conventional composite (10%wt OX50 silica nanofiller instead of BAG) as control, BAG filler group (BAG), BAG filler coated with UA group (UA BAG), UA added to resin matrix (BAG+UA Monomer), and UA added to BAG and resin matrix (UA BAG+UA Monomer). All specimens were stored in distilled water for 6 months (the aged resin group). After sterilization with ethylene oxide gas, biofilm assay was performed again on all five groups. The specimens for the aged resin group were fabricated on the previous study by Kim (Kim B, 2013), and re-used for this study. For biofilm assay, S. mutans was incubated for 24 hours with each composite resin disk specimen in a biofilm medium with either glucose or sucrose in the presence or absence of a salivary coating. The adherent bacteria were quantified after sonication of the specimen by counting the colony forming units of viable bacteria. Calcium and fluoride ions concentration released from new and aged specimens were analyzed quantitatively by using Ion Chromatography (IC). Five disk specimens of each group were immersed and stored in 5 ml distilled water for 24 hours. The measurement of ion release was carried out by using the IC on 1-day interval for 7 days.The t-test for variable CFU was used for biofilm assay to analyze statistical significance between new and aged groups. To analyze the effect of composite composition on the biofilm formation, one-way analysis of variance (ANOVA) followed by a multiplecomparison Tukey test was performed. The amount of calcium and fluoride ion release between old resin groups and new resin groups was compared using t- test at a 5% level of significance. 3. Result When glucose was given as a carbohydrate source, there was no significant difference between new and aged resin under saliva non-coating condition. In new resins, the CFU values of all experimental groups were significantly lower than control group. However, in aged resin, only the BAG + UA Monomer group showed significantly lower CFU value than control group. In saliva coating condition, the CFU value of all aged resin groups significantly increased compared to all new resin groups. In the new resin groups, the CFU value of all experimental groups was significantly lower than control. However, there was no significant difference between control and BAG group on aged resin. When sucrose was given as a carbohydrate source, under salivary non-coating condition, CFU value of aged resin significantly increased more than new resin on all experimental groups except in the control group. In the new resin groups, the CFU value of BAG + UA Monomer, UA BAG + UA Monomer group was significantly lower than control. However, there was no significant difference between all groups in aged resin groups. In saliva coating condition, the CFU value of BAG + UA monomer, UA BAG + UA Monomer group was significantly lower than control group in aged resin and new resin. On both calcium and fluoride, new resin showed higher amount of ion release than aged resin. A significant difference was shown on fluoride ion release all day, and new resin showed significantly higher release of calcium ion on the 1st, 5th day. On both calcium and fluoride, a significantly high concentration of ion release was shown on the 1st day in new resin specimen. The amount of ion release showed significant decrease on the 2nd day, but increased on the 3rd day. 4. Conclusion In glucose source, experimental new composites containing BAG and/or UA showed significant reduction of biofilm formation by S. mutans. However, after storage in distilled water for 6 months, experimental composites containing BAG showed decreased biofilm inhibition effect. The composites with UA added to the monomer still showed significant inhibition effect of the biofilm formation by S. mutans even after storage in distilled water. In sucrose source, the new composites of UA Monomer group showed significant antibacterial effect under any salivary treatment. After storage in distilled water for 6 months, the biofilm formation was affected by salivary treatment. In Saliva non-coating groups, there were no significant difference in all groups, and in saliva coating groups, BAG + UA Monomer and UA BAG + UA Monomer groups showed lower CFU values. Following the results of this experiment, it can be concluded that the UA incorporated in monomer was more effective method to keep the antibacterial effect in any biofilm formation condition after 6 month water storage condition. Within the limitation of this experiment, this result indicates that UA inhibits biofilm formation by S. mutans and suggests that UA has potential for use as an effective antibacterial agent to prevent dental caries in the future.ope
    corecore