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Abstract 

 

With the recent advances in next generation sequencing 

technologies, shotgun metagenomics, direct sequencing of genetic 

materials from environmental samples, became available. Shotgun 

metagenomics enables research of previously under-examined or 

unknown microbes that cannot be cultured in laboratories. 

Metagenomics therefore has potential to identify novel genomes from 

samples and its abundance within samples. Since short-read 

sequencing outputs a large number of reads in a single run, the task 

is to construct the genome from which the reads originate. However, 

since the reads produced by next generation sequencing technologies 

generally have short lengths, assembling reads into contigs cannot 

reconstruct the sequence of complete genomes. Aligning reads to the 

reference genome is also hindered if the reference genome is not 

available or coverage is insufficient. Moreover, since environmental 

sample contains various microbial species or strains, different reads 

obtained from metagenomics shotgun sequencing may originate from 

different taxa. Therefore, clustering contigs into bins, where each bin 

corresponds to a species, is needed. After sequencing reads from 

microbial samples, reads are assembled into contigs, which can then 

be clustered into species to identify which species reside in the 
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samples. Here we compare eight taxonomy independent contig 

binning methods that utilizes composition and coverage information 

to bin contigs into clusters. By comparing their performances across 

26 in silico datasets with varying parameters, we suggest a guideline 

of choosing appropriate methods of binning contigs for various 

datasets. 
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Chapter 1. Introduction 

 

 

1.1. Study Background 

 

Microorganisms are single-celled organisms which generally 

exist in a unit or in the form of clads. Prokaryotes, including bacteria 

and archaea are the typical examples.  

Microorganisms play a vital role in ecological system, and take 

up approximately one third of the biomass of the Earth [1]. 

Microorganisms also reside inside human body, forming a community 

that can have an effect on human's health. Though some 

microorganisms are benign, others may cause disease. For example, 

Plasmodium falciparum is a kind of pathogenic protozoa which causes 

malaria in human. Therefore, it is crucial to understand the genetic 

structure of microorganisms and their functions.  

With the advance in sequencing technology, next generation 

sequencing emerged, which is cost-effective and efficient in time and 

performance compared to traditional Sanger sequencing. Illumina 

platform, one of the next generation sequencer, is widely used due 

to high accuracy with error rate of 0.1-1% and high outputs with 

1.5Tb per run [2]. Next generation sequencing shed light to a new 
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field called metagenomics. Metagenomics, unlike traditional culture-

based approaches, refers to the study of genetic materials of 

microbes obtained directly from nature. This method enables 

sequencing genetic materials from samples obtained directly from an 

environment.  

There are other related fields such as metataxonomics and 

meta-transcriptomics that aims to discern genetic compositions of 

data. Metataxonomics, also sometimes referred to as metagenomics, 

sequences specific marker genes that are highly conserved such as 

regions of the ribosomal RNA (rRNA) [3]. The amplicon sequencing 

of 16S rRNA gene from bacteria and 18S rRNA gene from eukaryotes 

are widely used, where amplicon indicates the source DNA fragment 

that are copied and multiplied. 16S rRNA marker genes are suited for 

phylogenetic profiling because they are present almost in all 

population, and they have nine hypervariable regions of varying 

lengths and sequences which can be used to distinguish species [4, 

5]. Meta-transcriptomics sequences RNA in a sample, which can 

reflect the highly transcribed regions of the genes [3].  

Although the databases of rRNA such as Greengenes [6], RDP 

[7], and SILVA [8] has increased significantly, containing genes from 

millions of species whereas genome databases only contains tens of 

thousands of species, the pace of new discovery of taxonomy from 

rRNA amplicon sequencing studies is slowed [3, 9]. 
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A downside of metataxonomics is that 16S rRNA gene may not 

be in a single copy. Rather, bacteria can have different copy numbers, 

ranging from 2 to 15 per genome [10]. This can be misleading to the 

composition inference of samples [11]. Moreover, metataxomomics 

approach is not applicable to virus, since it does not have universally 

conserved regions [3]. A PCR bias may also occur since universal 

primers designed may not recover some rRNA. A study revealed that 

a minimum of 9.6% of prokaryotic genes are not recovered using 

PCR-based survey [12]. Metagenomics can be used to resolve these 

problems. 

Shotgun sequencing aims to sequence short fragments, called 

reads, deriving from a long DNA strand. The long DNA strand is 

fragmented, and sequenced with chain termination methods 

repeatedly, creating a set of reads. With the advance of sequencing 

technology, a large number of reads greater than  with short 

reads became available [13]. Illumina HiSeq is an adequate method 

for sequencing a large number of reads required for in-depth 

resolution of metagenomics. 

To obtain the genetic composition of samples, the reads 

generated are now either aligned to a reference genome or assembled 

into contigs to reconstruct the original genomes. Aligning to 

reference genomes are limited, since reference genomes for novel 

species are unavailable. In other cases, only 'draft' genomes may be 
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available, which is highly fragmented and incomplete, with the 

possibility of low quality of these genome sequences [3].  

Assembling reads is an alternative method, as it does not require 

reference genomes. Since shotgun sequencing produces fragments of 

the original strand repeatedly, there are overlapping regions between 

reads, which can be used to integrate reads into longer pieces, called 

contigs. 

De Bruijn graph is a popular approach for assembling reads into 

contigs. The assembler breaks each read into k-mers, where k is a 

fixed integer and k-mer indicates a sequence of length k. De Bruijn 

graph is then constructed where each node represents a k-mer and 

each edge represents an overlap of size k-1 between adjacent nodes. 

The shortcoming of de Bruijn graph assembler is that when the size 

of repeats is greater than k, it is unable to determine the original size 

of the repeats, which leads to the incomplete reconstruction of the 

whole genome. 

Due to sequence repeats, assembly results in a set of fragmented 

contigs [14]. Therefore, grouping contigs into metagenomic 

assembled genomes (MAGs), referred to as binning contigs, is 

needed to determine which contig are derived from which genome.  

There are two kinds of binning methods, supervised (taxonomy 

dependent) method and unsupervised (taxonomy independent) 

method. Supervised methods search for homology against reference 
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databases for clustering [15]. Unsupervised methods utilize 

information within the set of contigs to cluster them into species.  

The two main features used for unsupervised clustering methods 

are sequence compositions and coverages [15]. Sequence 

compositions, also referred to as genome signatures, represent 

frequencies of all possible sequence of oligonucleotides in each 

contig. It has been shown that these features are genome-wide and 

species-specific [16]. Also, genome signatures are not obscured in 

the course of evolution [17]. Assuming oligonucleotide frequencies 

are unique for each species, genome signatures is represented by a 

numeric vector where each element is the frequency of an 

oligonucleotide [15]. Binners utilize these vectors for clustering 

contigs into bins. 

Coverage information, also called abundance, is also used for 

unsupervised clustering methods. Coverage of a base position is 

defined as the number of times the base position is included in the 

reads. The coverage of a contig is the average of coverages of the 

bases included in the contig. Coverage profile specifies the coverage 

of each contig in each sample. The coverage of contigs derived from 

a single abundant species is likely be high. In this manner, the binning 

methods assumes that the coverages of contigs derived from the 

same genome are highly correlated across multiple samples [15]. 

There are three kinds of binning methods: (1) the sequence 
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composition based methods, (2) the coverage based methods, and (3) 

the methods based on both sequence composition and coverages of 

contigs. Methods that uses sequence composition alone are prone to 

miss some species with low abundance and need long sequences as 

inputs [15]. Therfore, we chose to compare the performances of the 

methods based on both sequence composition and coverages of 

contigs. 

 

1.2. Purpose of Research 

 

Traditional studies on microorganisms were based on culturing 

steps. However, it is estimated that only 0.1-1.0% of the bacteria 

present in soil can be cultured under standard conditions, and the 

fraction of cultivable bacteria in marine samples is even ten to a 

thousand times lower [1]. A study of amplicon sequencing survey of 

16S rRNA also revealed that only a small fraction of bacteria and 

archaea is discovered through cultivation-based studies [18]. Since 

culture-based approaches was limited to organisms that can be 

cultured in a culture medium, most of the microorganisms which 

cannot be cultured with any growth media have not been well studied.  

With the advent of metagenomics, it is now possible to explore 

the previously unseen microbes. Studies of metagenomics discovered 

new lineages of viruses [19, 20, 21]. Metagenomics also enables 
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phylogenetic profiling of samples. Time series metagenomics 

shotgun sequencing can identify the shifts in abundance of bacterial 

species taking place in premature infant guts [22]. Software such as 

MIDAS [23], Constrains [45], DESMAN [25], and Lineage [26] are 

a strain-level resolution algorithms that enables the reconstruction 

of phylogeny trees from samples. 

Moreover, metagenomics can investigate functional roles of 

genes and their level of expression. Metagenomic studies on bovine 

digital dermatitis, a disease that causes lesions and limps in cattle, 

revealed differences in expressed functional genetic composition of 

healthy, active and inactive lesion stages [27]. Studies of antibiotic 

resistance genes discovered rivers, wastewater treatment plants, 

and bacteriophages are reservoirs of antibiotic resistance genes [28, 

29, 30]. 

Metagenomics can also lead to a discovery of novel genes, 

proteins, enzymes, and chemical compounds that can be used for 

biotechnology [31]. A study revealed thiopeptide, antibiotics 

generated by bacteria, is prevalently expressed by microbiota 

residing in human by examining biosynthetic gene clusters (BGC) of 

metagenomics samples from Human Microbiome Project [32]. 

There is a great amount of information held in genomes of 

unexplored microbes, and metagenomics is one of the major methods 

that can be used to study these previously non-studied genomes 
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[31]. Discovering genomic sequence of novel strains or species and 

its relative abundance will bring valuable information in 

metagenomics. 

With great potential, however, metagenomics faces a challenge 

of sequencing the whole genome from samples. It is estimated that 

the number of genomes present in a gram of soil is between 3,000 

and 11,000 [31]. This poses a challenge of determining which reads 

derived from which genomes. Moreover, sequence repeats, low 

coverage, sequencing errors, and various strains present in each 

species results in fragmented contigs [14].  

This brings the need for clustering the assembled contigs into 

species. Each contig is placed into a bin (or cluster), and the overall 

result of binning indicates that contigs belonging to the same bin are 

inferred to be derived from the same species. Binning contigs can 

identify the number of species present in the samples, the relative 

abundance of each species in each sample, and genetic composition 

of each cluster. The binned contigs can be further analyzed to resolve 

strains within each species. They can also be used to investigate the 

potential functions of microorganisms within the microbial community. 

In this article, we compare four binning algorithms that utilizes 

information of both sequence composition and coverage, since 

supervised methods have advantages over unsupervised methods in 

the cases when reference genomes are unavailable. These methods 
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use contigs, not reads, as input. The subject methods are : (1) 

CONCOCT [14], (2) COCACOLA [33], (3) MetaBat [34],  (4) 

MaxBin2 [35], (5) GroopM [36], (6) BMC3C [37], (7) MyCC [38], 

and (8) GATTACA [39]. 

In the following chapter, we will discuss in detail methods of 

generation of data, preprocessing of the data, and eight clustering 

methods mentioned above. Then we will apply each algorithm to 

various synthetic data. Since we apply the methods on synthetic data, 

we can evaluate the performance of the methods by assigning contigs 

the genome they respectively originate from. We will analyze the 

performance of each method on five measures.  

By applying various datasets on these algorithms, we aim to give 

a guideline of choosing appropriate method of binning for different 

datasets.  
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Chapter 2. Body 

 

 

2.1. Methods 

To evaluate the performance of contig binning methods, we 

generated 26 in silico datasets, each containing in silico paired-end 

reads. After data simulation, generated reads for each dataset are 

assembled to form a set of contigs. Reads from each sample are then 

aligned to the contigs to generate coverage information. Eight contig 

binning tools are in turn implemented with input fasta file of contigs 

and coverage information generated in the previous step. Data 

simulation, data preprocessing, and methods of contig binning 

methods are elucidated in the following sections, which are all 

implemented using AMD Ryzen Threadripper 1950X 16-Core 

Processor with 125GB ram. 

 

2.1.1. Data simulation 

For data simulation, we used StrainMetaSim [25]. The software 

models the species and strain coverage with normalized log-normal 

distributions. Each species t = 1, 2, … , T, has relative abundance rt,s =

𝑒𝑦𝑡,𝑠/ ∑ 𝑒𝑦𝑡,𝑠
𝑡 , where yt,s~𝑁(𝜇𝑡 , 𝜎𝑡) and T is the number of species 

present. 𝜇𝑡 and 𝜎𝑡 each follows normal and gamma distributions 
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respectively, with 𝜇𝑡~𝑁(1, 0.25) and 𝜎𝑡~𝑔𝑎𝑚𝑚𝑎(1, 1) [25].  

For modeling the abundance of strains within a species, a 

symmetric Dirichlet distribution ρs~𝐷𝑖𝑟(𝒂) is used, where 𝒂 is a 

vector with dimension equal to the number of strains. The Dirichlet 

distribution ensures that the sum of the abundance of strains equals 

1. 𝒂 is set to a unit vector. 

The relative frequency of strain d of species t in sample s is 

modeled as kd∈t,s = rt,sρs,d. The strain coverage is then 𝐿𝑅 × kd,s ×

Ns/𝐿𝑑, where 𝐿𝑅 is the read length, Ns is the number of reads in 

sample s, and 𝐿𝑑 is the length of the genome of strain d [25].  

The sequence information of 419 strains from 100 microbial 

species was used to simulate the datasets, which are provided by 

StrainMetaSim, and can also be downloaded from NCBI 

(https://www.ncbi.nlm.nih.gov/). StrainMetaSim randomly selects 

the given number of strains from each species and computes 

corresponding relative frequencies and coverage for each strain in 

each sample according to the distributions set above. The same set 

of genomes are included in each sample with varying relative 

frequencies. 

ART read simulator [40] is then used to simulate reads for each 

sample. ART accounts for sequencing errors such as substitutions, 

insertions, and deletions [40]. Among many platforms that ART 

supports, Illumina paired end sequencing was selected for read 
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generation. 

We generated 26 in silico datasets where the first 13 datasets 

contain no strain variation and the other 13 datasets contain multiple 

strain variations for some species.  

For each of the first 13 datasets with no strain variation, 100 

species are randomly selected one strain per species from the pool 

of 419 strains. Five out of 13 datasets contain 20 samples each with 

the number of reads 2,500,000, 5,000,000, 7,500,000, 10,000,000, 

and 12,500,000 per sample respectively, aiming to evaluate the effect 

of coverage in the performance of binning methods. Another five 

datasets contain 60 samples with the number of reads per sample 

2,500,000, 5,000,000, 7,500,000, 10,000,000, and 12,500,000 

respectively. The remaining three datasets, each with 40, 80, and 

100 samples respectively, contains 12,500,000 reads for each 

sample, which are later used to compare binning performances across 

varying number of samples.  

For the 13 datasets with multiple strain variations, we randomly 

chose one to five strains from each species, which sums up to 210 

strains across all 100 species. Out of 13 datasets, five of them contain 

20 samples each, with the number of reads 2,500,000, 5,000,000, 

7,500,000, 10,000,000, and 12,500,000 respectively per sample. 

Another five datasets contain 60 samples with the number of reads 

per sample 2,500,000, 5,000,000, 7,500,000, 10,000,000, and 
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12,500,000 respectively. The remaining three contain 40, 80, and 

100 samples respectively, each with the number of reads per sample 

set to 12,500,000. 

 

2.1.2. Data preprocessing 

After datasets are generated in silico, aggregated reads across 

samples are assembled into contigs for each of the 26 datasets. 

This is done by MEGAHIT version 1.1.3, a time-efficient single 

node assembler [41]. Although MEGAHIT is an efficient algorithm, 

assembling contigs takes up considerable time and memory. Thus, 

we used 32 threads of AMD Ryzen Threadripper 1950X 16-Core 

Processor. We provide time and peak memory used for each 

simulated dataset in Table A.1-Table A.26 in Appendix.  

After reads are assembled into contigs, long contigs are cut into 

pieces of 10Kbp to account for chimeric ones. Then contigs are 

indexed with bwa index [42]. Then bwa mem [42], a read aligner 

using Burrows Wheeler transform, was used to map the reads in 

each sample against the assembled contigs, which is used for 

calculating the coverage. 

SAM files generated by bwa mem is then converted to BAM 

files using samtools view [43], which in turn is sorted using 

samtools sort [43]. The sorted bam files are used to calculate 

coverage with a software jgi_summarize_bam_contig_depths 
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included in the MetaBAT package [34]. The software outputs the 

mean coverage and the variance for each contig in each sample. 

Then only contigs with minimum length 1,500 are selected for 

further analysis. By slightly modifying the output, we obtained a 

coverage matrix Y of size N × S where N is the number of contigs 

with length ≥ 1,500, S is the number of samples, and Yij (i =

1, 2, … , N, j = 1, 2, … , S) is mean coverage of contig i in sample j. 𝑦𝑖, 

the i𝑡ℎ row of Y, is called the coverage vector of contig i. 

Lastly, we used fasta_to_features.py included in the CONCOCT 

packages [14] to calculate composition profile. We used tetramers, 

which are sequences of length 4, when calculating composition 

profile. For each contig, the number of tetra-nucleotide frequencies 

needed to represent each contig is 136. This is because among all 

possible 44 = 256 tetramers, frequencies of reverse complements 

are summed except for palindromic tetramers, which are tetramers 

whose reverse complement is the same as their sequence spelled 

backwards. After generating composition profile, composition of 

contigs with length bigger or equal to 1,500 are selected as input 

for binning. The resulting composition profile is represented by the 

composition matrix Z of size N × 136, where N is the number of 

contigs with length ≥ 1,500, 136 is the number of tetramer 

frequencies, and Zij (i = 1, 2, … , N, j = 1, 2, … , 136) is the j𝑡ℎ tetramer 

frequency of the i𝑡ℎ contig. The i𝑡ℎ row of Z, denoted zi is called 
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the composition vector of the i𝑡ℎ contig. 

2.1.3. CONCOCT 

After the preprocessing steps, coverage and composition values 

are normalized. Pseudo-counts are added to coverage vectors. 

That is, Y′i,j = Yi,j + 100/𝐿𝑖, where 𝐿𝑖 is the length of the i𝑡ℎ contig. 

Coverage vectors are then normalized over contigs and samples. 

Coverage vectors are first normalized across contigs to account for 

the differing read counts of each sample,  

 

Y′′i,j =
𝑌𝑖,𝑗

′

∑ 𝑌𝑏,𝑗
′𝑁

𝑏=1
. 

 

Then it is again normalized across samples  

 

Pi,j =
𝑌𝑖,𝑗

′′

∑ 𝑌𝑖,𝑏
′′𝑆

𝑏=1

, 

 

which gives the (i, j)-entry of the coverage profile. Composition 

profile is calculated similarly as follows. Zi is normalized to 

Z′iwhere Z′i,j = Zi,j + 1. Then the (i, j)-entry of the composition 

profile is calculated by 

 

Qi,j =
𝑍𝑖,𝑗

′

∑ 𝑍𝑖,𝑘
′136

𝑘=1

, 
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which accounts for the heterogeneity in contig lengths.  

In addition to calculating coverage and composition profiles, the 

total coverage of each contig is also calculated as Yi,∙
′′ = ∑ 𝑌𝑖,𝑘

′′𝑀
𝑘=1 , 

which may potentially provide additional information in 

distinguishing species. For each contig, the normalized coverage 

vector, the normalized composition vector, and the total coverage is 

concatenated into a log-profile, which is of the form 

[log(𝑄𝑖,1) , … , log(𝑄𝑖,136) , log(𝑃𝑖,1) , … , log(𝑃𝑖,𝑆) , log(𝑌𝑖,∙
′′)] for the i𝑡ℎcontig. 

All of the log-profiles are concatenated row-wise to form a log-

profile matrix of size N × (136 + S + 1). 

Principal component analysis (PCA) is applied to the log-

profile to reduce its high dimensionality. The dimension is reduced 

to D, maintaining 90% of the variance in the data. The matrix after 

PCA is denoted by X(1), which is of size N × D. Note that the i𝑡ℎ row 

of X(1), xi
(1)

 (i = 1, 2, … , N), is the feature vector of contig i. 

To bin the contigs given X(1), the number of clusters K is first 

inferred using automatic relevance determination [44]. Next, 

Gaussian mixture model is applied to bin contigs. Given K clusters, 

the data likelihood is defined as  

 

L(X(1)|K, π, μ, Σ2) = ∑ log ∑ πk𝑁(xi
(1)

|μk,

K

k=1

Σk
2)

N

i=1

, 
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where 𝑁 is a Gaussian distribution, 𝜇𝑘 is the mean vector of 

component k, Σk
2 is the variance matrix of component k, and 𝜋𝑘 is 

the mixture proportion of component k. This form of likelihood 

models each cluster as a shape of an ellipse in a D dimensional 

space, which is empirically observed by plotting the first two 

principal components of the log-profile on real data [14]. The prior 

for the mixture proportions is set as the mixture proportion π =

(π1, π2, … , πK), where πk is the probability a contig is drawn from 

cluster k. Prior distributions for 𝜇𝑘 and Σk
2, (k = 1,2, … , K) are set 

using Gaussian-Wishart prior modeled as 

 

P(μk, ∆k) = ∏ 𝑁(μk|m0, (β0∆k)−1)𝑊(∆k|v0, W0)

K

k=1

, 

 

where ∆k is the inverse covariance and 𝑊 is the density function 

of Wishart distribution given v0 and W0. Other parameter values 

used are set to 𝑚0 = 0, 𝛽0 = 0.001, v0 = 𝐷, and 𝑊0 is set as a 

diagonal matrix of size D where the d𝑡ℎ diagonal element wdd
0 (d =

1,2, … , D) of 𝑊0 is 1/(DVd). Vd is the sample variance of the d𝑡ℎ 

component. 

The Bayesian inference is then performed. Starting with a large 

number of potential components, the sampling model is  
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P(X(1)|π) = ∫ 𝑃(𝑋(1), 𝜃|π) d𝜃, 

 

integrating over all the other parameters 𝜃. This integral is 

estimated using variational Bayesian approximation, solving for 

maximizing the lower bound of the integral. The optimized mixing 

coefficients π naturally selects the number of clusters since mixing 

coefficients of unwanted components approaches zero [44]. The 

process of CONCOCT is summarized below. 

 

The CONCOCT clustering method 

Input : The feature profile X(1) 

1 : Initialize the number of potential clusters 

2 : Conduct variational Bayesian approximation with  

mixture Gaussian model that automatically  

determines the number of clusters 

Output : Inferred clusters of contigs 

 

2.1.4. COCACOLA 

The feature matrix of the coverage and composition profile for 

COCACOLA is obtained using the normalized coverage matrix P and 

the normalized composition matrix Q used by CONCOCT. The 

feature profile X(2) of COCACOLA is X(2) = [P 𝑄]. 
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The coverage and composition matrix W of size K × (S + 136), 

where K is the inferred number of species and S is the number of 

samples, is used. The k𝑡ℎ row of W, denoted by wk, indicates the 

coverage and composition profile of the inferred species k. Let Hk,i 

be the indicator function such that Hk,i = 1 if contig i belongs to 

species k, and Hk,i = 0 otherwise. Then for each i = 1,2, … , N the 

following equation holds. 

 

x𝑖
(2)

= H1,iw1 + H2,iw2 + ⋯ + HK,iwK 

 

The equation can be represented by a matrix form, 

 

(X(2))T = 𝑊𝑇 × 𝐻, W ≥ 0,  Hk,i = 1 or 0, ∑ 𝐻𝑘,𝑖 =𝐾
𝑘=1 1 

 

W and H are obtained by minimizing  

 

arg min
𝑊,𝐻≥0

∥ (X(2))T − WTH ∥F
2 , Hk,i = 1 or 0, ∑ 𝐻𝑘,𝑖 =𝐾

𝑘=1 1, 

 

where ∥∙∥F is Frobenius norm. Note that wk, the k𝑡ℎ row of W, 

indicates the centroid of cluster k. Minimizing is then relaxed to  

 

arg min
𝑊,𝐻≥0

∥ (X(2))T − WTH ∥F
2 , W, H ≥ 0 
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which allows soft clustering where multiple species can be 

assigned to each contig. To cope with this, Non-negative Matrix 

Factorization [45] is used to impose sparsity to facilitate hard 

clustering and is as follows : 

 

arg min
𝑊,𝐻≥0

∥ (X(2))T − WTH ∥F
2 + 𝛼 ∑ ∥ H∙,i ∥1

2

𝑁

𝑖=1

 

 

where 𝛼 is a parameter for which bigger value indicates stronger 

sparsity. 

Additional information on read linkage of paired end reads is 

required. If any two contigs are linked by paired end reads a high 

number of times across multiple samples, it is likely that the contigs 

are from a single species. The linkage information can be 

summarized in a network regularization item Rg [46]. The 

minimization is now subject to  

 

arg min
𝑊,𝐻≥0

∥ (X(2))T − WTH ∥F
2 + 𝛼 ∑ ∥ H∙,i ∥1

2

𝑁

𝑖=1

+ 𝛽𝑅𝑔, 

 

where bigger β means the stronger belief in the paired end read 

linkage information. 

COCACOLA opt alternating non-negative least squares (ANLS) 
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[45] for solving the above equation. The algorithm starts by 

initializing W and H by k-means clustering with L1 distance. For 

each k = 1,2, … , K, wk is initialized as the k-means centroid of X(2). 

H is then initialized to be the indicator matrix for this clustering. 

After the initialization, W and H are updated separately while 

having the other value fixed. The algorithm iterates until a preset 

criterion is met or the iteration exceeds the maximum iteration 

number. 

After binning contigs by calculating W and H, the post-

processing of combining closely mixed clusters follows. The 

separable conductance sep(ki, 𝑘𝑗) between cluster ki, and cluster kj 

(i = 1,2, … , K, j = 1,2, … , K, i ≠ j), is defined by the number of contigs 

that are included both in the sphere of ki and that of kj. The 

refinement step is done by merging the clusters with the largest 

separable conductance until the separable conductance falls below a 

certain threshold, which is set to 1. The process of COCACOLA is 

summarized below. 
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The COCACOLA clustering method 

Input : feature profile X(2) 

1: Initialize W for which each row is the k-means centroid of X 

2: Initialize H, the indicator matrix of W 

3. Use ANLS to solve for W and H 

4. Merge bins using separable conductance 

Output : Inferred clusters of contigs 

 

2.1.5. MetaBAT 

The algorithm of MetaBAT uses tetranucleotide frequency 

distance probability (TDP) and abundance distance probability 

(ADP) to probabilistically model distances between contigs. After 

modeling TDP and ADP, these distance probabilities are combined 

into one. These pairwise composite distances form a matrix, which 

in turn is used for binning contigs by modified k-medoid clustering 

algorithm. 

Tetranucleotide frequency distance probability (TDP) models 

the probability of Euclidean distances between two contigs of 

different sizes. TDP is approximated by the logistic regression :  

  

P(Di,j, bi,j, 𝑐𝑖,𝑗) =
1

1 + 𝑒−(bi,j+𝑐𝑖,𝑗×𝐷𝑖,𝑗)
, 
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where bi,j, ci,j are estimated parameters for logistic regression, and 

Di,j is the distance between contig i and contig j,. 

For the base coverage, we use normal distribution as 

empirically demonstrated by the article. For contig i and contig j, 

assume base coverage follows N(μi, 𝜎𝑖
2) for contig i and N(μj, 𝜎𝑗

2) 

for contig j. Then the area not shared by the two normal 

distributions are computed numerically using cumulative density 

functions. Then geometric mean of those across samples is 

obtained, which is defined as ADP of contig i and contig j. 

For binning process, k-medoid clustering algorithm [47] is 

used. First, a seed contig is selected for initial medoid. Then with 

the calculated cut-off distance, contigs within the cut-off distance 

are collected. Next we find a new medoid among the union of the 

seed contig and the collected contigs. Collecting and seeking a new 

medoid steps are iterated until medoid remains unchanged. Then 

another contig is selected for the seed of the next cluster. Then the 

previous steps are iterated in this manner. The algorithm keeps 

large bins and removes other bins and free the residing contigs. 

Lastly, if the number of samples is bigger than 10, free contigs are 

recruited into existing clusters using abundance correlation [36]. 

The algorithm of MetaBAT is summarized below. Since it 

iteratively group contigs for each cluster at a time, the number of 

clusters K need not be predefined.  
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Note that removing clusters of small sizes may result in a 

fraction of contigs unbinned. The process of MetaBAT is 

summarized below. 

 

The MetaBAT clustering method 

Input : The coverage profile Y and the composition profile Z 

1: Compute ADP and TDP  

2: Compute composite distance matrix 

3: Conduct k-medoid algorithm 

4: If the sample size ≥10, free contigs are recruited into existing 

clusters using abundance correlation  

Output : Inferred clusters of contigs 

 

2.1.6. MaxBin2 

MaxBin2 applies expectation maximization (EM) algorithm to 

bin contigs. It models the probability a sequence i belongs to a 

species t as  

 

P(i ∈ t) = P𝑑𝑖𝑠𝑡(i ∈ 𝑡) ∙ ∏ P𝑐𝑜𝑣(i ∈ t | 𝑐𝑜𝑣(𝑡𝑠))

𝑆

𝑠=1

, 

 

where P𝑑𝑖𝑠𝑡(i ∈ 𝑡) is defined as the probability density function of 

the tetranucleotide distance between i and t, 𝑃𝑐𝑜𝑣(𝑖 ∈ t | 𝑐𝑜𝑣(𝑡𝑘)) is 
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defined as the probability density function of the coverage distance 

between i and t given 𝑐𝑜𝑣(ts), 𝑐𝑜𝑣(ts) is the coverage of genome t 

in sample s (s = 1,2, … , S), and S is the number of samples.  

Euclidean distance is used for P𝑑𝑖𝑠𝑡. That is, the distance 

between i and t is 𝑑𝑖𝑠𝑡(i, t) =∥ 𝑧𝑖 − 𝜔𝑡 ∥𝐿2, where 𝑧𝑖 and 𝜔t is the 

tetramer frequency vector of contig i and genome t respectively. 

The distance probability function P𝑑𝑖𝑠𝑡, is the probability that i 

belongs to t modeled as  

 

P𝑑𝑖𝑠𝑡(i ∈ t) =
𝑁(𝑑𝑖𝑠𝑡(i,t)|𝜇𝑖𝑛𝑡𝑟𝑎,𝜎𝑖𝑛𝑡𝑟𝑎

2 )

𝑁(𝑑𝑖𝑠𝑡(i,t)|𝜇𝑖𝑛𝑡𝑟𝑎,𝜎𝑖𝑛𝑡𝑟𝑎
2 )+𝑁(𝑑𝑖𝑠𝑡(i,t)|𝜇𝑖𝑛𝑡𝑒𝑟,𝜎𝑖𝑛𝑡𝑒𝑟

2 )
 , 

 

where 𝑁 is the normal distribution, 𝜇𝑖𝑛𝑡𝑟𝑎 and σintra is the 

estimated mean and standard deviation of distances within a 

species, and 𝜇𝑖𝑛𝑡𝑒𝑟 and σinter are the estimated mean and standard 

deviation of distances between distinct species. 

Poisson distribution is used for distribution of coverage, so the 

coverage probability function P𝑐𝑜𝑣 is defined as  

 

P𝑐𝑜𝑣(i ∈ t|𝑐𝑜𝑣(ts)) = Poisson(𝑐𝑜𝑣(is)|𝑐𝑜𝑣(ts)), 

 

where 𝑐𝑜𝑣(is) is the coverage of sequence i in sample s, and  

𝑐𝑜𝑣(ts) is the coverage of genome t in sample s. 

Binning contigs is done by EM algorithm. First, the total number 
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of genomes K is estimated as the median number of 107 single 

copy marker genes [48]. Composition and coverages for each 

cluster in each sample is also initialized.  

Then expectation step follows by calculating the expected 

probability that the i𝑡ℎcontig (i = 1, 2, … , N) belongs to the k𝑡ℎcluster 

(k = 1, 2, … , K). In the maximization step, the composition and 

coverage for each cluster is recalculated. After EM finishes, each 

conig is binned into the cluster with the highest probability defined 

in the expectation step with a threshold probability. 

If more than one genomes are assigned to a single cluster, 

identified by computing the median number of marker genes, the 

cluster containing multiple genomes are subject again to EM 

algorithm. The process iterates until each cluster is assigned a 

single genome. The process of MaxBin2 is summarized below. 

The MaxBin2 clustering method 

Input: The coverage profile Y and the composition profile Z 

1: Estimate the number of clusters K 

2: Initialize the coverage and composition for each cluster 

3: Perform EM for each cluster to bin contigs 

4: If a cluster including multiple species are detected, it is subject 

again to EM algorithm until no such bin is detected. 

Output : Inferred clusters of contigs 
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2.1.7. GroopM 

GroopM is processed in five stages: parse, core, refine, recruit, 

and extract. GroopM uses coverage, composition, and contig length 

information for binning contigs. Note that in this study, we 

consecutively follow parse, core, and recruit stages. The following 

is the description of the parse and the core stages, which are main 

stages of GroopM. 

In the first stage, parse, the coverage and composition profiles 

are calculated. For the coverage profile, truncated mean coverage 

(TMC) for each contig in each sample is calculated. TMC for each 

of the contig in each sample is defined as the expectation of the 

base position depths that fall within one standard deviation from the 

mean coverage. 

For the composition profile, the tetranucleotide frequency 

vector is calculated. Then the dimension of the vector is reduced 

using PCA, maintaining 80% of the variance in the data.  

Empirically, the TMC vectors of all contigs are plotted onto the 

TMC space, where each axis indicates each sample and each 

coordinate along each axis indicates the value of coverage in the 

corresponding sample. It is observed that the positioned contigs 

formed spears. Therefore, TMC profile and TMC space are 

transformed so that positioned contigs formed spherical clusters 
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rather than spears with the size of the dimension reduced to three.  

Next, the core stage aims to construct preliminary bins. It 

consists mainly of two-way clustering, Hough partitioning, and 

recruiting. 

In two-way clustering, coverage space and composition space 

are considered separately. The process iteratively selects a contig 

in the densest part of either space, and contigs closely neighboring 

to the selected contig in the other space is moved closer together. 

Then Hough transform [49] is applied to partition contigs into bins. 

Then unbinned contigs are clustered by computing the cutoff 

regieons for each preliminary bin. Then the nearest neighbor 

algorithm is performed to merge clusters. Lastly, a self-organizing 

map (SOM) [50] is used to refine bins, which reassigns contigs to 

bins in such a way that each area masked by a SOM has a one to 

one correspondence to each bin. The process of GroopM parse and 

core steps is summarized below. 
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The GroopM parse and core method 

Input : The set of N contigs, the sorted bam files 

1: The parse stage  

Compute TMC profile and PCA-applied composition profile 

2: The core stage  

2.1. Perform two-way clustering 

2.2. Perform Hough partitioning and output preliminary bins 

2.3. Recruit contigs not clustered 

2.4. Perform nearest neighbor method to recruit and merge  

2.5. Refine clusters using a self-organizing map 

Output : Preliminary binned contigs 

 

2.1.8. BMC3C 

In addition to the coverage and composition profiles, BMC3C 

utilizes the gene codon usage information to bin contigs. BMC3C 

employs ensemble k-means algorithm to increase the robustness of 

the result. 

There are 64 codons, 61 of which encode amino acids and 3 of 

which encode the stop codons. There are 20 amino acids. Since 

each codon encodes an amino acid, this implies that more than one 

codons encode the same amino acid for some amino acids. This 

redundancy in codons is called genetic degeneracy.  
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Given a protein coding DNA and a specific amino acid in that 

DNA, it was observed that there is a bias in the frequency of codon 

usage in encoding the amino acid. That is, among the codons that 

encode the same amino acid, some codons are used more to encode 

the amino acid than do the others.  

BMC3C thus uses information of the gene codon usage for 

clustering. Five independent statistics [51] that measure the value 

of gene codon usage were calculated. For a particular gene, define 

TC2 as the set of degenerate sites with two candidates T or C 

where degenerate sites are particular bases in the gene where 

multiple varieties of nucleotides can be positioned not violating the 

kind of amino acid it encodes. Define C2 as the set of degenerate 

sites with base C in TC2. Likewise, define AG2 as the set of 

degenerate sites with two candidates A or G and G2 as the set of 

degenerate sites with G in AG2. N4 is defined as the set of 

degenerate sites with all four possibilities A, C, G, or T. C4, G4, and 

A4 are defined as the set of degenerate sites with C, G, and A in N4 

respectively. The five statistics are given as follows : 

 

PC2 =
|C2|

|TC2|
, PG2 =

|G2|

|AG2|
, PC4 =

|C4|

|N4|
, PG4 =

|G4|

|N4|
, PA4 =

|A4|

|N4|
. 

 

PC2 is the proportion of C in TC2, PG2 is the proportion of G in 

AG2, PC4 is the proportion of C in N4, PG4 is the proportion of G in 
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N4, and PA4 is the proportion of A in N4.  

These statistics are weighted averaged over all genes in each 

contig, where weights are given proportional to the length of the 

gene in the contig. The codon usage vector ui (i = 1,2, … , 𝑁) of 

contig i can be expressed as follows : 

 

ui =
∑ 𝐿gζg

ing
i

g=1

∑ 𝐿g
ng

i

g=1

, 

 

where 𝑛𝑔
𝑖  is the number of genes in contig i, 𝐿𝑔 is the length of 

gene g (g = 1,2, … , 𝑛𝑔
𝑖 ) in contig i, and 𝜁𝑔

𝑖 =

[𝑃𝐶2𝑔, 𝑃𝐺2𝑔, 𝑃𝐶4𝑔, 𝑃𝐺4𝑔, 𝑃𝐴4𝑔] where each element is the gene codon 

usage measure of gene g. Each codon vector are concatenated 

row-wise to form the codon usage matrix U of size N × 5. 

Composition matrix Q and coverage matrix P defined 

previously are used. The feature matrix of BMC3C is X(6) = [Q P U] 

of size N × (136 + S + 5), where N is the number of contigs and S is 

the number of samples. 

BMC3C proceeds as follows. First, the number of clusters K∗ is 

inferred. K-means [52] is performed and the resulting clusters are 

iteratively merged using separable conductance sep(ki, 𝑘𝑗) between 

cluster ki and cluster kj until the preset threshold is met. The 

remaining number of clusters is set to K∗. 
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Next, the k-means clustering follows with initial number of 

clusters set as K = 10 × K∗ with K < N. The k-means algorithm 

aims to group the N contigs into K clusters by solving 

 

arg min ∑ ∑ ∥ xi
(6)

− wk
(6)

∥2

xi∈Fk

K

k=1

 

 

where x𝑖
(6)

 is the feature vector of contig i, wk
(6)

 is the centroid 

of cluster k, and Fk is the set of feature vectors of cluster k. After 

k-means algorithm is performed, define an indicator matrix M of 

size N × K, where Mi,j = 1 if contig i is in cluster j, and Mi,j = 0 

otherwise.  

K-means algorithm has two downsides. One is that empirical 

observation tells different clusters are highly close together, 

making a single run of k-means unreliable. Also, the initial 

centroids affect the result of the clustering significantly. Therefore, 

in the next step, ensemble k-means is applied. That is, clustering 

with k-means is performed m times with K fixed. The co-

association matrix M′ ∈ RK×K is then defined as 

 

M′ =
∑ MrMr

Tm
r=1

m
 

 

where Mr is the indicator matrix of size N × K obtained from 



 33 

the r𝑡ℎ run of k-means. Note that (MrMr
T)

i,j
 is 1 if the contig i and 

the contig j both comes from the same cluster and 0 otherwise. 

Therefore M′ is a weighted adjacency matrix of a graph where each 

node corresponds to each contig. 

Finally, the weighted graph is partitioned into subgraphs, where 

each subgraph corresponds to a cluster. This is done by normalized 

cut (Ncut) [53, 54]. The process of BMC3C is summarized below. 

 

The BMC3C clustering method 

Input : The feature matrix [Q P B] 

1: Infer the number of potential clusters K∗ 

2: Perform k-means 𝑚 times with fixed K = 10 × K∗ 

3: Calculate co-association matrix M′ 

4: Partition graph with adjacency matrix M′ using NCut 

Output : Inferred clusters of contigs 

 

2.1.9. MyCC 

MyCC uses the marker gene information besides the coverage 

and composition profiles. MyCC uses the marker gene information 

when correcting the clustered bins. 

The procedure of MyCC is as follows. MyCC first searches for 

the protein coding genes in the contigs by Prodigal [55]. Then 

FetchMG [56, 57] is performed to identify the 40 single copy marker 
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genes of prokaryotes in the contigs. UCLUST [58] is also used to 

find species-level marker genes. 

Next, the composition profile is calculated for each contig. In 

addition to the tetranucleotide frequency, pentanucleotide frequency 

and hexanucleotide frequency of palindromic sequences are also 

calculated. Pseudo counts are added to the computed composition 

profile, which is then normalized and centered log-ratio (CLR) 

[59,60] transformed. Coverage profile can also be added optionally 

before CLR. 

The feature profile is then plotted on a two-dimensional space 

with Barnes-Hut-SNE [61]. Then the contigs are clustered using 

affinity propagation (AP) [62]. AP is performed based on the 

measure of similarity between two sequences defined as negative 

squared Eucledian distance between the two. AP is performed in two 

steps. First, the clustering is performed for long contigs. Then short 

contigs are added to the clusters generated. 

The clusters created are corrected using the marker genes 

previously found. The clusters containing duplicates of a marker gene 

is split using spectral clustering [63]. The clusters close together 

are merged if the marker genes contained in a cluster are 

complementary to that of the other cluster. The process of MyCC is 

summarized below. 
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The MyCC clustering method 

Input : The marker genes found, the feature profile 

1: Normalize the feature profile by CLR transformation  

2: Reduce the dimensionality of the feature profile by  

Farnes-Hut-SNE 

3: Perform AP to cluster contigs 

4: Correct clusters using the marker genes previously identified  

Output : Inferred clusters of contigs 

 

2.1.10. GATTACA 

GATTACA is a memory and time efficient method that uses kmer 

indexing to estimate the coverage profile. GATTACA software 

includes commands for indexing k-mers, clustering contigs, and 

sample comparing. 

To estimate coverage profile, a minimal perfect hash function 

(MPHF) [64] is used to index the k-mer counts for each contig in 

each sample with a small space of storage. Given a set of N contigs, 

for each sample, the set of all k-mers from the sample are identified 

excluding those with the count one to account for the possibility of 

sequencing error. Then each k-mer is indexed with a MPHF ℎ 

where each k-mer is mapped to a single integer ranging 

consecutively from 0 to n-1. Then each index is mapped to the k-

mer count it corresponds to. A Bloom filter is additionally used to 
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store all k-mers to map the index backwards to the corresponding 

k-mer. 

Then for each contig in each sample, the median counts of k-

mers in the contig is calculated, which is used for the coverage profile. 

GATTACA also uses composition profile obtained by the normalizing 

method mentioned in section 2.1.3. 

Similar to CONCOCT, GATTACA also uses the a Gaussian 

mixture model to construct the likelihood function. With a Dirichlet 

prior for Bayesian inference, GATTACA opt the variational Bayes 

Expectation Maximization (VBEM) to maximize the marginal log-

likelihood. The process of GATTACA is summarized below. 

The GATTACA clustering algorithm 

Input : The coverage generated by k-mer counting,  

the normalized composition profile P 

1: Estimate the coverage of each contig in each sample  

using indexing of kmer counts 

2: Generate the feature profile using the coverage generated  

in the previous step and the composition profile given 

3: Cluster contigs using Variational Bayes EM method for Gaussian 

mixture model 

Output : Inferred clusters of contigs 
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2.1.11. Evaluation measures 

Evaluation measures used to measure the performance of the 

above five methods are recall, precision, normalized mutual 

information, Rand index (RI), and adjusted Rand index (ARI), which 

are calculated by the script in the CONCOCT package [14]. Since 

we use simulated datasets, we can identify which genome a contig 

is derived from by finding the genome that the majority of the reads 

mapped to the contig is derived from. By assigning each contig to 

the genome from which it originates, we can construct a matrix A 

of size K × T where K is the number of clusters, T is the number of 

genomes, and the (i, j)-entry of A, 𝑛i,j, is the number of contigs of 

the cluster i and the assigned genome class j.  

From A, we measure how far the clustering is from the 

grouping by genomes. The recall is the proportion of contigs 

grouped adequately based on each genome class. For each genome 

class t (t = 1,2, … , T), a cluster kt (kt ∈ {1,2, … , K}), which has the 

maximum number of contigs from the genome class s, is identified. 

That is, kt = arg max
i∈{1,2,…,K}

𝑛i,t, which indicates the corresponding 

cluster of the genome class t is the cluster kt. The recall is then 

calculated by 

 

Recall =

∑ max
i∈{1,2,…,K}

𝑛𝑖,𝑡
T
t=1

N
=

∑ 𝑛kt,t
T
t=1

N
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which gives the fraction of the contigs correctly assigned to the 

cluster inferred from each of the genome class. 

The precision identifies for cluster k, (k = 1,2, … , K) a genome 

class tk, (tk ∈ {1,2, … , T}) which has the maximum number of contigs 

from cluster k. That is, st = arg max
𝑗∈{1,2,…,T}

𝑛𝑘,𝑗, assuming that tk is the 

genome class that cluster k corresponds to. Precision is then 

calculated by  

 

Precision =

∑ max
j∈{1,2,…,S}

𝑛k,j
K
k=1

N
=

∑ 𝑛k,sk

K
k=1

N
, 

 

which gives the fraction of the contigs correctly assigned to the 

genome class for each cluster. 

The normalized mutual information, NMI, between the set of all 

clusters K and the set of all genome classes T is defined as  

 

NMI(K, G) =
2 ∗ MI(K, T)

H(K) + H(T)
, 

 

where MI(K, T) is the mutual information of K and T, H(K) is the 

entropy of K, and H(T) is the entropy of T.  

The rand index, RI is the proportion all the correctly identified 

pairs of contigs out of all pairs of the contigs. That is,  
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RI =
𝑛(𝑇𝑁) + 𝑛(𝑇𝑃)

𝑛(𝑇𝑁) + 𝑛(𝑇𝑃) + 𝑛(𝐹𝑁) + 𝑛(𝐹𝑃)
=

𝑛(𝑇𝑁) + 𝑛(𝑇𝑃)

(N
2)

. 

 

The number of true positive cases, which is the number of cases a 

pair of contigs from the same cluster originate from the same 

genome class, denoted 𝑛(TP), is 

 

𝑛(TP) = ∑ ∑ (
𝑛i,j

2
)

ji

. 

 

If a pair of contigs from the same bin in fact originate from two 

different genome classes, it is called a false positive case. The 

number of false positive cases, denoted 𝑛(𝐹𝑃) is 

 

𝑛(𝐹𝑃) = ∑ (
𝑛i,∙

2
)

i

− ∑ ∑ (
𝑛i,j

2
)

ji

 

 

where 𝑛𝑖,∙ = ∑ 𝑛𝑖,𝑗𝑗 . 

If a pair of the contigs from two different clusters originate from a 

single genome class, it is called a false negative case (FN). The 

number of FN cases, denoted 𝑛(FN), is 

 

𝑛(FN) = ∑ (
𝑛∙,𝑗

2
)

j

− ∑ ∑ (
𝑛𝑖,𝑗

2
)

ji

, 
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where 𝑛∙,j = ∑ 𝑛i,ji . 

If a pair of contigs from different clusters originate from different 

genome classes, it is called a true negative (TN) case. The number 

of TN cases, denoted 𝑛(TN) is 

 

𝑛(TN) = (
N

2
) + ∑ ∑ (

𝑛i,j

2
)

ji

− ∑ (
𝑛∙,j

2
)

j

− ∑ (
𝑛i,∙

2
)

i

 

 

The adjusted Rand index, ARI, accounts for the random chance of RI 

getting a nonzero value. 

 

ARI =

∑ ∑ (
𝑛i,j

2
)ji −

∑ (𝑛i,∙
2

)i ∑ (
𝑛∙,j

2
)j

(N
2

)

1
2 {∑ (𝑛i,∙

2
)i + ∑ (

𝑛∙,j

2
)j } −

∑ (𝑛i,∙

2
)i ∑ (

𝑛∙,j

2
)j

(N
2

)

 

 

Contig lengths are taken into account so that the long contigs 

assigned correctly has more weights than the shorter contigs. This 

is done by setting each contig as a number of replicated data points 

where the number of replicates equals the length of the contig 

considered [14].  
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2.2. Results 

We ran the eight algorithms on the 13 in silico datasets consisting 

of 100 species with no strain variation. We used the CONCOCT 

software version 0.4.2, the python-version of COCACOLA, the 

MetaBAT2 software version 2.12.1, the MaxBin software version 

2.2.4, the GroopM version 0.3.4, the BMC3C software downloaded 

November 10, 2018, the MyCC software last modified in March 1, 

2017, and the GATTACA software updated November 30, 2017.  

For each method, we used one thread of the CPU to compare the 

elapsed time and the peak memory usage across algorithms. The 

elapsed time will be shortened considerably if multiple threads are 

used. We timed commands concoct for CONCOCT, cocacola.py for 

COCACOLA, metabat2 for MetaBAT, run_MaxBin.pl for MaxBin2.0, 

MyCC.py for MyCC, and gattaca.py cluster for GATTACA.  

For GroopM, we summed up the time spent on groopm parse, 

core, recruit, and extract. For BMC3C, the time spent on prodigal, 

codon_usage.py, and bmc3c.m are summed up.  

Note that the value of recall and precision are strongly affected 

by the number of clusters inferred. The recall value tends to be low 

when the number of clusters is low relative to the number of species, 

and the precision value tends to be high when the number of clusters 

is high. Therefore, when comparing the performance of different 

tools for binning, we mainly focus on the value of ARI, which 
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combines both the recall and precision. 

2.2.1. Results of the data with no strain variation 

Species_20S_2.5R contains 20 samples each with the number of 

reads 2,500,000. The time spent on the assembling into contigs using 

MEGAHIT took 49 minutes and 30 seconds and the peak memory 

usage was 6.3GB. The number of contigs after cutting up the long 

contigs with the threshold 10,000bp is 131,360. Then the contig 

binning is done for only the contigs with the minimum contig length 

1,500Kbp and the count is 42,054. 

The elapsed time, the peak memory usage, the number of contigs 

binned for each algorithm, the numbers of the inferred clusters, and 

the performance scores are summarized in Table A.1 in Appendix. 

The number of clusters inferred by MaxBin2, 93, as shown in Table 

A.1, was the closest to the true value 100 whereas the number of 

clusters inferred by BMC3C is the farmost with 66.  

Figure 1 shows the percentage of the base pairs assigned against 

each of the performance measure. The base pair assigned indicates 

the proportion of base pairs assigned into bins out of all base pairs in 

the set of all contigs.  

As shown in Figure 1, the proportion of the assigned base pairs 

is between 0.8 and 0.9. This is because we only used contigs with 

minimum length 1,500bp as input.  

We can see that the performance of CONCOCT is the highest 
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across all the performance metrics except for the recall value. 

Especially, the ARI value of CONCOCT is clearly the highest. The 

performances of Maxbin2 and MyCC are considerably high. The 

performances of the rest of the methods are relatively low, where 

GroopM has the lowest overall performance.  

 

 

Figure 1. Performance scores for Species_20S_2.5R 

We can see that the performance of CONCOCT is the highest 

across all the performance metrics except for the recall value. 

Especially, the ARI value of CONCOCT is clearly the highest. The 

performances of Maxbin2 and MyCC are considerably high. The 

performances of the rest of the methods are relatively low, where 
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GroopM has the lowest overall performance.  

Species_20S_5.0R The second dataset consists of 20 samples 

each with the number of reads 5,000,000. The time spent on 

MEGAHIT is 3 hours and 37 minutes and the peak memory usage 

was 12.5GB. The number of the assembled contigs after cutting up 

the long contigs is 52,888, and 37,936 contigs with the length bigger 

than or equal to 1,500bp are used for each of the clustering method.  

 

Figure 2. Performance scores for Species_20S_5.0R 

As shown in Figure 2, the proportion of the assigned base pairs 

is between 0.9 and 1. The performances of MaxBin2, MyCC, and 

CONCOCT are relatively high, especially in precision, NMI, RI, and 

ARI. The performances of COCACOLA, MetaBAT and GATTACA 
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follows. The performances of BMC3C and GroopM are relatively low, 

though the recall value for BMC3C is the highest.  

Species_20S_7.5R The third dataset consists of 20 samples each 

with the number of reads 7,500,000. The time spent on MEGAHIT is 

1 hour 51 minutes and the peak memory usage is 18.7GB. The 

number of the assembled contigs after cutting up the long contigs is 

39,748 and 33,788 contigs with the length bigger than equal to 

 

Figure 3. Performance scores for Species_20S_7.5R 

1,500bp are used for each of the clustering method. 

As shown in Figure 2, the proportion of the assigned base pairs 

is between 0.95 and 1. MaxBin2, MyCC, COCACOLA, MetaBAT, and 

CONCOCT performed relatively well with the ARI values bigger than 
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0.75, the NMI values bigger than 0.92, and the precision values bigger 

than 0.83. The performances of GATTACA, GroopM, and BMC3C are 

relatively low. 

Species_20S_10.0R The fourth dataset consists of 20 samples each 

with the number of reads 10,000,000. The time spent on MEGAHIT 

is 2 hours and 28 minutes and the peak memory usage is 25.0GB. 

The number of the assembled contigs after cutting up the 

 

Figure 4. Performance scores for Species_20S_10.0R 

long contigs is 37,939 and 32,254 contigs with the length bigger than 

or equal to 1,500bp are used for each of the clustering method. 

As shown in Figure 4, the proportion of the assigned base pairs 

is between 0.95 and 1. MetaBAT outperformed other tools across all 
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metrics except for the recall value. MaxBin2, COCACOLA, MyCC, and 

CONCOCT performed relatively well. The performances of 

GATTACA, GroopM, and BMC3C are relatively low. 

The number of inferred clusters closest to 100 is 103 for both 

MetaBAT and MaxBin2, whereas the number of inferred clusters 

farthest to 100 is 63 for BMC3C. 

Species_20S_12.5R The fifth dataset consists of 20 samples each 

with the number of reads 12,500,000. The time spent on MEGAHIT 

is 3 hours and 7 minutes and the peak memory used is 31.2GB. The 

number of the assembled contigs after cutting up the long contigs is 

38,714 and 32,417 contigs with the length bigger than or equal to 

1,500bp are used for each of the clustering method. 

As shown in Figure 5, the proportion of the assigned base pairs 

is between 0.95 and 1. Similar with the fourth dataset, MetaBAT 

performs the best in all but the recall. MaxBin2, COCACOLA, and 

MyCC, also performed well. The performance of CONCOCT ranks 

next. The performances of GroopM, BMC3C, and GATTACA were 

relatively low. 
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Figure 5. Performance scores for Species_20S_12.5R 

 

Species_40S_12.5R The sixth dataset consists of 40 samples 

each with the number of reads 12,500,000. The time spent on 

MEGAHIT is 5 hours 43 minutes and the peak memory usage is 

62.3GB. The number of the assembled contigs after cutting up the 

long contigs is 42,646 and 32,530 contigs with the length bigger than 

or equal to 1,500bp are used for each of the clustering method. 

As shown in Figure 6, the proportion of the assigned base pairs 

is between 0.95 and 1. COCACOLA, MetaBAT, MaxBin2, and MyCC 

performed the best, with the precision value, the NMI value, and the 

RI value for each of the four method bigger than 0.94. The 
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performances of CONCOCT and BMC3C rank next. The 

performances of GroopM and GATTACA are the lowest. 

 

Figure 6. Performance scores for Species_40S_12.5R 

Species_60S_2.5R The seventh dataset consists of 60 samples 

each with the number of reads 2,500,000. The time spent on 

MEGAHIT is 2 hours and 56 seconds and the peak memory used is 

18.8GB. The number of the assembled contigs after cutting up the 

long contigs is 38,335 and 32,793 contigs with the length bigger than 

or equal to 1,500bp are used for each of the clustering method. 

As shown in Figure 7, the proportion of the assigned base pairs 

is between 0.9 and 1. The proportion of the assigned base pairs for 

MetaBAT is the lowest. MyCC outperformed the other tools in all 
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measures but the recall. The performance of MaxBin2 ranked next, 

taking second places in all but the recall value. The performance of 

COCACOLA took the third places in all but the recall value. The 

performances of MetaBAT, CONCOCT, GroopM, BMC3C, GATTACA 

are low. 

 

Figure 7. Performance scores for Species_60S_2.5R 

Species_60S_5.0R The eighth dataset consists of 60 samples 

each with the number of reads 5,000,000. The time spent on 

MEGAHIT is 3 hours and 44 minutes and the peak memory used is 

37.5GB. The number of the assembled contigs after cutting up the 

long contigs is 39,819 and 32,503 contigs with the length bigger than 

or equal to 1,500bp are used for each of the clustering method. 
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Figure 8. Performance scores for Species_60S_5.0R 

As shown in Figure 8, the proportion of the assigned base pairs 

is between 0.9 and 1. The proportion of the assigned base pairs for 

GroopM and MetaBAT are the lowest. MyCC, MaxBin2, and 

COCACOLA are the top three methods with the highest performances 

in all measures but the recall values. The performance of MetaBAT 

follows next. The performances of GroopM, CONCOCT, BMC3C, and 

GATTACA are relatively low. 

Species_60S_7.5R The ninth dataset consists of 60 samples each 

with the number of reads 7,500,000. The time spent on MEGAHIT is 

9 hours and 8 minutes and the peak memory usage is 56.2GB. The 

number of the assembled contigs after cutting up the long contigs is 
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43,219 and 32,531 contigs with the length bigger than or equal to 

1,500bp are used for each of the clustering method. 

 

Figure 9. Performance scores for Species_60S_7.5R 

As shown in Figure 9, the proportion of the assigned base pairs 

is between 0.95 and 1. MaxBin2, COCACOLA, MetaBAT, and MyCC 

are the four methods with the highest performance. Each of the four 

method has the precision value bigger than 0.94, the NMI value bigger 

than 0.96, the RI value bigger than 0.99, and the ARI value bigger 

than 0.89. The performances of CONCOCT, BMC3C GroopM, and 

GATTACA are relatively low.  

Species_60S_10.0R The tenth dataset consists of 60 samples 

each with the number of reads 10,000,000. The time spent on 
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MEGAHIT is 7 hours and 29 minutes and the peak memory usage is 

74.9GB. The number of the assembled contigs after cutting up the 

contigs is 46083 and 32,532 contigs with the length bigger than equal 

to 1500 are used for each of the clustering method. 

 

Figure 10. Performance scores for Species_60S_10.0R 

The proportion of the assigned base pairs is between 0.95 and 1. 

Similar to Species_60S_7.5R, MaxBin2, MetaBAT, COCACOLA, and 

MyCC are the top four with high performances. The performances of 

CONCOCT and BMC3C follow next. The performances of GroopM and 

GATTACA are the lowest. 

Species_60S_12.5R The eleventh dataset consists of 60 samples 

each with the number of reads 12,500,000. The time spent on 
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MEGAHIT is 9 hours and 26 minutes and the peak memory usage is 

93.6GB. The number of assembled contigs after cutting up the long 

contigs is 48437 and 32,543 contigs with the length bigger than or 

equal to 1,500bp are used for each of the clustering method. 

 

Figure 11. Performance scores for Species_60S_12.5R 

As shown in Figure 11, the proportion of the assigned base pairs 

is between 0.9 and 1. The performance of MetaBAT is the highest 

for all but the recall value. The performances of MaxBin2, 

COCACOLA, and MyCC are also high. The performances of GroopM, 

BMC3C, CONCOCT, and GATTACA are relatively low. 

Species_80S_12.5R The twelfth dataset consists of 80 samples 

each with the number of reads 12,500,000. The time spent on 
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MEGAHIT is 15 hours and 8 minutes and the peak memory used is 

124.5GB. The number of the assembled contigs after cutting up the 

long contigs is 100,510 and 32,565 contigs with the length bigger 

than or equal to 1,500bp are used for each of the clustering method. 

 

Figure 12. Performance scores for Species_80S_12.5R 

As shown in Figure 12, The proportion of the assigned base pairs 

is between 0.95 and 1. The top three methods that performed well 

are MaxBin2, MetaBAT, and COCACOLA each with the recall value 

bigger than 0.98, the precision value bigger than or equal to 0.96, the 

NMI value bigger than or equal to 0.98, the RI value bigger than or 

equal to 0.998, and the ARI value bigger than or equal to 0.95, which 

are all close to 1. The performances of BMC3C, GroopM, and 
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CONCOCT follow next with relatively low precision and the ARI 

values. The performances of MyCC and GATTACA are the lowest. 

Note that the performance of MyCC dropped in all measures but the 

recall value. 

Species_100S_12.5R The thirteenth dataset consists of 100 

samples each with the number of reads 12,500,000. The time spent 

on MEGAHIT is 16 hours and 14 minutes and the peak memory used 

is 126.0KB. The number of the assembled contigs after cutting up 

the long contigs is 100,332 and 32,643 contigs with the length bigger 

than or equal to 1,500bp are used for each of the clustering method. 

 

Figure 13. Performance scores for Species_100S_12.5R 

As shown in Figure 13, The proportion of the assigned base pairs 
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is between 0.95 and 1. The top four methods that performed well are 

MetaBAT, MaxBin2, MyCC, and COCACOLA. The performances of 

GroopM, BMC3C, GroopM and CONCOCT are relatively low. 

 

2.2.2. Results of the data with multiple strain variations 

Next, we ran the binning tools on the simulated dataset of 100 

species with multiple strains The following provides the results for 

each of the datsets. 

Strains_20S_2.5R The first dataset with multiple strains consists 

of 20 samples each with the number of reads 2,500,000. The time 

spent on MEGAHIT is 1 hour and 51 minutes and the peak memory 

used is 94.5GB. The number of the assembled contigs after the 

cutting up process is 265,725 and 47,741 contigs with the length 

bigger than or equal to 1500bp are used for each of the clustering 

method. 

As shown in Figure 14, the proportion of the assigned base pairs 

is between 0.6 and 0.65. The proportion is low compared to the 

proportion of the assigned base pairs for the datasets with no strain 

variation. From Figure 14, it is observed that the performance of 

CONCOCT is outstanding. The performances of GATTACA and 

MaxBin2 follow the performance of CONCOCT. The performances of 

COCACOLA, MetaBAT, GroopM, and MyCC are relatively low. 
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Figure 14. Performance scores for Strains_20S_2.5R 

 

Strains_20S_5.0R The second dataset consists of 20 samples 

each with the number of reads 5,000,000. The time spent on 

MEGAHIT is 3 hours and 37 minutes and the peak memory used is 

12.5GB. The number of the assembled contigs after cutting up the 

contigs is 295,937 and 57,488 contigs with the length bigger than or 

equal to 1,500bp are used for each of the clustering method. 

As shown in Figure 14, the proportion of the assigned base pairs 

is between 0.65 and 0.7. The performance of CONCOCT is the 

highest overall. The performances of MaxBin2 and GATTACA follow. 

The overall performances of BMC3C, COCACOLA, MetaBAT, 
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GroopM, and MyCC are the lowest. 

 

Figure 15. Performance scores for Strains_20S_5.0R 

 

Strains_20S_7.5R The third dataset consists of 20 samples each 

with the number of reads 7,500,000. The time spent on MEGAHIT is 

8 hours and 20 minutes and the peak memory used is 18.8GB. The 

number of the assembled contigs after the cutting up process is 

180,741 and 56,518 contigs with the length bigger than or equal to 

1,500bp are used for each of the clustering method. 
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Figure 16. Performance scores for Strains_20S_7.5R 

As shown in Figure 16, the proportion of the assigned base pairs 

is between 0.8 and 0.9. The performances of CONCOCT and BMC3C 

are the highest, followed by the performance of MaxBin2. The 

performances of COCACOLA, MetaBAT, GATTACA follow. The 

performances of GroopM, and MyCC are relatively low, though MyCC 

scored high in the recall value. 

Strains_20S_10.0R The fourth dataset consists of 20 samples 

each with the number of reads 10,000,000. The time spent on 

MEGAHIT is 10 hours and 48 minutes and the peak memory used is 

25.0GB. The number of the assembled contigs after the cutting up 

process is 475,822 and 64,387 contigs with the length bigger than or 
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equal to 1,500bp are used for each of the clustering method. 

 

Figure 17. Performance scores for Strains_20S_10.0R 

As shown in Figure 17, the proportion of the assigned base pairs 

is between 0.75 and 0.85. The performances of CONCOCT, BMC3C, 

MaxBin2, and MetaBAT are the highest, closely followed by the 

performances of COCACOLA and GATTACA. The performances of 

MyCC and GroopM are the lowest. Note that BMC3C scored the 

highest in precision, but scored the lowest in recall. 

Strains_20S_12.5R The fifth dataset consists of 20 samples each 

with the number of reads 12,500,000. The time spent on MEGAHIT 

is 9 hours and 3 minutes and the peak memory used is 31.3GB. The 

number of the assembled contigs after the cutting up process is 
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252,511 and 60,692 contigs with the length bigger than or equal to 

1,500bp are used for each of the clustering method. 

 

Figure 18. Performance scores for Strains_20S_12.5R 

As shown in Figure 18, the proportion of the assigned base pairs 

is between 0.8 and 0.85. The performances of CONCOCT, MaxBin2, 

and BMC3C are relatively high. The performances of COCACOLA, 

MetaBAT, and GATTACA follow next. The performances of GroopM 

and MyCC are the lowest. 

Strains_40S_12.5R The sixth dataset consists of 40 samples each 

with the number of reads 12,500,000. The memory and time spent 

on MEGAHIT is 17 hours and 31 minutes and the peak memory used 

is 62.5GB. The number of the assembled contigs after the cutting up 
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process is 406,449 and 68,846 contigs with the length bigger than or 

equal to 1,500bp are used for each of the clustering method.. 

As shown in Figure 19, the proportion of the assigned base pairs 

is between 0.8 and 0.85. The performances of MaxBin2, BMC3C, and 

MetaBAT are the highest, followed by the performance of CONCOCT. 

The performances of COCACOLA and GATTACA follows. The 

performances of GroopM and MyCC are the lowest overall.  

 

 

Figure 19. Performance scores for Strains_40S_12.5R 

 

Strains_60S_2.5R The seventh dataset consists of 60 samples 

each with the number of reads 2,500,000. The memory and time 
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spent on MEGAHIT is 5 hours and 2 minutes and the peak memory 

used is 18.7GB. The number of the assembled contigs after the 

cutting up process is 454,580 and 62,556 contigs with the length 

bigger than or equal to 1,500bp are used for each of the clustering 

method. 

 

Figure 20. Performance scores for Strains_60S_2.5R 

As shown in Figure 20, the proportion of the assigned base pairs 

is between 0.75 and 0.85. The performance of MaxBin2 is the highest, 

followed by the performances of CONCOCT and BMC3C. The 

performances of COCACOLA and GATTACA follow next. The 

performances of GroopM, MetaBAT and MyCC are the lowest. The 

precision value for BMC3C is the highest for BMC3C and the recall 
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value for BMC3C is the lowest.  

Strains_60S_5.0R The eighth dataset consists of 60 samples each 

with the number of reads 5,000,000. The time spent on MEGAHIT is 

10 hours and 17 minutes and the peak memory used is 37.5GB. The 

number of the assembled contigs after the cutting up process is 

533,058 and 56,318 contigs with the length bigger than or equal to 

1,500bp are used for each of the clustering method. 

 

Figure 21. Performance scores for Strains_60S_5.0R 

As shown in Figure 21, the proportion of the assigned base pairs 

is between 0.8 and 0.9. The difference in performance across the 

binning tools is not big. The ARI scores of MaxBin2, BMC3C, 

CONCOCT, and MetaBAT are the highest. The ARI scores of 
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COCACOLA, GATTACA. and MyCC follows next. The overall 

performance of GroopM is the lowest.  

Strains_60S_7.5R The ninth dataset consists of 60 samples each 

with the number of reads 7,500,000. The time spent on MEGAHIT is 

15 hours and 7 minutes and the peak memory used is 56.3GB. The 

number of the assembled contigs after the cutting up process is 

672,454 and 58,131 contigs with the length bigger than or equal to 

1,500bp are used for each of the clustering method. 

 

Figure 22. Performance scores for Strains_60S_7.5R 

As shown in Figure 22, the proportion of the assigned base pairs 

is between 0.75 and 0.85. The performances of MaxBin2, BMC3C, 

CONCOCT, and MetaBAT are the highest, followed by the 
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performances of COCACOLA, MyCC, and GATTACA. The 

performance of GroopM is the lowest with the lowest scores in all 

metrics and has the lowest proportion of the assigned base pairs. 

Strains_60S_10.0R The tenth dataset consists of 60 samples each 

with the number of reads 10,000,000. The time spent on MEGAHIT 

is 18 hours and 8 minutes and the peak memory used is 74.9GB. The 

number of the the assembled contigs after the cutting up process is 

754,126 and 69,490 contigs with the length bigger than or equal to 

1,500bp are used for each of the clustering method.

 

Figure 23. Performance scores for Strains_60S_10.0R 

As shown in Figure 23, the proportion of the assigned base pairs 

is between 0.8 and 0.85. The performances of MaxBin2 and BMC3C 
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is high, followed by the performances of MetaBAT, CONCOCT, MyCC, 

and COCACOLA. The performance of GroopM is the lowest. 

Strains_60S_12.5R The eleventh dataset consists of 60 samples 

each with the number of reads 12,500,000. The time spent on 

MEGAHIT is 23 hours and 35 minutes and the peak memory used is 

93.7GB. The number of the assembled contigs after the cutting up 

process is 889,500 and 68,181 contigs with the length bigger than or 

equal to 1,500bp are used for each of the clustering method. 

 

Figure 24. Performance scores for Strains_60S_12.5R 

As shown in Figure 24, the proportion of the assigned base pairs 

is between 0.8 and 0.9. The performances of MaxBin2, CONCOCT, 

and BMC3C are relatively high, which are followed by the 
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performances of MetaBAT, GATTACA, and COCACOLA. The 

performances of GroopM and MyCC is the lowest. The recall value 

for MyCC is the highest whereas its RI and ARI values are the lowest.  

Strains_80S_12.5R The twelfth dataset consists of 80 samples 

each with the number of reads 12,500,000. The memory and time 

spent on MEGAHIT is 27 hours and 12 minutes and the peak memory 

used is 124.6GB. The number of the assembled contigs after the 

cutting up process is 1,235,916 and 62,785 contigs with the length 

bigger than or equal to 1,500bp are used for each of the clustering 

method..  

 

Figure 25. Performance scores for Strains_80S_12.5R 

As shown in Figure 25, the proportion of the assigned base pairs 
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is between 0.8 and 0.85. The performances of MaxBin2, MyCC, and 

MetaBAT are high. The performance of CONCOCT follows. The 

performances of COCACOLA and GATTACA follows, and the 

performance of GroopM is the lowest. 

Strains_100S_12.5R The thirteenth dataset consists of 100 

samples each with the number of reads 12,500,000. The time spent 

on MEGAHIT is 18 hours 12 minutes and the peak memory used is 

126.0GB. The number of the assembled contigs after the cutting up 

process is 651,838 and 59,981 contigs with the length bigger than or 

equal to 1,500bp are used for each of the clustering method. 

 

Figure 26. Performance scores for Strains_100S_12.5R 

As shown in Figure 26, the proportion of the assigned base pairs 
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is between 0.75 and 0.85. The performances of MetaBAT, MaxBin2, 

BMC3C, and MyCC are relatively good. Next follows the 

performances of CONCOCT and COCACOLA, which is followed by 

the performances of GroopM and GATTACA. 

 

2.3. The performance of each method 

 

In addition to the species-level performance, strain-level 

performance is included in this section. The species-level 

performance scores indicate the performance values obtained by 

constructing the matrix A described in section 2.1.11, where T, the 

number of columns of A, is the number of species, 100. The species-

level performance scores indicate the performance values obtained 

by constructing the matrix A described in section 2.1.11, where T is 

the number of strains, 210. Note that the recall values tend to be 

higher in the strain-level scores than in the species-level scores. 

The precision values tend to be lower in the species-level scores 

than in the strain-level scores. The precision values tend to be high 

if the number of the clusters inferred in high. 

Note that the matrix A𝑇 can be depicted as a heatmap, which is 

a plot that shows which cluster corresponds to which species based 

on a color key. The heatmaps of the results of clustering is provided 

in Appendix. The high number of contigs both in a cluster and in a 
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genome is represented by yellow. We can also identify which of the 

contig binning methods performed well by comparing the heatmaps 

between different contig binning methods. 

 

2.3.1. The performance of CONCOCT 

 

Figure 27. The performance of CONCOCT 

Figure27 (a) and (b) shows the values of the performance 

statistics for CONCOCT against the number of reads in millions 

where the number of samples is 20 and 60 respectively. Figure 27 

(c) shows the performance scores for CONCOCT against the number 

of samples where the number of reads for each sample is 12.5 million. 

The green solid lines correspond to the performance scores for the 
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datasets with no strain variation, the blue solid lines correspond to 

the species-level performance for the datasets with multiple strain 

variations, and the blue dashed lines correspond to the strain-level 

performance scores for the datasets with multiple strain variations.  

For the datasets with no strain variation, the performance of 

CONCOCT tends to decreases as the number of samples increases, 

as depicted in Figure 27 (c). In addition, by comparing Figure 27 (a) 

and Figure 27 (b), it is observed that the patterns of fluctuations of 

the two are similar and the performances for the datasets with the 

number of samples 60 is lower than the performances for the 

datasets with the number of samples 20 given the fixed number of 

reads per sample. 

By comparing the green solid lines and the blue solid lines in 

Figure 27, we can see that the presence of multiple strains in the 

datasets does not negatively affect the performance of CONCOCT. 

Also by comparing the blue solid lines and the blue dashed lines in 

Figure 27, we can observe that when multiple strains are present, the 

species-level scores and the strain-level scores are similar except 

for the recall and the precision values.  

Overall, the performance scores of CONCOCT are relatively high. 

The performance scores of CONCOCT decrease as the number of 

samples increases. CONCOCT displays high levels of resolution when 

the depth of coverage is relatively low. The original paper [14] states 
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that the performance of CONCOCT increases as the depth of 

coverage increases, which does not accord with our observations. 

There is also a possibility that information lost during the process of 

PCA may result in lower performance. Further evaluations of the 

performance of CONCOCT is required. 

 

2.3.2. The performance of COCACOLA 

 

Figure 28. The performance of COCACOLA 

Figure 28 (a) and (b) shows the values of the performance 

measures for COCACOLA against the number of reads in millions 

where the number of samples is 20 and 60 respectively. Figure 28 

(c) shows the performance scores for COCACOLA against the 
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number of samples where the number of reads for each sample is 

12.5 million.  

From Figure 28 (a), it is observed that for datasets with the 

sample size 20, the performance values tend to increase with the 

increase in the number of reads. For the datasets with multiple strain 

variations, the overall scores are relatively low. 

By comparing the green solid lines and the blue solid lines in 

Figure 28, it is observed that the performance for the datasets with 

no strain variation is always higher than the performance for the 

datasets with multiple strain variations. By comparing blue solid lines 

and blue dashed lines in Figure 28, we can observe that for the 

datasets with multiple strain variations, the difference between the 

species-level scores and the strain-level scores is not big except 

for the recall values.  

The performance of CONCOCT is consistently high for the 

datasets with no strain variations if either the number of samples or 

the depth of coverage in the dataset is high. For the datasets with 

multiple strain variations, the performance is low.  
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2.3.3. The performance of MetaBAT 

 

Figure 29. The performance of MetaBAT 

Figure 29 (a) and (b) shows the values of performance measures 

for MetaBAT against the number of reads in millions where the 

number of samples is 20 and 60 respectively. Figure 29 (c) shows 

the performance scores for MetaBAT against the number of samples 

when the number of reads for each sample is 12.5 million.  

As shown in Figure 29 (a), (b), for the datasets with no strain 

variation, the performance values of MetaBAT increase greatly with 

the increase in the number of reads. For the datasets with multiple 

strain variations, the increase in the performance values is more 

clearly demonstrated if the number of samples in the dataset is small. 
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As shown in Figure 29 (c), for the datasets with no strain variation, 

if the depth of coverage is large, the performance is close to the 

maximum value of the scores 1. By comparing the green solid lines 

and the blue solid lines in Figure 29, it is observed that the 

performance for the datasets with no strain variation is always higher 

than the performance for the datasets with multiple strain variations. 

By comparing blue solid lines and blue dashed lines in Figure 29, it is 

observed that for the datasets with multiple strain variations, the 

species-level scores are higher than the strain-level scores 

especially for the ARI values.  

Overall, the performance of MetaBAT increase greatly with the 

increase in the the number of reads per sample when no strain 

variation is present. The presence of multiple strains hinders 

MetaBAT to perform well.  
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2.3.4. The performance of MaxBin2 

 

Figure 30. The performance of MaxBin2 

Figure 30 (a) and (b) shows the values of performance measures 

for MaxBin2 against the number of reads in millions where the 

number of samples is 20 and 60 respectively. Figure 30 (c) shows 

the performance scores for MaxBin2 against the number of samples 

when the number of reads for each sample is 12.5 million.  

As can be observed from Figure 30, the performance scores of 

MaxBin2 is relatively consistent across datasets, and the scores tend 

to increases as the number of reads per sample or the number of 

samples increases. By comparing the green solid lines and the blue 

solid lines in Figure 30, we can see that the performance scores for 
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the datasets with no strain variation is always higher than the scores 

for the datasets with no strain variation. By comparing the blue solid 

lines and the blue dashed lines in Figure 30, we can see that for the 

datasets with multiple strain variations, the difference between the 

species-level scores and the strain-level scores is not big. 

Overall, the performance of MaxBin2 is consistently high. The  

performance of MaxBin2 is higher for the datasets with large number 

of samples or high number of reads per sample. The MaxBin2 

algorithm is capable of grouping the contigs belonging to the same 

species together for datasets with various strains. 
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2.3.5. The performance of GroopM 

 

Figure 31. The performance of GroopM 

Figure 31 (a) and (b) shows the values of performance measures 

for GroopM against the number of reads in millions where the number 

of samples is 20 and 60 respectively. Figure 31 (c) shows the 

performance scores for GroopM against the number of samples when 

the number of reads for each sample is 12.5 million.  

As can be observed by comparing the green solid lines and the 

blue solid lines in Figure 31, the performance for the datasets with 

no strain variation tends to be higher than the performance for the 

datasets with multiple strain variations. By comparing the blue solid 

lines and the blue dashed lines in Figure 31, we can see that for the 
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datasets with multiple strain variations, the difference between the 

species-level scores and the strain-level scores is not big. 

The overall performance of GroopM is low. One of the possible 

reasons for this is that we did not use further stages of refine steps 

provided by the GroopM package. The use of varying minimum length 

of the contigs imposed to reduce the memory usage may have also 

affected the performance. The minimum contig length in the core 

stage was set to 2,500bp for for Strains_20S_10.0R, the the minimum 

contig length in the core stage was set to 3,500bp for for 

Strains_60S_7.5R, the the minimum contig length in the core stage 

was set to 5,000bp for for Strains_60S_10.0R, and the the minimum 

contig length in the core stage was set to 2,500bp for for 

Strains_60S_12.5R. For the other datasets, the length of the minimum 

contig length was set to 1,500bp. 
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2.3.6. The performance of BMC3C 

 

Figure 32. The performance of BMC3C 

Figure32 (a) and (b) shows the values of performance measures 

for BMC3C against the number of reads in millions where the number 

of samples is 20 and 60 respectively. Figure 32 (c) shows the 

performance scores for BMC3C against the number of samples where 

the number of reads for each sample is 12.5 million. 

By comparing the green solid lines and the blue solid lines in 

Figure 32, we can see that the score of BMC3C is higher for the 

datasets with multiple strain variations than for the datasets with no 

strain variation. For the datasets with multiple strain variations, the 

species-level scores, depicted by the dashed blue lines in Figure 32, 
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are lower than the strain-level scores, depicted by the solid blue 

lines in Figure 32, except for the precision values. This aspect is not 

observed in the other methods, which shows the potential of BMC3C 

to cluster contigs into strains. 

Overall, BMC3C tends to perform better on the datasets with 

multiple strains than on the datasets with no strain variation. BMC3C 

tends to overestimates the number of clusters, especially for the 

datasets with no strain variation. Since the strain-level performance 

values for the datasets with multiple variations is high, BMC3C is an 

adequate method for strain-level resolutions. 
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2.3.7. The performance of MyCC 

 

Figure 33. The performance of MyCC 

Figure 33 (a) and (b) shows the values of performance measures 

for MyCC against the number of reads in millions where the number 

of samples is 20 and 60 respectively. Figure 33 (c) shows the 

performance scores for MyCC against the number of samples where 

the number of reads for each sample is 12.5 million. 

The performance of MyCC is relatively high for the datasets with 

multiple strain variations, though it has a poor performance for 

Species_80S_12.5R. As shown by the green lines in Figure 33 (a), 

when the number of samples is 20, for the datasets with no strain 

variations, values of performance increase as the depth of coverage 
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increases. By comparing the blue solid lines and the blue dashed lines 

in Figure 33, we can see that the performance for the datasets with 

no strain variation tends to be higher than the performance for the 

datasets with multiple strain variations except for the recall values 

and for the datasets with 80 samples. By comparing the blue solid 

lines and the blue dashed lines in Figure 33, we can see that for the 

datasets with multiple strain variations, the difference between the 

species-level scores and the strain-level scores is not big except 

for the precision values. 

Overall, the performance scores of MyCC for the datasets with 

no strain variation are high except for Species_80S_12.5R. For 

Species_80S_12.5R, by observing the heatmap of MyCC plotted in 

Figure A.24 of Appendix, we can observe that a some of the clusters 

each contain contigs from various species. Though the other clusters 

each corresponds to a species relatively well, clusters containing 

multiple species mainly caused the drop in the performance. 
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2.3.8. The performance of GATTACA 

 

Figure 34. The performance of GATTACA 

Figure 34 (a) and (b) shows the values of performance measures 

for GATTACA against the number of reads in millions where the 

number of samples is 20 and 60 respectively. Figure 34 (c) shows 

the performance scores for GATTACA against the number of 

samples when the number of reads for each sample is 12.5 million.  

Since the clustering algorithm for CONCOCT and GATTACA are 

similar, the patterns of the performance plotted in Figure 34 are 

similar to the patterns of the performance of CONCOCT shown in 

Figure 27. By comparing the green solid lines and the blue solid lines 

in Figure 34, we can see that the presence of multiple strains in a 
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dataset does not seem to negatively affect the performance of 

GATTACA. By comparing the blue solid lines and the blue dashed 

lines in Figure 34, we can also observe that for the datasets with 

multiple strains, the species-level scores and the strain-level 

scores are similar except for the recall and the precision values. 

The overall performance of GATTACA is relatively low. The 

performance may have been affected by the mean coverage profile 

used in this study, whereas in the original paper, the coverage profile 

was generated by the kmer counts for each contig in each sample so 

that the read mapping process is not included. 
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Chapter 3. Conclusion 

 

Metagenomics, sparked by the next generation sequencing, led 

to the need of the taxonomic classification of microbial genomes in 

the samples obtained from the nature. We have compared the eight 

taxonomy-independent contig binning methods that have the 

potential to discover novel genomes from the sequence data. 

We have generated 26 distinct in silico datasets, half with no 

strain variation and the other half with multiple strain variations. 

After implementing each of the eight methods on each in-silico 

datasets and calculating the performance scores for each method, we 

observed that the binning methods with high performances vary by 

the datasets.  

We first illustrate the results from the 13 datasets with no strain 

variation. The performance of CONCOCT was high for the datasets 

relatively small in sample size. Hence even with small datasets which 

are cost effective and time efficient to obtain, CONCOCT can provide 

reliable results.  

COCACOLA, MetaBAT, MaxBin2, and MyCC are the methods 

with high performances for the datasets with larger number of the 

samples or the higher depths of coverage, implying that these 

methods utilize a large amount of information effectively. Therefore, 

researchers can be more confident in increasing the number of 
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samples or the depth of coverage to have increased performance of 

these tools.  

We now illustrate the results of the datasets with multiple strain 

variations. It is observed that the performance of CONCOCT is high 

for the datasets relatively small in the sample size or the depth of 

coverage. The performances of BMC3C, MaxBin2 and MetaBAT were 

relatively high for the larger datasets. For BMC3C, the number of 

clusters inferred was closer to the number of strains, 210, than the 

number of species, 100. Also, the performance scores in strain-level 

is high, indicating it is possible to use BMC3C for clustering contigs 

into strains with no reference genomes.  

The overall performances of GroopM and GATTACA were low. 

GroopM was conducted without the use of the optional refining steps, 

discarding the chimeric set of contigs identified by the algorithm. 

This may have led to the lower performance of GroopM. Manual 

inspections may lead to the higher performance. GATTACA was 

implemented with the input mean coverage profile. However, the 

algorithm is originally built to use the coverage profile generated by 

the k-mer counts for each contig in each sample. Using the coverage 

profile generated by the k-mer counts may have positive effects on 

the performance of GATTACA.  

It should be taken into account that there are some limitations in 

this study regarding the method of comparing performances of the 
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binning tools. First of all, we compared the performance of the binning 

methods mainly based on the values of the score metrics. Since 

CONCOCT, COCACOLA, MyCC, and GATTACA binned every contig 

while MetaBAT, MaxBin2, GroopM, and BMC3C had some contigs 

unbinned, evaluating the performance solely on the value of 

performance measures can produce biased results.  

In this study, we have only conducted one round of binning for 

each method and each dataset. Repeated rounds of each binning 

method may have given us the mean performance values. The level 

of variability of the resulted bins may also have been obtained, which 

may have enabled us to conduct hypothesis tests on the values of 

performance for more confidence in the performance evaluations. 

Since we have generated the datasets within a pool of 419 known 

strains, it could have resulted in biased results and the datasets may 

have had limited variability in the complexity of the datasets. Each 

dataset is not truly independent, and with the unexplored sequence 

of novel strains in the samples from the real world, different 

performance results may be obtained. Also, the distributions used by 

StrainMetaSim, may not always reflect the aspect of the real samples. 

Taking these limitation into account, further research on the 

evaluation of the contig binning methods will give more insights. 

Along with the eight methods implemented in this article, the 

performance of other automatic taxonomy independent binning 
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methods such as BinSanity [65], CoMet [66], and IFCM [67], can 

also be evaluated. The software such as AMBER [68] and CheckM 

[69] are also available besides Validate.pl, used in our study, for 

evaluation of the inferred bins. Performance measures such as F1 

score are also available, which is the harmonic mean of the recall and 

precision [38]. 
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Figure A.1. Heat maps for Speceis_20S_2.5R. The top left is that of CONCOCT, 

top right of COCACOLA, bottom left of MetaBAT, and bottom right of MaxBin2 
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Figure A.2. Heat maps for Speceis_20S_2.5R. The top left is that of GroopM, 

top right of BMC3C, bottom left of MyCC, and bottom right of GATTACA 
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Figure A.3. Heat maps for Speceis_20S_5.0R. The top left is that of CONCOCT, 

top right of COCACOLA, bottom left of MetaBAT, and bottom right of MaxBin2 
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Figure A.4. Heat maps for Speceis_20S_5.0R. The top left is that of GroopM, 

top right of BMC3C, bottom left of MyCC, and bottom right of GATTACA 
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Figure A.5. Heat maps for Speceis_20S_7.5R. The top left is that of CONCOCT, 

top right of COCACOLA, bottom left of MetaBAT, and bottom right of MaxBin2 

 

 



 133 

 

 

 

Figure A.6. Heat maps for Speceis_20S_7.5R. The top left is that of GroopM, 

top right of BMC3C, bottom left of MyCC, and bottom right of GATTACA 
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Figure A.7. Heat maps for Speceis_20S_10.0R. The top left is that of CONCOCT, 

top right of COCACOLA, bottom left of MetaBAT, and bottom right of MaxBin2 
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Figure A.8. Heat maps for Speceis_20S_10.0R. The top left is that of GroopM, 

top right of BMC3C, bottom left of MyCC, and bottom right of GATTACA 
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Figure A.9. Heat maps for Speceis_20S_12.5R. The top left is that of CONCOCT, 

top right of COCACOLA, bottom left of MetaBAT, and bottom right of MaxBin2 
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Figure A.10. Heat maps for Speceis_20S_12.5R. The top left is that of GroopM, 

top right of BMC3C, bottom left of MyCC, and bottom right of GATTACA 
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Figure A.11. Heat maps for Speceis_40S_12.5R. The top left is that of 

CONCOCT, top right of COCACOLA, bottom left of MetaBAT, and bottom right 

of MaxBin2 
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Figure A.12. Heat maps for Speceis_20S_10.0R. The top left is that of GroopM, 

top right of BMC3C, bottom left of MyCC, and bottom right of GATTACA 
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Figure A.13. Heat maps for Speceis_60S_2.5R. The top left is that of CONCOCT, 

top right of COCACOLA, bottom left of MetaBAT, and bottom right of MaxBin2 
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Figure A.14. Heat maps for Speceis_60S_2.5R. The top left is that of GroopM, 

top right of BMC3C, bottom left of MyCC, and bottom right of GATTACA 
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Figure A.15. Heat maps for Speceis_60S_5.0R. The top left is that of CONCOCT, 

top right of COCACOLA, bottom left of MetaBAT, and bottom right of MaxBin2 
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Figure A.16. Heat maps for Speceis_60S_5.0R. The top left is that of GroopM, 

top right of BMC3C, bottom left of MyCC, and bottom right of GATTACA 

 

 

 

 



 144 

 

 

Figure A.17. Heat maps for Speceis_60S_7.5R. The top left is that of CONCOCT, 

top right of COCACOLA, bottom left of MetaBAT, and bottom right of MaxBin2 
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Figure A.18. Heat maps for Speceis_60S_7.5R. The top left is that of GroopM, 

top right of BMC3C, bottom left of MyCC, and bottom right of GATTACA 
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Figure A.19. Heat maps for Speceis_60S_10.0R. The top left is that of 

CONCOCT, top right of COCACOLA, bottom left of MetaBAT, and bottom right 

of MaxBin2 
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Figure A.20. Heat maps for Speceis_60S_10.0R. The top left is that of GroopM, 

top right of BMC3C, bottom left of MyCC, and bottom right of GATTACA 
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Figure A.21. Heat maps for Speceis_60S_12.5R. The top left is that of 

CONCOCT, top right of COCACOLA, bottom left of MetaBAT, and bottom right 

of MaxBin2 
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Figure A.22. Heat maps for Speceis_60S_12.5R. The top left is that of GroopM, 

top right of BMC3C, bottom left of MyCC, and bottom right of GATTACA 
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Figure A.23. Heat maps for Speceis_80S_12.5R. The top left is that of 

CONCOCT, top right of COCACOLA, bottom left of MetaBAT, and bottom right 

of MaxBin2 
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Figure A.24. Heat maps for Speceis_80S_12.5R. The top left is that of GroopM, 

top right of BMC3C, bottom left of MyCC, and bottom right of GATTACA 
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Figure A.25. Heat maps for Speceis_100S_12.5R. The top left is that of 

CONCOCT, top right of COCACOLA, bottom left of MetaBAT, and bottom right 

of MaxBin2 
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Figure A.26. Heat maps for Speceis_100S_12.5R. The top left is that of GroopM, 

top right of BMC3C, bottom left of MyCC, and bottom right of GATTACA 
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Figure A.27. Heat maps for Strains_20S_2.5R. The top left is that of CONCOCT, 

top right of COCACOLA, bottom left of MetaBAT, and bottom right of MaxBin2 
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Figure A.28. Heat maps for Strains_20S_2.5R. The top left is that of GroopM, 

top right of BMC3C, bottom left of MyCC, and bottom right of GATTACA 
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Figure A.29. Heat maps for Strains_20S_5.0R. The top left is that of CONCOCT, 

top right of COCACOLA, bottom left of MetaBAT, and bottom right of MaxBin2 
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Figure A.30. Heat maps for Strains_20S_5.0R. The top left is that of GroopM, 

top right of BMC3C, bottom left of MyCC, and bottom right of GATTACA 
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Figure A.31. Heat maps for Strains_20S_7.5R. The top left is that of CONCOCT, 

top right of COCACOLA, bottom left of MetaBAT, and bottom right of MaxBin2 
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Figure A.32. Heat maps for Strains_20S_7.5R. The top left is that of GroopM, 

top right of BMC3C, bottom left of MyCC, and bottom right of GATTACA 
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Figure A.33. Heat maps for Strains_20S_10.0R. The top left is that of 

CONCOCT, top right of COCACOLA, bottom left of MetaBAT, and bottom right 

of MaxBin2 
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Figure A.34. Heat maps for Strains_20S_10.0R. The top left is that of GroopM, 

top right of BMC3C, bottom left of MyCC, and bottom right of GATTACA 
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Figure A.35. Heat maps for Strains_20S_12.5R. The top left is that of 

CONCOCT, top right of COCACOLA, bottom left of MetaBAT, and bottom right 

of MaxBin2 
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Figure A.36. Heat maps for Strains_20S_12.5R. The top left is that of GroopM, 

top right of BMC3C, bottom left of MyCC, and bottom right of GATTACA 

 

 

 

 



 164 

 

 

Figure A.37. Heat maps for Strains_40S_12.5R. The top left is that of 

CONCOCT, top right of COCACOLA, bottom left of MetaBAT, and bottom right 

of MaxBin2 
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Figure A.38. Heat maps for Strains_40S_12.5R. The top left is that of GroopM, 

top right of BMC3C, bottom left of MyCC, and bottom right of GATTACA 
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Figure A.39. Heat maps for Strains_60S_2.5R. The top left is that of CONCOCT, 

top right of COCACOLA, bottom left of MetaBAT, and bottom right of MaxBin2 
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Figure A.40. Heat maps for Strains_60S_2.5R. The top left is that of GroopM, 

top right of BMC3C, bottom left of MyCC, and bottom right of GATTACA 
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Figure A.41. Heat maps for Strains_60S_5.0R. The top left is that of CONCOCT, 

top right of COCACOLA, bottom left of MetaBAT, and bottom right of MaxBin2 
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Figure A.42. Heat maps for Strains_60S_5.0R. The top left is that of GroopM, 

top right of BMC3C, bottom left of MyCC, and bottom right of GATTACA 
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Figure A.43. Heat maps for Strains_60S_7.5R. The top left is that of CONCOCT, 

top right of COCACOLA, bottom left of MetaBAT, and bottom right of MaxBin2 
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Figure A.44. Heat maps for Strains_60S_7.5R. The top left is that of GroopM, 

top right of BMC3C, bottom left of MyCC, and bottom right of GATTACA 
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Figure A.45. Heat maps for Strains_60S_10.0R. The top left is that of 

CONCOCT, top right of COCACOLA, bottom left of MetaBAT, and bottom right 

of MaxBin2 
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Figure A.46. Heat maps for Strains_60S_10.0R. The top left is that of GroopM, 

top right of BMC3C, bottom left of MyCC, and bottom right of GATTACA 
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Figure A.47. Heat maps for Strains_60S_12.5R. The top left is that of 

CONCOCT, top right of COCACOLA, bottom left of MetaBAT, and bottom right 

of MaxBin2 
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Figure A.48. Heat maps for Strains_60S_12.5R. The top left is that of GroopM, 

top right of BMC3C, bottom left of MyCC, and bottom right of GATTACA 
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Figure A.49. Heat maps for Strains_80S_12.5R. The top left is that of 

CONCOCT, top right of COCACOLA, bottom left of MetaBAT, and bottom right 

of MaxBin2 

 

 

 



 177 

 

 

Figure A.50. Heat maps for Strains_80S_12.5R. The top left is that of GroopM, 

top right of BMC3C, bottom left of MyCC, and bottom right of GATTACA 
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Figure A.51. Heat maps for Strains_100S_12.5R. The top left is that of 

CONCOCT, top right of COCACOLA, bottom left of MetaBAT, and bottom right 

of MaxBin2 
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Figure A.52. Heat maps for Strains_100S_12.5R. The top left is that of GroopM, 

top right of BMC3C, bottom left of MyCC, and bottom right of GATTACA 
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국문초록 

 

염기서열 결정 기술(시퀀싱)이 발달하면서 자연환경에서 

미생물의 염기서열 정보를 직접 얻을 수 있는 메타게놈이 발전했다. 

메타게놈을 이용하여 이전에 연구되지 않았던 미생물에 대한 연구를 할 

수 있게 되었다. 시퀀싱으로 얻은 미생물 샘플의 염기서열 조각들은 

겹치는 구간의 정보를 이용해 긴 가닥의 시퀀스인 콘티그로 합치는 

과정인 어셈블리를 거친다. 합치는 어셈블리 과정을 통해 얻는 

콘티그들은 시퀀싱으로 얻은 조각들에 비해 긴 길이를 가지지만 게놈 

전체의 염기서열을 생성하지는 못한다. 따라서 각 콘티그가 어떤 미생물 

종에서 유래한 것인지를 밝히기 위해 콘티그 클러스터링 방법을 사용할 

수 있다. 콘티그 클러스터링을 통해 콘티그들을 클러스터에 나눠서 담고, 

각 클러스터에 대응하는 미생물 종의 염기서열 정보와 그 종이 샘플 

내에서 존재하는 비율을 추정하는 방법이다. 우리는 컨티그 집합의 

구성과 커버리지정보를 이용하는 여덟가지의 콘티그 클러스터링 

방법들을 비교하였다. 컴퓨터 시뮬레이션을 통해 서로 다른 커버리지와 

샘플 수를 가지는 26가지의 데이터를 만든 후, 여덟가지의 방법들을 

적용해 보고 각 방법의 성능을 측정하고 분석하였다. 우리는 어떤 

방법이 상대적으로 높은 성능을 보이는지, 그리고 각 클러스터링 

방법들이 적용되기에 적합한 데이터는 무엇인지 살펴보고자 한다. 
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