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Abstract

With the recent advances in next generation sequencing
technologies, shotgun metagenomics, direct sequencing of genetic
materials from environmental samples, became available. Shotgun
metagenomics enables research of previously under—examined or
unknown microbes that cannot be cultured in laboratories.
Metagenomics therefore has potential to identify novel genomes from
samples and its abundance within samples. Since short—read
sequencing outputs a large number of reads in a single run, the task
is to construct the genome from which the reads originate. However,
since the reads produced by next generation sequencing technologies
generally have short lengths, assembling reads into contigs cannot
reconstruct the sequence of complete genomes. Aligning reads to the
reference genome is also hindered if the reference genome is not
available or coverage is insufficient. Moreover, since environmental
sample contains various microbial species or strains, different reads
obtained from metagenomics shotgun sequencing may originate from
different taxa. Therefore, clustering contigs into bins, where each bin
corresponds to a species, is needed. After sequencing reads from
microbial samples, reads are assembled into contigs, which can then

be clustered into species to identify which species reside in the
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samples. Here we compare eight taxonomy independent contig
binning methods that utilizes composition and coverage information
to bin contigs into clusters. By comparing their performances across
26 in silico datasets with varying parameters, we suggest a guideline
of choosing appropriate methods of binning contigs for wvarious

datasets.

Keyword : contig binning methods
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Chapter 1. Introduction

1.1. Study Background

Microorganisms are single—celled organisms which generally
exist in a unit or in the form of clads. Prokaryotes, including bacteria
and archaea are the typical examples.

Microorganisms play a vital role in ecological system, and take
up approximately one third of the biomass of the Earth [1].
Microorganisms also reside inside human body, forming a community
that can have an effect on human's health. Though some
microorganisms are benign, others may cause disease. For example,
Plasmodium falciparum is a kind of pathogenic protozoa which causes
malaria in human. Therefore, it is crucial to understand the genetic
structure of microorganisms and their functions.

With the advance in sequencing technology, next generation
sequencing emerged, which is cost—effective and efficient in time and
performance compared to traditional Sanger sequencing. Illumina
platform, one of the next generation sequencer, is widely used due
to high accuracy with error rate of 0.1—1% and high outputs with

1.5Tb per run [2]. Next generation sequencing shed light to a new



field called metagenomics. Metagenomics, unlike traditional culture—
based approaches, refers to the study of genetic materials of
microbes obtained directly from nature. This method enables
sequencing genetic materials from samples obtained directly from an
environment.

There are other related fields such as metataxonomics and
meta—transcriptomics that aims to discern genetic compositions of
data. Metataxonomics, also sometimes referred to as metagenomics,
sequences specific marker genes that are highly conserved such as
regions of the ribosomal RNA (rRNA) [3]. The amplicon sequencing
of 16S rRNA gene from bacteria and 18S rRNA gene from eukaryotes
are widely used, where amplicon indicates the source DNA fragment
that are copied and multiplied. 16S rRNA marker genes are suited for
phylogenetic profiling because they are present almost in all
population, and they have nine hypervariable regions of varying
lengths and sequences which can be used to distinguish species [4,
5]. Meta—transcriptomics sequences RNA in a sample, which can
reflect the highly transcribed regions of the genes [3].

Although the databases of rRNA such as Greengenes [6], RDP
[7], and SILVA [8] has increased significantly, containing genes from
millions of species whereas genome databases only contains tens of
thousands of species, the pace of new discovery of taxonomy from

rRNA amplicon sequencing studies is slowed [3, 9].
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A downside of metataxonomics is that 16S rRNA gene may not
be in a single copy. Rather, bacteria can have different copy numbers,
ranging from 2 to 15 per genome [10]. This can be misleading to the
composition inference of samples [11]. Moreover, metataxomomics
approach is not applicable to virus, since it does not have universally
conserved regions [3]. A PCR bias may also occur since universal
primers designed may not recover some rRNA. A study revealed that
a minimum of 9.6% of prokaryotic genes are not recovered using
PCR—based survey [12]. Metagenomics can be used to resolve these
problems.

Shotgun sequencing aims to sequence short fragments, called
reads, deriving from a long DNA strand. The long DNA strand is
fragmented, and sequenced with chain termination methods
repeatedly, creating a set of reads. With the advance of sequencing
technology, a large number of reads greater than 10° with short
reads became available [13]. Illumina HiSeq is an adequate method
for sequencing a large number of reads required for in—depth
resolution of metagenomics.

To obtain the genetic composition of samples, the reads
generated are now either aligned to a reference genome or assembled
into contigs to reconstruct the original genomes. Aligning to
reference genomes are limited, since reference genomes for novel

specles are unavailable. In other cases, only 'draft' genomes may be
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available, which is highly fragmented and incomplete, with the
possibility of low quality of these genome sequences [3].

Assembling reads is an alternative method, as it does not require
reference genomes. Since shotgun sequencing produces fragments of
the original strand repeatedly, there are overlapping regions between
reads, which can be used to integrate reads into longer pieces, called
contigs.

De Bruijn graph is a popular approach for assembling reads into
contigs. The assembler breaks each read into k—mers, where k is a
fixed integer and k—mer indicates a sequence of length k. De Bruijn
graph is then constructed where each node represents a k—mer and
each edge represents an overlap of size k—1 between adjacent nodes.
The shortcoming of de Bruijn graph assembler is that when the size
of repeats is greater than k, it is unable to determine the original size
of the repeats, which leads to the incomplete reconstruction of the
whole genome.

Due to sequence repeats, assembly results in a set of fragmented
contigs [14]. Therefore, grouping contigs into metagenomic
assembled genomes (MAGs), referred to as binning contigs, is
needed to determine which contig are derived from which genome.

There are two kinds of binning methods, supervised (taxonomy
dependent) method and unsupervised (taxonomy independent)

method. Supervised methods search for homology against reference
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databases for clustering [15]. Unsupervised methods utilize
information within the set of contigs to cluster them into species.

The two main features used for unsupervised clustering methods
are sequence compositions and coverages [15]. Sequence
compositions, also referred to as genome signatures, represent
frequencies of all possible sequence of oligonucleotides in each
contig. It has been shown that these features are genome—wide and
species—specific [16]. Also, genome signatures are not obscured in
the course of evolution [17]. Assuming oligonucleotide frequencies
are unique for each species, genome signatures is represented by a
numeric vector where each element is the frequency of an
oligonucleotide [15]. Binners utilize these vectors for clustering
contigs into bins.

Coverage information, also called abundance, is also used for
unsupervised clustering methods. Coverage of a base position is
defined as the number of times the base position is included in the
reads. The coverage of a contig is the average of coverages of the
bases included in the contig. Coverage profile specifies the coverage
of each contig in each sample. The coverage of contigs derived from
a single abundant species is likely be high. In this manner, the binning
methods assumes that the coverages of contigs derived from the
same genome are highly correlated across multiple samples [15].

There are three kinds of binning methods: (1) the sequence

5 .__:rxq i
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composition based methods, (2) the coverage based methods, and (3)
the methods based on both sequence composition and coverages of
contigs. Methods that uses sequence composition alone are prone to
miss some species with low abundance and need long sequences as
inputs [15]. Therfore, we chose to compare the performances of the
methods based on both sequence composition and coverages of

contigs.

1.2. Purpose of Research

Traditional studies on microorganisms were based on culturing
steps. However, it is estimated that only 0.1—1.0% of the bacteria
present in soil can be cultured under standard conditions, and the
fraction of cultivable bacteria in marine samples is even ten to a
thousand times lower [1]. A study of amplicon sequencing survey of
16S rRNA also revealed that only a small fraction of bacteria and
archaea is discovered through cultivation—based studies [18]. Since
culture—based approaches was limited to organisms that can be
cultured in a culture medium, most of the microorganisms which
cannot be cultured with any growth media have not been well studied.

With the advent of metagenomics, it is now possible to explore
the previously unseen microbes. Studies of metagenomics discovered

new lineages of viruses [19, 20, 21]. Metagenomics also enables
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phylogenetic profiling of samples. Time series metagenomics
shotgun sequencing can identify the shifts in abundance of bacterial
species taking place in premature infant guts [22]. Software such as
MIDAS [23], Constrains [45], DESMAN [25], and Lineage [26] are
a strain—level resolution algorithms that enables the reconstruction
of phylogeny trees from samples.

Moreover, metagenomics can investigate functional roles of
genes and their level of expression. Metagenomic studies on bovine
digital dermatitis, a disease that causes lesions and limps in cattle,
revealed differences in expressed functional genetic composition of
healthy, active and inactive lesion stages [27]. Studies of antibiotic
resistance genes discovered rivers, wastewater treatment plants,
and bacteriophages are reservoirs of antibiotic resistance genes [28,
29, 30].

Metagenomics can also lead to a discovery of novel genes,
proteins, enzymes, and chemical compounds that can be used for
biotechnology [31]. A study revealed thiopeptide, antibiotics
generated by bacteria, is prevalently expressed by microbiota
residing in human by examining biosynthetic gene clusters (BGC) of
metagenomics samples from Human Microbiome Project [32].

There is a great amount of information held in genomes of
unexplored microbes, and metagenomics is one of the major methods

that can be used to study these previously non—studied genomes

7 .__:rxq i

3 =11 =1
- T O



[31]. Discovering genomic sequence of novel strains or species and
its relative abundance will bring valuable information iIn
metagenomics.

With great potential, however, metagenomics faces a challenge
of sequencing the whole genome from samples. It is estimated that
the number of genomes present in a gram of soil is between 3,000
and 11,000 [31]. This poses a challenge of determining which reads
derived from which genomes. Moreover, sequence repeats, low
coverage, sequencing errors, and various strains present in each
species results in fragmented contigs [14].

This brings the need for clustering the assembled contigs into
species. Each contig is placed into a bin (or cluster), and the overall
result of binning indicates that contigs belonging to the same bin are
inferred to be derived from the same species. Binning contigs can
identify the number of species present in the samples, the relative
abundance of each species in each sample, and genetic composition
of each cluster. The binned contigs can be further analyzed to resolve

strains within each species. They can also be used to investigate the

potential functions of microorganisms within the microbial community.

In this article, we compare four binning algorithms that utilizes
information of both sequence composition and coverage, since
supervised methods have advantages over unsupervised methods in

the cases when reference genomes are unavailable. These methods
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use contigs, not reads, as input. The subject methods are : (1)
CONCOCT [14], (2) COCACOLA [33], (3) MetaBat [34], (4)
MaxBin2 [35], (5) GroopM [36], (6) BMC3C [37], (7) MyCC [38],
and (8) GATTACA [39].

In the following chapter, we will discuss in detail methods of
generation of data, preprocessing of the data, and eight clustering
methods mentioned above. Then we will apply each algorithm to
various synthetic data. Since we apply the methods on synthetic data,
we can evaluate the performance of the methods by assigning contigs
the genome they respectively originate from. We will analyze the
performance of each method on five measures

By applying various datasets on these algorithms, we aim to give
a guideline of choosing appropriate method of binning for different

datasets.



Chapter 2. Body

2.1. Methods

To evaluate the performance of contig binning methods, we
generated 26 in silico datasets, each containing in silico paired—end
reads. After data simulation, generated reads for each dataset are
assembled to form a set of contigs. Reads from each sample are then
aligned to the contigs to generate coverage information. Eight contig
binning tools are in turn implemented with input fasta file of contigs
and coverage information generated in the previous step. Data
simulation, data preprocessing, and methods of contig binning
methods are elucidated in the following sections, which are all
implemented using AMD Ryzen Threadripper 1950X 16—Core

Processor with 125GB ram.

2.1.1. Data simulation

For data simulation, we used StrainMetaSim [25]. The software
models the species and strain coverage with normalized log —normal
distributions. Each species t=1,2,...,T, has relative abundance r¢s =
eYts [ Y e¥ts, where y s~N(ue,00) and T is the number of species

present. y; and o; each follows normal and gamma distributions
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respectively, with u,~N(1,0.25) and o,~gamma(1,1) [25].

For modeling the abundance of strains within a species, a
symmetric Dirichlet distribution pg~Dir(a) is used, where a is a
vector with dimension equal to the number of strains. The Dirichlet
distribution ensures that the sum of the abundance of strains equals
1. a is set to a unit vector.

The relative frequency of strain d of species t in sample s is
modeled as kgers = Iespsg. 1The strain coverage is then Lg X kqg X
Ng/L4, where Ly is the read length, Ng is the number of reads in
sample s, and Ly is the length of the genome of strain d [25].

The sequence information of 419 strains from 100 microbial
species was used to simulate the datasets, which are provided by
StrainMetaSim, and can also be downloaded from NCBI
(https://www.ncbi.nlm.nih.gov/). StrainMetaSim randomly selects
the given number of strains from each species and computes
corresponding relative frequencies and coverage for each strain in
each sample according to the distributions set above. The same set
of genomes are included in each sample with varying relative
frequencies.

ART read simulator [40] is then used to simulate reads for each
sample. ART accounts for sequencing errors such as substitutions,
insertions, and deletions [40]. Among many platforms that ART

supports, Illumina paired end sequencing was selected for read
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generation.

We generated 26 in silico datasets where the first 13 datasets
contain no strain variation and the other 13 datasets contain multiple
strain variations for some species.

For each of the first 13 datasets with no strain variation, 100
species are randomly selected one strain per species from the pool
of 419 strains. Five out of 13 datasets contain 20 samples each with
the number of reads 2,500,000, 5,000,000, 7,500,000, 10,000,000,
and 12,500,000 per sample respectively, aiming to evaluate the effect
of coverage in the performance of binning methods. Another five
datasets contain 60 samples with the number of reads per sample
2,500,000, 5,000,000, 7,500,000, 10,000,000, and 12,500,000
respectively. The remaining three datasets, each with 40, 80, and
100 samples respectively, contains 12,500,000 reads for each
sample, which are later used to compare binning performances across
varying number of samples.

For the 13 datasets with multiple strain variations, we randomly
chose one to five strains from each species, which sums up to 210
strains across all 100 species. Out of 13 datasets, five of them contain
20 samples each, with the number of reads 2,500,000, 5,000,000,
7,500,000, 10,000,000, and 12,500,000 respectively per sample.
Another five datasets contain 60 samples with the number of reads

per sample 2,500,000, 5,000,000, 7,500,000, 10,000,000, and

12



12,500,000 respectively. The remaining three contain 40, 80, and
100 samples respectively, each with the number of reads per sample

set to 12,500,000.

2.1.2. Data preprocessing

After datasets are generated in silico, aggregated reads across
samples are assembled into contigs for each of the 26 datasets.
This is done by MEGAHIT version 1.1.3, a time—efficient single
node assembler [41]. Although MEGAHIT is an efficient algorithm,
assembling contigs takes up considerable time and memory. Thus,
we used 32 threads of AMD Ryzen Threadripper 1950X 16—Core
Processor. We provide time and peak memory used for each
simulated dataset in Table A.1—Table A.26 in Appendix.

After reads are assembled into contigs, long contigs are cut into
pieces of 10Kbp to account for chimeric ones. Then contigs are
indexed with bwa index [42]. Then bwa mem [42], a read aligner
using Burrows Wheeler transform, was used to map the reads in
each sample against the assembled contigs, which is used for
calculating the coverage.

SAM files generated by bwa mem is then converted to BAM
files using samtools view [43], which in turn is sorted using
samtools sort [43]. The sorted bam files are used to calculate

coverage with a software jgi_summarize_bam_contig_depths
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included in the MetaBAT package [34]. The software outputs the
mean coverage and the variance for each contig in each sample.
Then only contigs with minimum length 1,500 are selected for
further analysis. By slightly modifying the output, we obtained a
coverage matrix Y of size N xS where N is the number of contigs
with length > 1,500, S is the number of samples, and Y (i =
1,2,..,N,j=1,2,..,5) is mean coverage of contig i in sample j. y;,
the it" row of Y, is called the coverage vector of contig i.

Lastly, we used fasta_to_features.py included in the CONCOCT
packages [14] to calculate composition profile. We used tetramers,
which are sequences of length 4, when calculating composition
profile. For each contig, the number of tetra—nucleotide frequencies
needed to represent each contig is 136. This is because among all
possible 4* = 256 tetramers, frequencies of reverse complements
are summed except for palindromic tetramers, which are tetramers
whose reverse complement is the same as their sequence spelled
backwards. After generating composition profile, composition of
contigs with length bigger or equal to 1,500 are selected as input
for binning. The resulting composition profile is represented by the
composition matrix Z of size N x 136, where N is the number of
contigs with length > 1,500, 136 is the number of tetramer

frequencies, and Z; (i=12,..,N,j=12,..,136) is the j** tetramer

h h

frequency of the it" contig. The it"* row of Z, denoted z; is called
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the composition vector of the it* contig.

2.1.3. CONCOCT

After the preprocessing steps, coverage and composition values
are normalized. Pseudo—counts are added to coverage vectors.
That is, Y';; =Y;; + 100/L;, where L; is the length of the it" contig.
Coverage vectors are then normalized over contigs and samples.
Coverage vectors are first normalized across contigs to account for

the differing read counts of each sample,

!
RO

Y”' )
L
] z:b 1ij

Then it is again normalized across samples

I

Pi=
1, II)
N

which gives the (i,j)—entry of the coverage profile. Composition
profile is calculated similarly as follows. Z; is normalized to
Z'iwhere Z'i; = Zi; + 1. Then the (i,j)—entry of the composition

profile is calculated by

Qij = 57ee
ij — Y136 77 >

k=1“ik
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which accounts for the heterogeneity in contig lengths.

In addition to calculating coverage and composition profiles, the
total coverage of each contig is also calculated as Y|’ = M Y e
which may potentially provide additional information in
distinguishing species. For each contig, the normalized coverage
vector, the normalized composition vector, and the total coverage is
concatenated into a log—profile, which is of the form
[1og(Qi1), -, 108(Q;i136) ,10g(P;1), ..., 1og(P; 5) , Jog(¥;!)] for the i*contig.
All of the log—profiles are concatenated row—wise to form a log—
profile matrix of size N X (136 +S+1).

Principal component analysis (PCA) is applied to the log—
profile to reduce its high dimensionality. The dimension is reduced
to D, maintaining 90% of the variance in the data. The matrix after
PCA is denoted by X®, which is of size N x D. Note that the it* row
of XM, xi(l) (i=1,2,..,N), is the feature vector of contig i.

To bin the contigs given X, the number of clusters K is first
inferred using automatic relevance determination [44]. Next,
Gaussian mixture model is applied to bin contigs. Given K clusters,

the data likelihood is defined as

N K
L(X(l)le T, IJ"ZZ) = Z logz T[kN(Xl(l)lukr 2]%);
i=1 k=1
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where N is a Gaussian distribution, p; is the mean vector of
component k, X2 is the variance matrix of component k, and m is
the mixture proportion of component k. This form of likelihood
models each cluster as a shape of an ellipse in a D dimensional
space, which is empirically observed by plotting the first two
principal components of the log—profile on real data [14]. The prior
for the mixture proportions is set as the mixture proportion m=
(T4, Ty, ..., M), Where Ty is the probability a contig is drawn from
cluster k. Prior distributions for u, and 22, (k = 1,2,..,K) are set

using Gaussian—Wishart prior modeled as

K
PGt 830 = | | WG, (Boi)™ )W (Blvo, Wo),
k=1

where Ay is the inverse covariance and W is the density function
of Wishart distribution given v, and W,. Other parameter values
used are set to my =0, B, = 0.001, vy =D, and W, is set as a
diagonal matrix of size D where the d** diagonal element wi,(d =
1,2,..,D) of W, is 1/(DVy4). V4 is the sample variance of the d**
component.

The Bayesian inference is then performed. Starting with a large

number of potential components, the sampling model is
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P(XD|m) = f P(X®,6|r) do,

integrating over all the other parameters 6. This integral is
estimated using variational Bayesian approximation, solving for
maximizing the lower bound of the integral. The optimized mixing
coefficients 1 naturally selects the number of clusters since mixing
coefficients of unwanted components approaches zero [44]. The

process of CONCOCT is summarized below.

The CONCOCT clustering method

Input : The feature profile X®™

1 : Initialize the number of potential clusters

2 . Conduct variational Bayesian approximation with
mixture Gaussian model that automatically
determines the number of clusters

Output : Inferred clusters of contigs

2.1.4. COCACOLA

The feature matrix of the coverage and composition profile for
COCACOLA 1s obtained using the normalized coverage matrix P and
the normalized composition matrix Q used by CONCOCT. The

feature profile X(® of COCACOLA is X® =[P Q].
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The coverage and composition matrix W of size K x (S + 136),
where K is the inferred number of species and S is the number of
samples, is used. The k** row of W, denoted by wy, indicates the
coverage and composition profile of the inferred species k. Let Hy;
be the indicator function such that Hy; =1 if contig i belongs to
species k, and Hy; = 0 otherwise. Then for each i=1,2,...,N the

following equation holds.
xl@ = Hyjw; + Hyjwy + -+ + Hgjwy
The equation can be represented by a matrix form,
XY =WTxH, W=0, H,;=1 or 0, XX_, H; =1

W and H are obtained by minimizing

arg min I| X®)T = WTH I H; =1 or 0, Xiey Hey =1,

where |I‘llg is Frobenius norm. Note that wy, the k* row of W,

indicates the centroid of cluster k. Minimizing is then relaxed to

arg min || XO)T-WTHIZ, WH=0
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which allows soft clustering where multiple species can be
assigned to each contig. To cope with this, Non—negative Matrix
Factorization [45] is used to impose sparsity to facilitate hard

clustering and is as follows :

N

i (2N\T _ T 2 12

arg min | XO)T = WTH I3+ )" Il H; 13
i=1

where «a is a parameter for which bigger value indicates stronger
sparsity.

Additional information on read linkage of paired end reads is
required. If any two contigs are linked by paired end reads a high
number of times across multiple samples, it is likely that the contigs
are from a single species. The linkage information can be
summarized in a network regularization item Ry [46]. The

minimization is now subject to

N
arg min | (X®)T = WTH I + az I Hej 12 + BR,,
i=1

where bigger B means the stronger belief in the paired end read

linkage information.

COCACOLA opt alternating non—negative least squares (ANLS)
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[45] for solving the above equation. The algorithm starts by
initializing W and H by k—means clustering with L; distance. For
each k=1,2,..,K, wy is initialized as the k—means centroid of X®.
H is then initialized to be the indicator matrix for this clustering.

After the initialization, W and H are updated separately while
having the other value fixed. The algorithm iterates until a preset
criterion is met or the iteration exceeds the maximum iteration
number.

After binning contigs by calculating W and H, the post—
processing of combining closely mixed clusters follows. The
separable conductance sep(ki, kj) between cluster k;, and cluster k;
(i=12,..,Kj=12,..,Ki#j), is defined by the number of contigs
that are included both in the sphere of k; and that of k;. The
refinement step is done by merging the clusters with the largest
separable conductance until the separable conductance falls below a
certain threshold, which is set to 1. The process of COCACOLA is

summarized below.
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The COCACOLA clustering method

Input : feature profile X®

1: Initialize W for which each row is the k—means centroid of X
2: Initialize H, the indicator matrix of W

3. Use ANLS to solve for W and H

4. Merge bins using separable conductance

Output : Inferred clusters of contigs

2.1.5. MetaBAT

The algorithm of MetaBAT uses tetranucleotide frequency
distance probability (TDP) and abundance distance probability
(ADP) to probabilistically model distances between contigs. After
modeling TDP and ADP, these distance probabilities are combined
into one. These pairwise composite distances form a matrix, which
in turn is used for binning contigs by modified k—medoid clustering
algorithm.

Tetranucleotide frequency distance probability (TDP) models
the probability of Euclidean distances between two contigs of

different sizes. TDP is approximated by the logistic regression :

1
1 + e_(bi,j+ci,j><Di,j),

P(D;j bij cij) =
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where b;j, ¢;; are estimated parameters for logistic regression, and
Dj; is the distance between contig i and contig j,.

For the base coverage, we use normal distribution as
empirically demonstrated by the article. For contig i and contig j,
assume base coverage follows N(u;,0?) for contig i and N(uj,ajz)
for contig j. Then the area not shared by the two normal
distributions are computed numerically using cumulative density
functions. Then geometric mean of those across samples is
obtained, which is defined as ADP of contig i and contig j.

For binning process, k—medoid clustering algorithm [47] is
used. First, a seed contig is selected for initial medoid. Then with
the calculated cut—off distance, contigs within the cut—off distance
are collected. Next we find a new medoid among the union of the
seed contig and the collected contigs. Collecting and seeking a new
medoid steps are iterated until medoid remains unchanged. Then
another contig is selected for the seed of the next cluster. Then the
previous steps are iterated in this manner. The algorithm keeps
large bins and removes other bins and free the residing contigs.
Lastly, if the number of samples is bigger than 10, free contigs are
recruited into existing clusters using abundance correlation [36].

The algorithm of MetaBAT is summarized below. Since it
iteratively group contigs for each cluster at a time, the number of

clusters K need not be predefined.
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Note that removing clusters of small sizes may result in a
fraction of contigs unbinned. The process of MetaBAT is

summarized below.

The MetaBAT clustering method

Input : The coverage profile Y and the composition profile Z

1: Compute ADP and TDP

2. Compute composite distance matrix

3: Conduct k—medoid algorithm

4: If the sample size =10, free contigs are recruited into existing
clusters using abundance correlation

Output : Inferred clusters of contigs

2.1.6. MaxBin2

MaxBin2 applies expectation maximization (EM) algorithm to
bin contigs. It models the probability a sequence i belongs to a

speciles t as

S
PG €D =Py €| [Pnliet | cov(ty),
s=1

where Py:(i € t) is defined as the probability density function of

the tetranucleotide distance between i and t, P.,,(i €t | cov(ty)) is
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defined as the probability density function of the coverage distance
between i and t given cov(ts), cov(ts) is the coverage of genome t
in sample s (s =1,2,..,S), and S is the number of samples.

Euclidean distance is used for Py. That is, the distance
between i and t is dist(i,t) =l z; — w¢ ll;,, where z; and w; is the
tetramer frequency vector of contig i and genome t respectively.
The distance probability function P, is the probability that i

belongs to t modeled as

N(dist(it)] Hintraraizntra)
N(dist(i,0)|kintra:fra) +N(dist (0 | Kinter Ofnter)

Paist (€ L) =

where N is the normal distribution, pinsq and Ojpeea 1S the
estimated mean and standard deviation of distances within a
species, and Ujpter and ojprer are the estimated mean and standard
deviation of distances between distinct species.

Poisson distribution is used for distribution of coverage, so the

coverage probability function Py, is defined as
P.,»,(i € tlcov(t)) = Poisson(cov(is)|cov(ts)),
where cov(is) is the coverage of sequence i in sample s, and

cov(ts) is the coverage of genome t in sample s.

Binning contigs is done by EM algorithm. First, the total number
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of genomes K is estimated as the median number of 107 single
copy marker genes [48]. Composition and coverages for each
cluster in each sample is also initialized.

Then expectation step follows by calculating the expected
probability that the it*contig (i=1,2,..,N) belongs to the kfcluster
(k=1,2,...,K). In the maximization step, the composition and
coverage for each cluster is recalculated. After EM finishes, each
conig is binned into the cluster with the highest probability defined
in the expectation step with a threshold probability.

If more than one genomes are assigned to a single cluster,
identified by computing the median number of marker genes, the
cluster containing multiple genomes are subject again to EM
algorithm. The process iterates until each cluster is assigned a

single genome. The process of MaxBinZ2 is summarized below.

The MaxBin2 clustering method

Input: The coverage profile Y and the composition profile Z

1: Estimate the number of clusters K

2: Initialize the coverage and composition for each cluster

3: Perform EM for each cluster to bin contigs

4: If a cluster including multiple species are detected, it is subject
again to EM algorithm until no such bin is detected.

Output : Inferred clusters of contigs
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2.1.7. GroopM

GroopM 1s processed in five stages: parse, core, refine, recruit,
and extract. GroopM uses coverage, composition, and contig length
information for binning contigs. Note that in this study, we
consecutively follow parse, core, and recruit stages. The following
i1s the description of the parse and the core stages, which are main
stages of GroopM.

In the first stage, parse, the coverage and composition profiles
are calculated. For the coverage profile, truncated mean coverage
(TMC) for each contig in each sample is calculated. TMC for each
of the contig in each sample is defined as the expectation of the
base position depths that fall within one standard deviation from the
mean coverage.

For the composition profile, the tetranucleotide frequency
vector is calculated. Then the dimension of the vector is reduced
using PCA, maintaining 80% of the variance in the data.

Empirically, the TMC vectors of all contigs are plotted onto the
TMC space, where each axis indicates each sample and each
coordinate along each axis indicates the value of coverage in the
corresponding sample. It is observed that the positioned contigs
formed spears. Therefore, TMC profile and TMC space are

transformed so that positioned contigs formed spherical clusters
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rather than spears with the size of the dimension reduced to three.

Next, the core stage aims to construct preliminary bins. It
consists mainly of two—way clustering, Hough partitioning, and
recruiting.

In two—way clustering, coverage space and composition space
are considered separately. The process iteratively selects a contig
in the densest part of either space, and contigs closely neighboring
to the selected contig in the other space is moved closer together.
Then Hough transform [49] is applied to partition contigs into bins.

Then unbinned contigs are clustered by computing the cutoff
regieons for each preliminary bin. Then the nearest neighbor
algorithm is performed to merge clusters. Lastly, a self—organizing
map (SOM) [50] is used to refine bins, which reassigns contigs to
bins in such a way that each area masked by a SOM has a one to
one correspondence to each bin. The process of GroopM parse and

core steps is summarized below.
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The GroopM parse and core method

Input : The set of N contigs, the sorted bam files
1: The parse stage
Compute TMC profile and PCA—applied composition profile
2: The core stage
2.1. Perform two—way clustering
2.2. Perform Hough partitioning and output preliminary bins
2.3. Recruit contigs not clustered
2.4. Perform nearest neighbor method to recruit and merge
2.5. Refine clusters using a self —organizing map

Output : Preliminary binned contigs

2.1.8. BMC3C

In addition to the coverage and composition profiles, BMC3C

utilizes the gene codon usage information to bin contigs. BMC3C

employs ensemble k—means algorithm to increase the robustness of

the result.

There are 64 codons, 61 of which encode amino acids and 3 of

which encode the stop codons. There are 20 amino acids. Since

each codon encodes an amino acid, this implies that more than one

codons encode the same amino acid for some amino acids. This

redundancy in codons is called genetic degeneracy.
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Given a protein coding DNA and a specific amino acid in that
DNA, it was observed that there is a bias in the frequency of codon
usage in encoding the amino acid. That is, among the codons that
encode the same amino acid, some codons are used more to encode
the amino acid than do the others.

BMC3C thus uses information of the gene codon usage for
clustering. Five independent statistics [51] that measure the value
of gene codon usage were calculated. For a particular gene, define
TC2 as the set of degenerate sites with two candidates T or C
where degenerate sites are particular bases in the gene where
multiple varieties of nucleotides can be positioned not violating the
kind of amino acid it encodes. Define C2 as the set of degenerate
sites with base C in TC2. Likewise, define AG2 as the set of
degenerate sites with two candidates A or G and G2 as the set of
degenerate sites with G in AG2. N4 is defined as the set of
degenerate sites with all four possibilities A, C, G, or T. C4,G4, and
A4 are defined as the set of degenerate sites with C, G, and A in N4

respectively. The five statistics are given as follows :

Ic2] |62

PG2 _ Ical
|TC2|’ T |AG2|’

|G4| |A4|
=— = PA4 =
IN4|

PC4 =—, =—
N4 N4

PC2 = PG4

PC2 is the proportion of C in TC2, PG2 is the proportion of G in

AG2, PC4 is the proportion of C in N4, PG4 is the proportion of G in
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N4, and PA4 is the proportion of A in N4.

These statistics are weighted averaged over all genes in each
contig, where weights are given proportional to the length of the
gene in the contig. The codon usage vector u; (i=12,..,N) of

contig i can be expressed as follows :

u; = Z—rglliil qu;:’,
Teti Le

where né is the number of genes in contig i, Ly is the length of
gene g (g=1,2, ...,n;) in contig i, and {é =
[PC24,PG24,PC44, PG4y, PA4,] where each element is the gene codon
usage measure of gene g. Each codon vector are concatenated
row—wise to form the codon usage matrix U of size N X 5.

Composition matrix Q and coverage matrix P defined
previously are used. The feature matrix of BMC3C is X(® =[Q P U]
of size Nx (136 + S+ 5), where N is the number of contigs and S is
the number of samples.

BMC3C proceeds as follows. First, the number of clusters K* is
inferred. K—means [52] is performed and the resulting clusters are
iteratively merged using separable conductance sep(k;, kj) between
cluster k; and cluster k; until the preset threshold is met. The

remaining number of clusters is set to K*.
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Next, the k—means clustering follows with initial number of
clusters set as K=10 x K* with K< N. The k—means algorithm

aims to group the N contigs into K clusters by solving

K

arg minz Z I xi(G) — W1(<6) 112

k=1 x;€Fy

(6)

i

is the feature vector of contig i, wl((e) is the centroid

where x
of cluster k, and Fy is the set of feature vectors of cluster k. After
k—means algorithm is performed, define an indicator matrix M of
size N x K, where M;; =1 if contig i is in cluster j, and M;; =0
otherwise.

K—means algorithm has two downsides. One is that empirical
observation tells different clusters are highly close together,
making a single run of k—means unreliable. Also, the initial
centroids affect the result of the clustering significantly. Therefore,
in the next step, ensemble k—means is applied. That is, clustering

with k—means is performed m times with K fixed. The co—

association matrix M’ € RK*K is then defined as

M, — {‘nzl MerT
m

where M, is the indicator matrix of size N X K obtained from
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the r*® run of k—means. Note that (MrMI)i]. is 1 if the contig i and

the contig j both comes from the same cluster and O otherwise.
Therefore M’ is a weighted adjacency matrix of a graph where each
node corresponds to each contig.

Finally, the weighted graph is partitioned into subgraphs, where
each subgraph corresponds to a cluster. This is done by normalized

cut (Ncut) [53, 54]. The process of BMC3C is summarized below.

The BMC3C clustering method

Input : The feature matrix [Q P B]

1: Infer the number of potential clusters K*

2: Perform k—means m times with fixed K= 10 x K*

3t Calculate co—association matrix M’

4: Partition graph with adjacency matrix M’ using NCut

Output : Inferred clusters of contigs

2.1.9. MyCC

MyCC uses the marker gene information besides the coverage
and composition profiles. MyCC uses the marker gene information
when correcting the clustered bins.

The procedure of MyCC is as follows. MyCC first searches for
the protein coding genes in the contigs by Prodigal [55]. Then

FetchMG [56, 57] is performed to identify the 40 single copy marker
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genes of prokaryotes in the contigs. UCLUST [58] is also used to
find species—level marker genes.

Next, the composition profile is calculated for each contig. In
addition to the tetranucleotide frequency, pentanucleotide frequency
and hexanucleotide frequency of palindromic sequences are also
calculated. Pseudo counts are added to the computed composition
profile, which is then normalized and centered log—ratio (CLR)
[59,60] transformed. Coverage profile can also be added optionally
before CLR.

The feature profile is then plotted on a two—dimensional space
with Barnes—Hut—SNE [61]. Then the contigs are clustered using
affinity propagation (AP) [62]. AP is performed based on the
measure of similarity between two sequences defined as negative
squared Eucledian distance between the two. AP is performed in two
steps. First, the clustering is performed for long contigs. Then short
contigs are added to the clusters generated.

The clusters created are corrected using the marker genes
previously found. The clusters containing duplicates of a marker gene
is split using spectral clustering [63]. The clusters close together
are merged if the marker genes contained in a cluster are
complementary to that of the other cluster. The process of MyCC is

summarized below.
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The MyCC clustering method

Input : The marker genes found, the feature profile

1: Normalize the feature profile by CLR transformation

2. Reduce the dimensionality of the feature profile by
Farnes—Hut—SNE

3: Perform AP to cluster contigs

4: Correct clusters using the marker genes previously identified

Output : Inferred clusters of contigs

2.1.10. GATTACA

GATTACA is a memory and time efficient method that uses kmer
indexing to estimate the coverage profile. GATTACA software
includes commands for indexing k—mers, clustering contigs, and
sample comparing.

To estimate coverage profile, a minimal perfect hash function
(MPHF) [64] is used to index the k—mer counts for each contig in
each sample with a small space of storage. Given a set of N contigs,
for each sample, the set of all k—mers from the sample are identified
excluding those with the count one to account for the possibility of
sequencing error. Then each k—mer is indexed with a MPHF h
where each k—mer 1s mapped to a single integer ranging
consecutively from O to n—1. Then each index is mapped to the k—

mer count it corresponds to. A Bloom filter is additionally used to
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store all k—mers to map the index backwards to the corresponding
k—mer.

Then for each contig in each sample, the median counts of k—
mers in the contig is calculated, which is used for the coverage profile.
GATTACA also uses composition profile obtained by the normalizing
method mentioned in section 2.1.3.

Similar to CONCOCT, GATTACA also uses the a Gaussian
mixture model to construct the likelihood function. With a Dirichlet
prior for Bayesian inference, GATTACA opt the variational Bayes
Expectation Maximization (VBEM) to maximize the marginal log—

likelihood. The process of GATTACA is summarized below.

The GATTACA clustering algorithm

Input : The coverage generated by k—mer counting,
the normalized composition profile P
1: Estimate the coverage of each contig in each sample
using indexing of kmer counts
2. Generate the feature profile using the coverage generated
in the previous step and the composition profile given
3: Cluster contigs using Variational Bayes EM method for Gaussian
mixture model

Output : Inferred clusters of contigs
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2.1.11. Evaluation measures

Evaluation measures used to measure the performance of the
above five methods are recall, precision, normalized mutual
information, Rand index (RI), and adjusted Rand index (ARI), which
are calculated by the script in the CONCOCT package [14]. Since
we use simulated datasets, we can identify which genome a contig
i1s derived from by finding the genome that the majority of the reads
mapped to the contig is derived from. By assigning each contig to
the genome from which it originates, we can construct a matrix A
of size KX T where K is the number of clusters, T is the number of
genomes, and the (i,j)—entry of A, n;;, is the number of contigs of
the cluster i and the assigned genome class j.

From A, we measure how far the clustering is from the
grouping by genomes. The recall is the proportion of contigs
grouped adequately based on each genome class. For each genome
class t (t=1,2,..,T), a cluster k; (ki € {1,2,...,K}), which has the
maximum number of contigs from the genome class s, is identified.

That is, k; = arg,e{rlnzaxK} nit, which indicates the corresponding
i€{1,2,...,

cluster of the genome class t is the cluster k. The recall is then

calculated by

T
_, max n; T
=1 ie(1,2,..K ©t D=1 Nt
Recall = =
N N
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which gives the fraction of the contigs correctly assigned to the
cluster inferred from each of the genome class.

The precision identifies for cluster k,(k=1,2,...,K) a genome
class ty, (tx € {1,2,...,T}) which has the maximum number of contigs

from cluster k. That is, s; =arg _max_ n;, assuming that ty is the
je{1,2,..T}

genome class that cluster k corresponds to. Precision is then

calculated by

K
_, max Ny, K
Z1“1]'6{1,2,...,5} ki Yk=1Tosyc

N N

Precision =

which gives the fraction of the contigs correctly assigned to the
genome class for each cluster.
The normalized mutual information, NMI, between the set of all

clusters K and the set of all genome classes T is defined as

2« MI(K,T)

NMI(K, G) = m;

where MI(K,T) is the mutual information of K and T, H(K) is the
entropy of K, and H(T) is the entropy of T.
The rand index, RI 1s the proportion all the correctly identified

pairs of contigs out of all pairs of the contigs. That is,
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_ n(TN) +n(TP) _ n(TN) +n(TP)
" n(TN) + n(TP) + n(FN) + n(FP) &)

RI

The number of true positive cases, which is the number of cases a
pair of contigs from the same cluster originate from the same

genome class, denoted n(TP), is

n(TP) = Z Z (nz”)
5

If a pair of contigs from the same bin in fact originate from two
different genome classes, it is called a false positive case. The

number of false positive cases, denoted n(FP) is

_ Tli'. _ Tli']‘

n(FP)_Z(z) 22(2)
i i

where n;.= Z] nij.

If a pair of the contigs from two different clusters originate from a

single genome class, it is called a false negative case (FN). The

number of FN cases, denoted n(FN), is

=Y ()20 (%)

j

¥ = 1 |
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where n.; = ¥;n;.
If a pair of contigs from different clusters originate from different
genome classes, it is called a true negative (TN) case. The number

of TN cases, denoted n(TN) is

= () 305050

The adjusted Rand index, ARI, accounts for the random chance of RI

getting a nonzero value.

M)
o
) + 5y - B

%i%(Y) -

ARI =

Contig lengths are taken into account so that the long contigs
assigned correctly has more weights than the shorter contigs. This
is done by setting each contig as a number of replicated data points
where the number of replicates equals the length of the contig

considered [14].
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2.2. Results

We ran the eight algorithms on the 13 in silico datasets consisting
of 100 species with no strain variation. We used the CONCOCT
software version 0.4.2, the python—version of COCACOLA, the
MetaBAT?Z2 software version 2.12.1, the MaxBin software version
2.2.4, the GroopM version 0.3.4, the BMC3C software downloaded
November 10, 2018, the MyCC software last modified in March 1,
2017, and the GATTACA software updated November 30, 2017.

For each method, we used one thread of the CPU to compare the
elapsed time and the peak memory usage across algorithms. The
elapsed time will be shortened considerably if multiple threads are
used. We timed commands concoct for CONCOCT, cocacola.py for
COCACOLA, metabat2 for MetaBAT, run_MaxBin.pl for MaxBinZ2.0,
MyCC.py for MyCC, and gattaca.py cluster for GATTACA.

For GroopM, we summed up the time spent on groopm parse,
core, recruit, and extract. For BMC3C, the time spent on prodigal,
codon_usage.py, and bmc3c.m are summed up.

Note that the value of recall and precision are strongly affected
by the number of clusters inferred. The recall value tends to be low
when the number of clusters is low relative to the number of species,
and the precision value tends to be high when the number of clusters
is high. Therefore, when comparing the performance of different

tools for binning, we mainly focus on the value of ARI, which
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combines both the recall and precision.
2.2.1. Results of the data with no strain variation

Species_20S_2.5R contains 20 samples each with the number of
reads 2,500,000. The time spent on the assembling into contigs using
MEGAHIT took 49 minutes and 30 seconds and the peak memory
usage was 6.3GB. The number of contigs after cutting up the long
contigs with the threshold 10,000bp is 131,360. Then the contig
binning is done for only the contigs with the minimum contig length
1,500Kbp and the count is 42,054.

The elapsed time, the peak memory usage, the number of contigs
binned for each algorithm, the numbers of the inferred clusters, and
the performance scores are summarized in Table A.1 in Appendix.
The number of clusters inferred by MaxBin2, 93, as shown in Table
A.1, was the closest to the true value 100 whereas the number of
clusters inferred by BMC3C is the farmost with 66.

Figure 1 shows the percentage of the base pairs assigned against
each of the performance measure. The base pair assigned indicates
the proportion of base pairs assigned into bins out of all base pairs in
the set of all contigs.

As shown in Figure 1, the proportion of the assigned base pairs
is between 0.8 and 0.9. This is because we only used contigs with
minimum length 1,500bp as input.

We can see that the performance of CONCOCT is the highest
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across all the performance metrics except for the recall value.

Especially, the ARI value of CONCOCT is clearly the highest. The

performances of Maxbin2 and MyCC are considerably high. The

performances of the rest of the methods are relatively low, where

GroopM has the lowest overall performance.
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Figure 1. Performance scores for Species_20S_2.5R
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We can see that the performance of CONCOCT is the highest

across all the performance metrics except for the recall value.

Especially, the ARI value of CONCOCT is clearly the highest. The

performances of MaxbinZ2 and MyCC are considerably high. The

performances of the rest of the methods are relatively low, where
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GroopM has the lowest overall performance.

Species_20S_5.0R The second dataset consists of 20 samples

each with the number of reads 5,000,000. The time spent on

MEGAHIT is 3 hours and 37 minutes and the peak memory usage

was 12.5GB. The number of the assembled contigs after cutting up

the long contigs is 52,888, and 37,936 contigs with the length bigger

than or equal to 1,500bp are used for each of the clustering method.
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Figure 2. Performance scores for Species_20S_5.0R
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As shown in Figure 2, the proportion of the assigned base pairs

is between 0.9 and 1. The performances of MaxBin2, MyCC, and

CONCOCT are relatively high, especially in precision, NMI, RI, and

ARI. The performances of COCACOLA, MetaBAT and GATTACA
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follows. The performances of BMC3C and GroopM are relatively low,
though the recall value for BMC3C is the highest.

Species_20S_7.5R The third dataset consists of 20 samples each
with the number of reads 7,500,000. The time spent on MEGAHIT is
1 hour 51 minutes and the peak memory usage is 18.7GB. The
number of the assembled contigs after cutting up the long contigs is

39,748 and 33,788 contigs with the length bigger than equal to
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Figure 3. Performance scores for Species_20S_7.5R

1,500bp are used for each of the clustering method.
As shown in Figure 2, the proportion of the assigned base pairs
1s between 0.95 and 1. MaxBin2, MyCC, COCACOLA, MetaBAT, and

CONCOCT performed relatively well with the ARI values bigger than
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0.75, the NMI values bigger than 0.92, and the precision values bigger

than 0.83. The performances of GATTACA, GroopM, and BMC3C are

relatively low.

Species_20S_10.0R The fourth dataset consists of 20 samples each

with the number of reads 10,000,000. The time spent on MEGAHIT

1s 2 hours and 28 minutes and the peak memory usage is 25.0GB.

The number of the assembled contigs after cutting up the

Proportion of assigned base pairs

Proportion of assigned base pairs

Figure 4. Performance scores for Species_20S_10.0R
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long contigs is 37,939 and 32,254 contigs with the length bigger than

or equal to 1,500bp are used for each of the clustering method.

As shown in Figure 4, the proportion of the assigned base pairs

1s between 0.95 and 1. MetaBAT outperformed other tools across all
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metrics except for the recall value. MaxBin2, COCACOLA, MyCC, and
CONCOCT performed relatively well. The performances of
GATTACA, GroopM, and BMC3C are relatively low.

The number of inferred clusters closest to 100 is 103 for both
MetaBAT and MaxBin2, whereas the number of inferred clusters
farthest to 100 is 63 for BMC3C.

Species_20S_12.5R The fifth dataset consists of 20 samples each
with the number of reads 12,500,000. The time spent on MEGAHIT
1s 3 hours and 7 minutes and the peak memory used is 31.2GB. The
number of the assembled contigs after cutting up the long contigs is
38,714 and 32,417 contigs with the length bigger than or equal to
1,500bp are used for each of the clustering method.

As shown in Figure 5, the proportion of the assigned base pairs
is between 0.95 and 1. Similar with the fourth dataset, MetaBAT
performs the best in all but the recall. MaxBin2, COCACOLA, and
MyCC, also performed well. The performance of CONCOCT ranks
next. The performances of GroopM, BMC3C, and GATTACA were

relatively low.
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Species_40S_12.5R The sixth dataset consists of 40 samples

each with the number of reads 12,500,000. The time spent on

MEGAHIT is 5 hours 43 minutes and the peak memory usage is

62.3GB. The number of the assembled contigs after cutting up the

long contigs is 42,646 and 32,530 contigs with the length bigger than

or equal to 1,500bp are used for each of the clustering method.

As shown in Figure 6, the proportion of the assigned base pairs

is between 0.95 and 1. COCACOLA, MetaBAT, MaxBinZ2, and MyCC

performed the best, with the precision value, the NMI value, and the

RI wvalue for each of the four method bigger than 0.94. The
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performances of CONCOCT and BMC3C rank next. The

performances of GroopM and GATTACA are the lowest.
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Figure 6. Performance scores for Species_40S_12.5R

Species_60S_2.5R The seventh dataset consists of 60 samples
each with the number of reads 2,500,000. The time spent on
MEGAHIT is 2 hours and 56 seconds and the peak memory used is
18.8GB. The number of the assembled contigs after cutting up the
long contigs is 38,335 and 32,793 contigs with the length bigger than
or equal to 1,500bp are used for each of the clustering method.

As shown in Figure 7, the proportion of the assigned base pairs
is between 0.9 and 1. The proportion of the assigned base pairs for

MetaBAT is the lowest. MyCC outperformed the other tools in all
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measures but the recall. The performance of MaxBinZ2 ranked next,
taking second places in all but the recall value. The performance of
COCACOLA took the third places in all but the recall value. The

performances of MetaBAT, CONCOCT, GroopM, BMC3C, GATTACA

are low.
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Figure 7. Performance scores for Species_60S_2.5R

Species_60S_5.0R The eighth dataset consists of 60 samples
each with the number of reads 5,000,000. The time spent on
MEGAHIT is 3 hours and 44 minutes and the peak memory used is
37.5GB. The number of the assembled contigs after cutting up the
long contigs is 39,819 and 32,503 contigs with the length bigger than

or equal to 1,500bp are used for each of the clustering method.
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Figure 8. Performance scores for Species_60S_5.0R

As shown in Figure 8, the proportion of the assigned base pairs
is between 0.9 and 1. The proportion of the assigned base pairs for
GroopM and MetaBAT are the lowest. MyCC, MaxBin2, and
COCACOLA are the top three methods with the highest performances
in all measures but the recall values. The performance of MetaBAT
follows next. The performances of GroopM, CONCOCT, BMC3C, and
GATTACA are relatively low.

Species_60S_7.5R The ninth dataset consists of 60 samples each
with the number of reads 7,500,000. The time spent on MEGAHIT is
9 hours and 8 minutes and the peak memory usage is 56.2GB. The

number of the assembled contigs after cutting up the long contigs is
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43,219 and 32,531 contigs with the length bigger than or equal to

1,500bp are used for each of the clustering method.
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Figure 9. Performance scores for Species_60S_7.5R
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As shown in Figure 9, the proportion of the assigned base pairs

i1s between 0.95 and 1. MaxBin2, COCACOLA, MetaBAT, and MyCC

are the four methods with the highest performance. Each of the four

method has the precision value bigger than 0.94, the NMI value bigger

than 0.96, the RI value bigger than 0.99, and the ARI value bigger

than 0.89. The performances of CONCOCT, BMC3C GroopM, and

GATTACA are relatively low.

Species_60S_10.0R The tenth dataset consists of 60 samples

each with the number of reads 10,000,000. The time spent on
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MEGAHIT is 7 hours and 29 minutes and the peak memory usage is

74 .9GB. The number of the assembled contigs after cutting up the

contigs is 46083 and 32,532 contigs with the length bigger than equal

to 1500 are used for each of the clustering method.
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Figure 10. Performance scores for Species_60S_10.0R

1.00

The proportion of the assigned base pairs is between 0.95 and 1.

Similar to Species_60S_7.5R, MaxBin2, MetaBAT, COCACOLA, and

MyCC are the top four with high performances. The performances of

CONCOCT and BMC3C follow next. The performances of GroopM and

GATTACA are the lowest.

Species_60S_12.5R The eleventh dataset consists of 60 samples

each with the number of reads 12,500,000. The time spent on
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MEGAHIT is 9 hours and 26 minutes and the peak memory usage is
93.6GB. The number of assembled contigs after cutting up the long
contigs 1s 48437 and 32,543 contigs with the length bigger than or

equal to 1,500bp are used for each of the clustering method.
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Figure 11. Performance scores for Species_60S_12.5R
As shown in Figure 11, the proportion of the assigned base pairs
is between 0.9 and 1. The performance of MetaBAT is the highest
for all but the recall value. The performances of MaxBin2,
COCACOLA, and MyCC are also high. The performances of GroopM,
BMC3C, CONCOCT, and GATTACA are relatively low.
Species_80S_12.5R The twelfth dataset consists of 80 samples

each with the number of reads 12,500,000. The time spent on
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MEGAHIT is 15 hours and 8 minutes and the peak memory used is
124.5GB. The number of the assembled contigs after cutting up the
long contigs is 100,510 and 32,565 contigs with the length bigger

than or equal to 1,500bp are used for each of the clustering method.

1.0-

g * * - *ix @
g A A A
(o]
% 009-
o
o
@
c
(=]
‘w 0.8-
w
(]
-
c
5
£ o7-
<]
Q
<
& 0.6
0.25 0.50 0.75 1.00 0.25 0.50 075 1.00 0.25 0.50 0.75 1.00
Recall Precision NMI

10-
2 *B, * X -
© 4 A
Q.
P Tool
w
s 0.9- % CONCOCT
3 + COCACOLA
5 A MetaBAT
w 08-
& ® MaxBin2
w—
° GroopM
5
g 0.7- BMC3C
& % Mycc
o 054 GATTACA

0.25 0.50 0.75 1.00 0.25 0.50 075 1.00
RI ARI

Figure 12. Performance scores for Species_80S_12.5R

As shown in Figure 12, The proportion of the assigned base pairs
is between 0.95 and 1. The top three methods that performed well
are MaxBin2, MetaBAT, and COCACOLA each with the recall value
bigger than 0.98, the precision value bigger than or equal to 0.96, the
NMI value bigger than or equal to 0.98, the RI value bigger than or
equal to 0.998, and the ARI value bigger than or equal to 0.95, which

are all close to 1. The performances of BMC3C, GroopM, and
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CONCOCT follow next with relatively low precision and the ARI

values. The performances of MyCC and GATTACA are the lowest.

Note that the performance of MyCC dropped in all measures but the

recall value.

Species_100S_12.5R The thirteenth dataset consists of 100

samples each with the number of reads 12,500,000. The time spent

on MEGAHIT is 16 hours and 14 minutes and the peak memory used

1s 126.0KB. The number of the assembled contigs after cutting up

the long contigs is 100,332 and 32,643 contigs with the length bigger

than or equal to 1,500bp are used for each of the clustering method.

Proportion of assigned base pairs

Proportion of assigned base pairs

1.0-

0.9-

0.8-

0.7-

06-

0.9-

0.8-

0.7-

06-

050 075

Precision

050 075 100 0.25

Recall

0.25

050 075  1.00 025 050 075

RI ARI

025

-
A
1.00 025 050 075
NMI
-
A
Tool
% CONCOCT
+ COCACOLA
A MetaBAT
® MaxBin2
GroopM
BMC3C
% MycC

GATTACA
1.00

Figure 13. Performance scores for Species_100S_12.5R
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As shown in Figure 13, The proportion of the assigned base pairs
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is between 0.95 and 1. The top four methods that performed well are
MetaBAT, MaxBin2, MyCC, and COCACOLA. The performances of

GroopM, BMC3C, GroopM and CONCOCT are relatively low.

2.2.2. Results of the data with multiple strain variations

Next, we ran the binning tools on the simulated dataset of 100
species with multiple strains The following provides the results for
each of the datsets.

Strains_20S_2.5R The first dataset with multiple strains consists
of 20 samples each with the number of reads 2,500,000. The time
spent on MEGAHIT is 1 hour and 51 minutes and the peak memory
used is 94.5GB. The number of the assembled contigs after the
cutting up process is 265,725 and 47,741 contigs with the length
bigger than or equal to 1500bp are used for each of the clustering
method.

As shown in Figure 14, the proportion of the assigned base pairs
is between 0.6 and 0.65. The proportion is low compared to the
proportion of the assigned base pairs for the datasets with no strain
variation. From Figure 14, it is observed that the performance of
CONCOCT is outstanding. The performances of GATTACA and
MaxBin2 follow the performance of CONCOCT. The performances of

COCACOLA, MetaBAT, GroopM, and MyCC are relatively low.
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Strains_20S_5.0R The second dataset consists of 20 samples

each with the number of reads 5,000,000. The time spent on

MEGAHIT is 3 hours and 37 minutes and the peak memory used is

12.5GB. The number of the assembled contigs after cutting up the

contigs is 295,937 and 57,488 contigs with the length bigger than or

equal to 1,500bp are used for each of the clustering method.

As shown in Figure 14, the proportion of the assigned base pairs

is between 0.65 and 0.7. The performance of CONCOCT is the

highest overall. The performances of MaxBin2 and GATTACA follow.

The overall
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GroopM, and MyCC are the lowest.
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Figure 15. Performance scores for Strains_20S_5.0R
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Strains_20S_7.5R The third dataset consists of 20 samples each

with the number of reads 7,500,000. The time spent on MEGAHIT is

8 hours and 20 minutes and the peak memory used is 18.8GB. The

number of the assembled contigs after the cutting up process is

180,741 and 56,518 contigs with the length bigger than or equal to

1,500bp are used for each of the clustering method.
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Figure 16. Performance scores for Strains_20S_7.5R

As shown in Figure 16, the proportion of the assigned base pairs
is between 0.8 and 0.9. The performances of CONCOCT and BMC3C
are the highest, followed by the performance of MaxBin2. The
performances of COCACOLA, MetaBAT, GATTACA follow. The
performances of GroopM, and MyCC are relatively low, though MyCC
scored high in the recall value.

Strains_20S_10.0R The fourth dataset consists of 20 samples
each with the number of reads 10,000,000. The time spent on
MEGAHIT is 10 hours and 48 minutes and the peak memory used is
25.0GB. The number of the assembled contigs after the cutting up

process is 475,822 and 64,387 contigs with the length bigger than or
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equal to 1,500bp are used for each of the clustering method.
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Figure 17. Performance scores for Strains_20S_10.0R

As shown in Figure 17, the proportion of the assigned base pairs
is between 0.75 and 0.85. The performances of CONCOCT, BMC3C,
MaxBin2, and MetaBAT are the highest, closely followed by the
performances of COCACOLA and GATTACA. The performances of
MyCC and GroopM are the lowest. Note that BMC3C scored the
highest in precision, but scored the lowest in recall.

Strains_20S_12.5R The fifth dataset consists of 20 samples each
with the number of reads 12,500,000. The time spent on MEGAHIT
is 9 hours and 3 minutes and the peak memory used is 31.3GB. The

number of the assembled contigs after the cutting up process is
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252,511 and 60,692 contigs with the length bigger than or equal to

1,500bp are used for each of the clustering method.

Proportion of assigned base pairs
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Figure 18. Performance scores for Strains_20S_12.5R
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As shown in Figure 18, the proportion of the assigned base pairs

is between 0.8 and 0.85. The performances of CONCOCT, MaxBinZ2,

and BMC3C are relatively high. The performances of COCACOLA,

MetaBAT, and GATTACA follow next. The performances of GroopM

and MyCC are the lowest.

Strains_40S_12.5R The sixth dataset consists of 40 samples each

with the number of reads 12,500,000. The memory and time spent

on MEGAHIT is 17 hours and 31 minutes and the peak memory used

1s 62.5GB. The number of the assembled contigs after the cutting up
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process is 406,449 and 68,846 contigs with the length bigger than or

equal to 1,500bp are used for each of the clustering method..

As shown in Figure 19, the proportion of the assigned base pairs

is between 0.8 and 0.85. The performances of MaxBin2, BMC3C, and

MetaBAT are the highest, followed by the performance of CONCOCT.

The performances of COCACOLA and GATTACA follows. The

performances of GroopM and MyCC are the lowest overall.
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Figure 19. Performance scores for Strains_40S_12.5R
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Strains_60S_2.5R The seventh dataset consists of 60 samples

each with the number of reads 2,500,000. The memory and time
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spent on MEGAHIT is 5 hours and 2 minutes and the peak memory

used is 18.7GB. The number of the assembled contigs after the

cutting up process is 454,580 and 62,556 contigs with the length

bigger than or equal to 1,500bp are used for each of the clustering

method.
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Figure 20. Performance scores for Strains_60S_2.5R
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As shown in Figure 20, the proportion of the assigned base pairs

is between 0.75 and 0.85. The performance of MaxBinZ2 is the highest,

followed by the performances of CONCOCT and BMC3C. The

performances of COCACOLA and GATTACA follow next. The

performances of GroopM, MetaBAT and MyCC are the lowest. The

precision value for BMC3C is the highest for BMC3C and the recall
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value for BMC3C is the lowest.

Strains_60S_5.0R The eighth dataset consists of 60 samples each

with the number of reads 5,000,000. The time spent on MEGAHIT is

10 hours and 17 minutes and the peak memory used is 37.5GB. The

number of the assembled contigs after the cutting up process is

533,058 and 56,318 contigs with the length bigger than or equal to

1,500bp are used for each of the clustering method.
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Figure 21. Performance scores for Strains_60S_5.0R
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As shown in Figure 21, the proportion of the assigned base pairs

is between 0.8 and 0.9. The difference in performance across the

binning tools is not big. The ARI scores of MaxBin2, BMC3C,

CONCOCT, and MetaBAT are the highest. The ARI scores of
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COCACOLA, GATTACA. and MyCC follows next. The overall
performance of GroopM is the lowest.

Strains_60S_7.5R The ninth dataset consists of 60 samples each
with the number of reads 7,500,000. The time spent on MEGAHIT is
15 hours and 7 minutes and the peak memory used is 56.3GB. The
number of the assembled contigs after the cutting up process is
672,454 and 58,131 contigs with the length bigger than or equal to

1,500bp are used for each of the clustering method.
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Figure 22. Performance scores for Strains_60S_7.5R
As shown in Figure 22, the proportion of the assigned base pairs
1s between 0.75 and 0.85. The performances of MaxBin2, BMC3C,

CONCOCT, and MetaBAT are the highest, followed by the
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performances of COCACOLA, MyCC, and GATTACA. The
performance of GroopM is the lowest with the lowest scores in all
metrics and has the lowest proportion of the assigned base pairs.
Strains_60S_10.0R The tenth dataset consists of 60 samples each
with the number of reads 10,000,000. The time spent on MEGAHIT
1s 18 hours and 8 minutes and the peak memory used is 74.9GB. The
number of the the assembled contigs after the cutting up process is
754,126 and 69,490 contigs with the length bigger than or equal to

1,500bp are wused for each of the clustering method.
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Figure 23. Performance scores for Strains_60S_10.0R
As shown in Figure 23, the proportion of the assigned base pairs

1s between 0.8 and 0.85. The performances of MaxBinZ2 and BMC3C
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1s high, followed by the performances of MetaBAT, CONCOCT, MyCC,

and COCACOLA. The performance of GroopM is the lowest.

Strains_60S_12.5R The eleventh dataset consists of 60 samples

each with the number of reads 12,500,000. The time spent on

MEGAHIT is 23 hours and 35 minutes and the peak memory used is

93.7GB. The number of the assembled contigs after the cutting up

process is 889,500 and 68,181 contigs with the length bigger than or

equal to 1,500bp are used for each of the clustering method.
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Figure 24. Performance scores for Strains_60S_12.5R
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As shown in Figure 24, the proportion of the assigned base pairs

is between 0.8 and 0.9. The performances of MaxBin2, CONCOCT,

and BMC3C are relatively high, which are followed by the
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performances of MetaBAT, GATTACA, and COCACOLA. The

performances of GroopM and MyCC is the lowest. The recall value

for MyCC is the highest whereas its RI and ARI values are the lowest.

Strains_80S_12.5R The twelfth dataset consists of 80 samples

each with the number of reads 12,500,000. The memory and time

spent on MEGAHIT is 27 hours and 12 minutes and the peak memory

used is 124.6GB. The number of the assembled contigs after the

cutting up process is 1,235,916 and 62,785 contigs with the length

bigger than or equal to 1,500bp are used for each of the clustering
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Figure 25. Performance scores for Strains_80S_12.5R

1.00

As shown in Figure 25, the proportion of the assigned base pairs
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is between 0.8 and 0.85. The performances of MaxBin2, MyCC, and

MetaBAT are high. The performance of CONCOCT follows. The

performances of COCACOLA and GATTACA follows,

performance of GroopM is the lowest.

and the

Strains_100S_12.5R The thirteenth dataset consists of 100

samples each with the number of reads 12,500,000. The time spent

on MEGAHIT is 18 hours 12 minutes and the peak memory used is

126.0GB. The number of the assembled contigs after the cutting up

process is 651,838 and 59,981 contigs with the length bigger than or

equal to 1,500bp are used for each of the clustering method.
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Proportion of assigned base pairs

Figure 26. Performance scores for Strains_100S_12.5R
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As shown in Figure 26, the proportion of the assigned base pairs
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is between 0.75 and 0.85. The performances of MetaBAT, MaxBin2,
BMC3C, and MyCC are relatively good. Next follows the
performances of CONCOCT and COCACOLA, which is followed by

the performances of GroopM and GATTACA.

2.3. The performance of each method

In addition to the species—level performance, strain—level
performance 1is included in this section. The species—level
performance scores indicate the performance values obtained by
constructing the matrix A described in section 2.1.11, where T, the
number of columns of A, is the number of species, 100. The species—
level performance scores indicate the performance values obtained
by constructing the matrix A described in section 2.1.11, where T is
the number of strains, 210. Note that the recall values tend to be
higher in the strain—level scores than in the species—level scores.
The precision values tend to be lower in the species—level scores
than in the strain—level scores. The precision values tend to be high
if the number of the clusters inferred in high.

Note that the matrix AT can be depicted as a heatmap, which is
a plot that shows which cluster corresponds to which species based
on a color key. The heatmaps of the results of clustering is provided

in Appendix. The high number of contigs both in a cluster and in a
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genome is represented by yellow. We can also identify which of the
contig binning methods performed well by comparing the heatmaps

between different contig binning methods.

2.3.1. The performance of CONCOCT
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Figure 27. The performance of CONCOCT

Figure27 (a) and (b) shows the values of the performance
statistics for CONCOCT against the number of reads in millions
where the number of samples is 20 and 60 respectively. Figure 27
(c) shows the performance scores for CONCOCT against the number
of samples where the number of reads for each sample is 12.5 million.

The green solid lines correspond to the performance scores for the
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datasets with no strain variation, the blue solid lines correspond to
the species—level performance for the datasets with multiple strain
variations, and the blue dashed lines correspond to the strain—level
performance scores for the datasets with multiple strain variations.

For the datasets with no strain variation, the performance of
CONCOCT tends to decreases as the number of samples increases,
as depicted in Figure 27 (c). In addition, by comparing Figure 27 (a)
and Figure 27 (b), it is observed that the patterns of fluctuations of
the two are similar and the performances for the datasets with the
number of samples 60 is lower than the performances for the
datasets with the number of samples 20 given the fixed number of
reads per sample.

By comparing the green solid lines and the blue solid lines in
Figure 27, we can see that the presence of multiple strains in the
datasets does not negatively affect the performance of CONCOCT.
Also by comparing the blue solid lines and the blue dashed lines in
Figure 27, we can observe that when multiple strains are present, the
species—level scores and the strain—level scores are similar except
for the recall and the precision values.

Overall, the performance scores of CONCOCT are relatively high.
The performance scores of CONCOCT decrease as the number of
samples increases. CONCOCT displays high levels of resolution when

the depth of coverage is relatively low. The original paper [14] states
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that the performance of CONCOCT increases as the depth of
coverage increases, which does not accord with our observations.
There is also a possibility that information lost during the process of
Further evaluations of the

PCA may result in lower performance.

performance of CONCOCT is required.

2.3.2. The performance of COCACOLA
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Figure 28. The performance of COCACOLA

Figure 28 (a) and (b) shows the values of the performance
measures for COCACOLA against the number of reads in millions
where the number of samples is 20 and 60 respectively. Figure 28

(c) shows the performance scores for COCACOLA against the
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number of samples where the number of reads for each sample is
12.5 million.

From Figure 28 (a), it is observed that for datasets with the
sample size 20, the performance values tend to increase with the
increase in the number of reads. For the datasets with multiple strain
variations, the overall scores are relatively low.

By comparing the green solid lines and the blue solid lines in
Figure 28, it is observed that the performance for the datasets with
no strain variation is always higher than the performance for the
datasets with multiple strain variations. By comparing blue solid lines
and blue dashed lines in Figure 28, we can observe that for the
datasets with multiple strain variations, the difference between the
species—level scores and the strain—level scores is not big except
for the recall values.

The performance of CONCOCT 1is consistently high for the
datasets with no strain variations if either the number of samples or
the depth of coverage in the dataset is high. For the datasets with

multiple strain variations, the performance is low.
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2.3.3. The performance of MetaBAT
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Figure 29. The performance of MetaBAT

Figure 29 (a) and (b) shows the values of performance measures
for MetaBAT against the number of reads in millions where the
number of samples is 20 and 60 respectively. Figure 29 (c) shows
the performance scores for MetaBAT against the number of samples
when the number of reads for each sample is 12.5 million.

As shown in Figure 29 (a), (b), for the datasets with no strain
variation, the performance values of MetaBAT increase greatly with
the increase in the number of reads. For the datasets with multiple
strain variations, the increase in the performance values is more

clearly demonstrated if the number of samples in the dataset is small.
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As shown in Figure 29 (c), for the datasets with no strain variation,
if the depth of coverage is large, the performance is close to the
maximum value of the scores 1. By comparing the green solid lines
and the blue solid lines in Figure 29, it is observed that the
performance for the datasets with no strain variation is always higher
than the performance for the datasets with multiple strain variations.
By comparing blue solid lines and blue dashed lines in Figure 29, it is
observed that for the datasets with multiple strain variations, the
species—level scores are higher than the strain—level scores
especially for the ARI values.

Overall, the performance of MetaBAT increase greatly with the
increase in the the number of reads per sample when no strain
variation is present. The presence of multiple strains hinders

MetaBAT to perform well.
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2.3.4. The performance of MaxBin2
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Figure 30. The performance of MaxBin2

Figure 30 (a) and (b) shows the values of performance measures
for MaxBin2 against the number of reads in millions where the
number of samples is 20 and 60 respectively. Figure 30 (c) shows
the performance scores for MaxBinZ against the number of samples
when the number of reads for each sample is 12.5 million.

As can be observed from Figure 30, the performance scores of
MaxBinZ2 is relatively consistent across datasets, and the scores tend
to increases as the number of reads per sample or the number of
samples increases. By comparing the green solid lines and the blue

solid lines in Figure 30, we can see that the performance scores for
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the datasets with no strain variation is always higher than the scores
for the datasets with no strain variation. By comparing the blue solid
lines and the blue dashed lines in Figure 30, we can see that for the
datasets with multiple strain variations, the difference between the
species—level scores and the strain—level scores is not big.

Overall, the performance of MaxBin2 is consistently high. The
performance of MaxBinZ2 is higher for the datasets with large number
of samples or high number of reads per sample. The MaxBin?Z2
algorithm is capable of grouping the contigs belonging to the same

species together for datasets with various strains.
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2.3.5. The performance of GroopM
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Figure 31. The performance of GroopM

Figure 31 (a) and (b) shows the values of performance measures
for GroopM against the number of reads in millions where the number
of samples is 20 and 60 respectively. Figure 31 (c) shows the
performance scores for GroopM against the number of samples when
the number of reads for each sample is 12.5 million.

As can be observed by comparing the green solid lines and the
blue solid lines in Figure 31, the performance for the datasets with
no strain variation tends to be higher than the performance for the
datasets with multiple strain variations. By comparing the blue solid

lines and the blue dashed lines in Figure 31, we can see that for the
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datasets with multiple strain variations, the difference between the
species—level scores and the strain—level scores is not big.

The overall performance of GroopM is low. One of the possible
reasons for this is that we did not use further stages of refine steps
provided by the GroopM package. The use of varying minimum length
of the contigs imposed to reduce the memory usage may have also
affected the performance. The minimum contig length in the core
stage was set to 2,500bp for for Strains_20S_10.0R, the the minimum
contig length in the core stage was set to 3,500bp for for
Strains_60S_7.5R, the the minimum contig length in the core stage
was set to 5,000bp for for Strains_60S_10.0R, and the the minimum
contig length in the core stage was set to 2,500bp for for
Strains_60S_12.5R. For the other datasets, the length of the minimum

contig length was set to 1,500bp.
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2.3.6. The performance of BMC3C
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Figure 32. The performance of BMC3C

Figure32 (a) and (b) shows the values of performance measures
for BMC3C against the number of reads in millions where the number
of samples is 20 and 60 respectively. Figure 32 (c) shows the
performance scores for BMC3C against the number of samples where
the number of reads for each sample is 12.5 million.

By comparing the green solid lines and the blue solid lines in
Figure 32, we can see that the score of BMC3C is higher for the
datasets with multiple strain variations than for the datasets with no
strain variation. For the datasets with multiple strain variations, the

species—level scores, depicted by the dashed blue lines in Figure 32,

N 3 A= ot



are lower than the strain—level scores, depicted by the solid blue
lines in Figure 32, except for the precision values. This aspect is not
observed in the other methods, which shows the potential of BMC3C
to cluster contigs into strains.

Overall, BMC3C tends to perform better on the datasets with
multiple strains than on the datasets with no strain variation. BMC3C
tends to overestimates the number of clusters, especially for the
datasets with no strain variation. Since the strain—level performance
values for the datasets with multiple variations is high, BMC3C is an

adequate method for strain—level resolutions.
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2.3.7. The performance of MyCC
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Figure 33. The performance of MyCC

Figure 33 (a) and (b) shows the values of performance measures
for MyCC against the number of reads in millions where the number
of samples is 20 and 60 respectively. Figure 33 (c) shows the
performance scores for MyCC against the number of samples where
the number of reads for each sample is 12.5 million.

The performance of MyCC is relatively high for the datasets with
multiple strain variations, though it has a poor performance for
Species_80S_12.5R. As shown by the green lines in Figure 33 (a),
when the number of samples is 20, for the datasets with no strain

variations, values of performance increase as the depth of coverage
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increases. By comparing the blue solid lines and the blue dashed lines
in Figure 33, we can see that the performance for the datasets with
no strain variation tends to be higher than the performance for the
datasets with multiple strain variations except for the recall values
and for the datasets with 80 samples. By comparing the blue solid
lines and the blue dashed lines in Figure 33, we can see that for the
datasets with multiple strain variations, the difference between the
species—level scores and the strain—level scores is not big except
for the precision values.

Overall, the performance scores of MyCC for the datasets with
no strain variation are high except for Species_80S_12.5R. For
Species_80S_12.5R, by observing the heatmap of MyCC plotted in
Figure A.24 of Appendix, we can observe that a some of the clusters
each contain contigs from various species. Though the other clusters
each corresponds to a species relatively well, clusters containing

multiple species mainly caused the drop in the performance.
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2.3.8. The performance of GATTACA
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Figure 34. The performance of GATTACA

Figure 34 (a) and (b) shows the values of performance measures
for GATTACA against the number of reads in millions where the
number of samples is 20 and 60 respectively. Figure 34 (c) shows
the performance scores for GATTACA against the number of
samples when the number of reads for each sample is 12.5 million.

Since the clustering algorithm for CONCOCT and GATTACA are
similar, the patterns of the performance plotted in Figure 34 are
similar to the patterns of the performance of CONCOCT shown in
Figure 27. By comparing the green solid lines and the blue solid lines

in Figure 34, we can see that the presence of multiple strains in a
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dataset does not seem to negatively affect the performance of
GATTACA. By comparing the blue solid lines and the blue dashed
lines in Figure 34, we can also observe that for the datasets with
multiple strains, the species—level scores and the strain—level
scores are similar except for the recall and the precision values.
The overall performance of GATTACA is relatively low. The
performance may have been affected by the mean coverage profile
used in this study, whereas in the original paper, the coverage profile
was generated by the kmer counts for each contig in each sample so

that the read mapping process is not included.
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Chapter 3. Conclusion

Metagenomics, sparked by the next generation sequencing, led
to the need of the taxonomic classification of microbial genomes in
the samples obtained from the nature. We have compared the eight
taxonomy —independent contig binning methods that have the
potential to discover novel genomes from the sequence data.

We have generated 26 distinct in silico datasets, half with no
strain variation and the other half with multiple strain variations.
After implementing each of the eight methods on each in-—silico
datasets and calculating the performance scores for each method, we
observed that the binning methods with high performances vary by
the datasets.

We first illustrate the results from the 13 datasets with no strain
variation. The performance of CONCOCT was high for the datasets
relatively small in sample size. Hence even with small datasets which
are cost effective and time efficient to obtain, CONCOCT can provide
reliable results.

COCACOLA, MetaBAT, MaxBinZ2, and MyCC are the methods
with high performances for the datasets with larger number of the
samples or the higher depths of coverage, implying that these
methods utilize a large amount of information effectively. Therefore,

researchers can be more confident in increasing the number of
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samples or the depth of coverage to have increased performance of
these tools.

We now illustrate the results of the datasets with multiple strain
variations. It is observed that the performance of CONCOCT is high
for the datasets relatively small in the sample size or the depth of
coverage. The performances of BMC3C, MaxBin2 and MetaBAT were
relatively high for the larger datasets. For BMC3C, the number of
clusters inferred was closer to the number of strains, 210, than the
number of species, 100. Also, the performance scores in strain—level
is high, indicating it is possible to use BMC3C for clustering contigs
into strains with no reference genomes.

The overall performances of GroopM and GATTACA were low.
GroopM was conducted without the use of the optional refining steps,
discarding the chimeric set of contigs identified by the algorithm.
This may have led to the lower performance of GroopM. Manual
inspections may lead to the higher performance. GATTACA was
implemented with the input mean coverage profile. However, the
algorithm is originally built to use the coverage profile generated by
the k—mer counts for each contig in each sample. Using the coverage
profile generated by the k—mer counts may have positive effects on
the performance of GATTACA.

It should be taken into account that there are some limitations in

this study regarding the method of comparing performances of the
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binning tools. First of all, we compared the performance of the binning
methods mainly based on the values of the score metrics. Since
CONCOCT, COCACOLA, MyCC, and GATTACA binned every contig
while MetaBAT, MaxBin2, GroopM, and BMC3C had some contigs
unbinned, evaluating the performance solely on the wvalue of
performance measures can produce biased results.

In this study, we have only conducted one round of binning for
each method and each dataset. Repeated rounds of each binning
method may have given us the mean performance values. The level
of variability of the resulted bins may also have been obtained, which
may have enabled us to conduct hypothesis tests on the values of
performance for more confidence in the performance evaluations.

Since we have generated the datasets within a pool of 419 known
strains, it could have resulted in biased results and the datasets may
have had limited variability in the complexity of the datasets. Each
dataset is not truly independent, and with the unexplored sequence
of novel strains in the samples from the real world, different
performance results may be obtained. Also, the distributions used by
StrainMetaSim, may not always reflect the aspect of the real samples.

Taking these limitation into account, further research on the
evaluation of the contig binning methods will give more insights.
Along with the eight methods implemented in this article, the

performance of other automatic taxonomy independent binning
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methods such as BinSanity [65], CoMet [66], and IFCM [67], can
also be evaluated. The software such as AMBER [68] and CheckM
[69] are also available besides Validate.pl, used in our study, for
evaluation of the inferred bins. Performance measures such as F1
score are also available, which is the harmonic mean of the recall and

precision [38].
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Figure A.1. Heat maps for Speceis_20S_2.5R. The top left is that of CONCOCT,
top right of COCACOLA, bottom left of MetaBAT, and bottom right of MaxBin2

128 #Jx_'i o 1]



= R

s
3
a8
s

o
Zels
i
e
4
B BEAS:

Figure A.2. Heat maps for Speceis_20S_2.5R. The top left is that of GroopM,
top right of BMC3C, bottom left of MyCC, and bottom right of GATTACA
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Figure A.3. Heat maps for Speceis_20S_5.0R. The top left is that of CONCOCT,

top right of COCACOLA, bottom left of MetaBAT, and bottom right of MaxBin2
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Figure A.4. Heat maps for Speceis_20S_5.0R. The top left is that of GroopM,
top right of BMC3C, bottom left of MyCC, and bottom right of GATTACA
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Figure A.5. Heat maps for Speceis_20S_7.5R. The top left is that of CONCOCT,

top right of COCACOLA, bottom left of MetaBAT, and bottom right of MaxBin2
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Figure A.6. Heat maps for Speceis_20S_7.5R. The top left is that of GroopM,
top right of BMC3C, bottom left of MyCC, and bottom right of GATTACA
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Figure A.7. Heat maps for Speceis_20S_10.0R. The top left is that of CONCOCT
top right of COCACOLA, bottom left of MetaBAT, and bottom right of MaxBin2
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Figure A.8. Heat maps for Speceis_20S_10.0R. The top left is that of GroopM,
top right of BMC3C, bottom left of MyCC, and bottom right of GATTACA
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_12.5R. The top left is that of CONCOCT,

top right of COCACOLA, bottom left of MetaBAT, and bottom right of MaxBin2
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Figure A.9. Heat maps for Speceis_20S
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Figure A.10. Heat maps for Speceis_20S_
top right of BMC3C, bottom left of MyCC
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and bottom right of GATTACA
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Figure A.11. Heat maps for Speceis_40
of MaxBin2
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Figure A.12. Heat maps for Speceis_20S_10.0R. The top left is that of GroopM,
top right of BMC3C, bottom left of MyCC, and bottom right of GATTACA
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Figure A.13. Heat maps for Speceis_60S_2.5R. The top left is that of CONCOCT,
top right of COCACOLA, bottom left of MetaBAT, and bottom right of MaxBin2
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Figure A.14. Heat maps for Speceis_60S_2.5R. The top left is that of GroopM,
top right of BMC3C, bottom left of MyCC, and bottom right of GATTACA
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S_5.0R. The top left is that of CONCOCT,

top right of COCACOLA, bottom left of MetaBAT, and bottom right of MaxBin2
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Figure A.15. Heat maps for Speceis_60
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Figure A.16. Heat maps for Speceis_60S_5.0R. The top left is that of GroopM,
top right of BMC3C, bottom left of MyCC, and bottom right of GATTACA
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Figure A.17. Heat maps for Speceis_60
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Figure A.18. Heat maps for Speceis_60S_
top right of BMC3C, bottom left of MyCC

and bottom right of GATTACA
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CONCOCT, top right of COCACOLA, bottom left of MetaBAT, and bottom right

Figure A.19. Heat maps for Speceis_60
of MaxBin2
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Figure A.20. Heat maps for Speceis_60S_
top right of BMC3C, bottom left of MyCC

and bottom right of GATTACA
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Figure A.21. Heat maps for Speceis_60
of MaxBin2
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Figure A.22. Heat maps for Speceis_60S_12.5R. The top left is that of GroopM,,

and bottom right of GATTACA
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top right of BMC3C, bottom left of MyCC
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Figure A.23. Heat maps for Speceis_80S_12.5R. The top left is that of
CONCOCT, top right of COCACOLA, bottom left of MetaBAT, and bottom right
of MaxBin2

150 "':l"*-_-i _'q.l.'\-'_ T |



] elos oumones. SN 202 M 25

N O ,ﬂ. RS SR TR Jrr%ﬂ?&%?

4263550%325/5

ARARAERS R el

000s+ 0

i

, and bottom right of GATTACA
151

Figure A.24. Heat maps for Speceis_80S_12.5R. The top left is that of GroopM

top right of BMC3C, bottom left of MyCC
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Figure A.25. Heat maps for Speceis_100S_12.5R. The top left is that of
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CONCOCT, top right of COCACOLA, bottom left of MetaBAT, and bottom right

of MaxBin2
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Figure A.26. Heat maps for Speceis_100S_12.5R. The top left is that of GroopM,
top right of BMC3C, bottom left of MyCC, and bottom right of GATTACA
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Figure A.27. Heat maps for Strains_20S_2.5R. The top left is that of CONCOCT,
top right of COCACOLA, bottom left of MetaBAT, and bottom right of MaxBin2
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Figure A.28. Heat maps for Strains_20S_2.5R. The top left is that of GroopM,
top right of BMC3C, bottom left of MyCC, and bottom right of GATTACA
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Figure A.29. Heat maps for Strains_20S_5.0R. The top left is that of CONCOCT,
top right of COCACOLA, bottom left of MetaBAT, and bottom right of MaxBin2
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Figure A.30. Heat maps for Strains_20S_5.0R. The top left is that of GroopM,

and bottom right of GATTACA
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top right of BMC3C, bottom left of MyCC
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Figure A.31. Heat maps for Strains_20S_7.5R. The top left is that of CONCOCT,
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top right of COCACOLA, bottom left of MetaBAT, and bottom right of MaxBin2
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Figure A.32. Heat maps for Strains_20S_7.5R. The top left is that of GroopM,
top right of BMC3C, bottom left of MyCC, and bottom right of GATTACA
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Figure A.33. Heat maps for Strains_20S_10.0R. The top left is that of
CONCOCT, top right of COCACOLA, bottom left of MetaBAT, and bottom right
of MaxBin2

160 2] 2 1)



000s+ 0

mggig g .,n.‘c«w _éa £

Figure A.34. Heat maps for Strains_20S_10.0R. The top left is that of GroopM,

and bottom right of GATTACA
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top right of BMC3C, bottom left of MyCC
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Figure A.35. Heat maps for Strains_20S_12.5R. The top left is that of
CONCOCT, top right of COCACOLA, bottom left of MetaBAT, and bottom right
of MaxBin2
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Figure A.36. Heat maps for Strains_20S_12.5R. The top left is that of GroopM,

and bottom right of GATTACA
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top right of BMC3C, bottom left of MyCC
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Figure A.37. Heat maps for Strains_40S_12.5R. The top left is that of
CONCOCT, top right of COCACOLA, bottom left of MetaBAT, and bottom right
of MaxBin2
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Figure A.38. Heat maps for Strains_40S_12.5R. The top left is that of GroopM,

and bottom right of GATTACA

)

top right of BMC3C, bottom left of MyCC
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Figure A.39. Heat maps for Strains_60S_2.5R. The top left is that of CONCOCT,
top right of COCACOLA, bottom left of MetaBAT, and bottom right of MaxBin2
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Figure A.40. Heat maps for Strains_60S_2.5R. The top left is that of GroopM,
top right of BMC3C, bottom left of MyCC, and bottom right of GATTACA
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Figure A.41. Heat maps for Strains_60S_5.0R. The top left is that of CONCOCT,
top right of COCACOLA, bottom left of MetaBAT, and bottom right of MaxBin2
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Figure A.42. Heat maps for Strains_60S_.
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top right of BMC3C, bottom left of MyCC
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Figure A.43. Heat maps for Strains_60S_7.5R. The top left is that of CONCOCT,
top right of COCACOLA, bottom left of MetaBAT, and bottom right of MaxBin2
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Figure A.44. Heat maps for Strains_60S_7.5R. The top left is that of GroopM,
top right of BMC3C, bottom left of MyCC, and bottom right of GATTACA
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CONCOCT, top right of COCACOLA, bottom left of MetaBAT, and bottom right

Figure A.45. Heat maps for Strains_60S_10.0R. The top left is that of
of MaxBin2
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Figure A.46. Heat maps for Strains_60S_10.0R. The top left is that of GroopM,

and bottom right of GATTACA

)

top right of BMC3C, bottom left of MyCC
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CONCOCT, top right of COCACOLA, bottom left of MetaBAT, and bottom right

Figure A.47. Heat maps for Strains_60S_12.5R. The top left is that of
of MaxBin2
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Figure A.48. Heat maps for Strains_60S_12.5R. The top left is that of GroopM,

and bottom right of GATTACA
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top right of BMC3C, bottom left of MyCC
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CONCOCT, top right of COCACOLA, bottom left of MetaBAT, and bottom right

Figure A.49. Heat maps for Strains_80S_12.5R. The top left is that of
of MaxBin2
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Figure A.50. Heat maps for Strains_80S_12.5R. The top left is that of GroopM,
top right of BMC3C, bottom left of MyCC, and bottom right of GATTACA
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Figure A.51. Heat maps for Strains_100S_12.5R. The top left is that of
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CONCOCT, top right of COCACOLA, bottom left of MetaBAT, and bottom right

of MaxBin2
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Figure A.52. Heat maps for Strains_100S_12.5R. The top left is that of GroopM,
top right of BMC3C, bottom left of MyCC, and bottom right of GATTACA
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