14 research outputs found

    ์‹ ๊ฒฝ ๋ถ„ํ™” ์ด‰์ง„๊ณผ ํŠน์ • ๋ถ„์ž ๊ฒ€์ถœ์„ ์œ„ํ•œ ๋‹ค๊ธฐ๋Šฅ์„ฑ ๋ณตํ•ฉ ๋‚˜๋…ธ ์ž…์ž ์ œ์กฐ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ํ™”ํ•™์ƒ๋ฌผ๊ณตํ•™๋ถ€, 2014. 8. ์žฅ์ •์‹.์ตœ๊ทผ, ๋‚˜๋…ธ ํฌ๊ธฐ์˜ ๋‹จ์ผ์‹œ์Šคํ…œ ์•ˆ์— ๋‹ค์–‘ํ•œ ์š”์†Œ๋“ค์„ ๋„์ž…ํ•˜๋Š” ์—ฐ๊ตฌ๊ฐ€ ์ƒ๋ช…๊ณผํ•™ ๋ถ„์•ผ์—์„œ ๋งŽ์€ ๊ด€์‹ฌ์„ ๋ฐ›๊ณ  ์žˆ๋‹ค. ๊ธฐ์กด์˜ ๋ฌผ์งˆ์ด๋‚˜ ๋‹จ์ผ ์š”์†Œ๋กœ ๊ตฌ์„ฑ๋œ ๋‚˜๋…ธ ๋ฌผ์งˆ์— ๋น„ํ•ด, ๋ณตํ•ฉ ๋‚˜๋…ธ ๋ฌผ์งˆ์€ ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์—์„œ ๋งค์šฐ ๋›ฐ์–ด๋‚œ ์„ฑ๋Šฅ์„ ๋ฐœํœ˜ํ•˜๋ฉฐ ๋˜ํ•œ ๋‹ค ๊ธฐ๋Šฅ์„ฑ์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค๋Š” ์žฅ์ ์ด ์žˆ๋‹ค. ์ด์— ๋‚˜๋…ธ ๊ธฐ์ˆ ์˜ ๋ฐœ์ „๊ณผ ํ•จ๊ป˜ ๋ณตํ•ฉ ๋‚˜๋…ธ ๋ฌผ์งˆ์„ ์ œ์กฐํ•˜๋Š” ์—ฐ๊ตฌ๊ฐ€ ํ™œ๋ฐœํžˆ ์ง„ํ–‰๋˜๊ณ  ์žˆ๋‹ค. ๋‚˜๋…ธ ์ž…์ž๋Š” ์ด๋Ÿฐ ๋ณตํ•ฉ์„ฑ์„ ๊ฐ€์งˆ ์ˆ˜ ์žˆ๋Š” ๊ฐ€์žฅ ๊ธฐ๋ณธ์ ์ธ ๊ตฌ์กฐ์ด๋ฉฐ, ๋˜ํ•œ ๋‹ค๋ฅธ ๋‚˜๋…ธ ๊ตฌ์กฐ์ฒด์— ๋น„ํ•ด ์„ธํฌ ๋‚ด์— ๊ฐ€์žฅ ๋งŽ์ด ๋„์ž…๋  ์ˆ˜ ์žˆ๋Š” ํ˜•ํƒœ์ด๋‹ค. ํ•˜์ง€๋งŒ, ์ƒ๋ช…๊ณผํ•™๋ถ„์•ผ์— ์ ํ•ฉํ•œ ๋ณตํ•ฉ ๋‚˜๋…ธ ์ž…์ž๋ฅผ ์ œ์กฐํ•˜๋Š” ์—ฐ๊ตฌ์— ๊ด€ํ•œ ๋ณด๊ณ ๋Š” ์—ฌ์ „ํžˆ ๋ถ€์กฑํ•œ ์‹ค์ •์ด๋‹ค. ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์—์„œ๋Š” ๋‹ค ๊ธฐ๋Šฅ์„ฑ์„ ๊ฐ€์ง„ ๋ณตํ•ฉ ๋‚˜๋…ธ ์ž…์ž๋ฅผ ์ œ์กฐํ•˜์—ฌ ์„ธํฌ ๋‚ด ๋…์„ฑ์„ ํ‰๊ฐ€ํ•˜์—ฌ ๋ณด์•˜์œผ๋ฉฐ, ๋˜ํ•œ ๋ณธ ์ž…์ž๋ฅผ ์‹ ๊ฒฝ์„ธํฌ ๋ถ„ํ™” ์ด‰์ง„๊ณผ ํŠน์ • ๋ถ„์ž ๊ฒ€์ถœ์— ์‘์šฉ ํ•˜์˜€๋‹ค. ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์€ ์‹ค๋ฆฌ์นด ๊ธฐ๋ฐ˜, ํ”ผ๋— ๊ธฐ๋ฐ˜, ๊ทธ๋ฆฌ๊ณ  ํด๋ฆฌ์•„ํฌ๋ฆด๋กœ๋‹ˆํŠธ๋ฆด ๊ธฐ๋ฐ˜ ๋ณตํ•ฉ ๋‚˜๋…ธ ์ž…์ž, ์ด๋ ‡๊ฒŒ ์ด ์„ธ ๊ฐœ์˜ ๋ถ€๋ถ„์œผ๋กœ ๊ตฌ์„ฑ๋˜์–ด ์žˆ๋‹ค. ์„ธ๊ฐ€์ง€ ์ข…๋ฅ˜์˜ ์‹ค๋ฆฌ์นด ๊ธฐ๋ฐ˜ ๋ณตํ•ฉ ๋‚˜๋…ธ ์ž…์ž๋Š” ํ™”ํ•™์  ํ™˜์›๋ฐฉ๋ฒ•๊ณผ ์ดˆ์ŒํŒŒ ๋งค๊ฐœ ์—์นญ/์žฌ์ฆ์ฐฉ ๋ฐฉ๋ฒ•์„ ํ†ตํ•ด ์ œ์กฐํ•˜์˜€๋‹ค. ๋‹ค์„ฏ ๊ฐ€์ง€ ๋‹ค๋ฅธ ์ข…๋ฅ˜์˜ ์‚ฐํ™”๊ธˆ์†(์ด์‚ฐํ™”์„ธ๋ฅจ, ์‚ฐํ™”๊ตฌ๋ฆฌ, ์‚ฐํ™”์ฒ , ์ด์‚ฐํ™”๋ง๊ฐ„, ๊ทธ๋ฆฌ๊ณ  ์‚ฐํ™”์•„์—ฐ)์ด ๋„์ž…๋œ ์‹ค๋ฆฌ์นด ๋‚˜๋…ธ ์ž…์ž์™€ ์‹ค๋ฆฌ์นด/ํ‹ฐํƒ€๋‹ˆ์•„ ์ค‘๊ณต ๋‚˜๋…ธ ์ž…์ž๋Š” ๊ฐ๊ฐ ์›์†Œ์™€ ํฌ๊ธฐ ์˜์กด์ ์ธ ๋…์„ฑ์ด ์กฐ์‚ฌ๋˜์—ˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ๋ฐ”๋ฅจ๊ณผ ์ŠคํŠธ๋ก ํŠฌ์ด ๋„ํ•‘๋œ ์‹ค๋ฆฌ์นด/ํ‹ฐํƒ€๋‹ˆ์•„ ์ค‘๊ณต ๋‚˜๋…ธ ์ž…์ž๋Š” ์‹ ๊ฒฝ ๋ถ„ํ™” ์ด‰์ง„์ œ๋กœ ์‘์šฉํ•˜์˜€์œผ๋ฉฐ, ๋” ๋‚˜์•„๊ฐ€ ์‹ ๊ฒฝ์„ฑ์žฅ์ธ์ž์˜ ์ „๋‹ฌ์ฒด๋กœ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ์‹ ๊ฒฝ์„ฑ์žฅ์ธ์ž๊ฐ€ ๋„์ž…๋œ ์ŠคํŠธ๋ก ํŠฌ์ด ๋„ํ•‘๋œ ์‹ค๋ฆฌ์นด/ํ‹ฐํƒ€๋‹ˆ์•„ ์ค‘๊ณต ๋‚˜๋…ธ ์ž…์ž๊ฐ€ ๊ฐ€์žฅ ๋›ฐ์–ด๋‚œ ๋ถ„ํ™” ์ด‰์ง„ ํšจ๊ณผ๋ฅผ ๋ฐœํœ˜ํ•˜์˜€๋‹ค. ํ”ผ๋— ๋‚˜๋…ธ ์ž…์ž๋Š” ์—๋ฉ€์ ผ ์ƒ์—์„œ ์‚ฐํ™”์ค‘ํ•ฉ์„ ํ†ตํ•ด ์ œ์กฐ๋˜์—ˆ์œผ๋ฉฐ, ๊ธฐํŒ์œผ๋กœ ์ด์šฉ๋˜์—ˆ๋‹ค. ์ด์‚ฐํ™”๋ง๊ฐ„์„ ํ”ผ๋— ๋‚˜๋…ธ ์ž…์ž ํ‘œ๋ฉด์— ์‚ฐํ™”ํ™˜์› ์ฆ์ฐฉ๋ฐฉ๋ฒ•์„ ํ†ตํ•ด ๋„์ž…ํ•˜์˜€์œผ๋ฉฐ, ์ œ์กฐ๋œ ๋ณธ ๋ณตํ•ฉ ๋‚˜๋…ธ ์ž…์ž๋Š” ์‹ ๊ฒฝ์„ธํฌ ๋ถ„ํ™”๋ฅผ ์ด‰์ง„์‹œ์ผฐ์œผ๋ฉฐ, ๋˜ํ•œ ์‚ด์•„์žˆ๋Š” ์„ธํฌ์—์„œ ๋ฐฉ์ถœ๋˜๋Š” ์นดํ…Œ์ฝœ์•„๋ฏผ์„ ์„ฑ๊ณต์ ์œผ๋กœ ๊ฐ์ง€ํ•˜์˜€๋‹ค. ์•„๋ฏธ๋”˜์ด ๋„์ž…๋œ ํด๋ฆฌ์•„ํฌ๋ฆด๋กœ๋‹ˆํŠธ๋ฆด ๋‚˜๋…ธ ์ž…์ž๋Š” ์ดˆ์ŒํŒŒ ๋งค๊ฐœ ์—๋ฉ€์ ผ ์ค‘ํ•ฉ์„ ํ†ตํ•ด ์ œ์กฐ๋˜์—ˆ์œผ๋ฉฐ, ํ”ผ๋„ˆ๋ฐฉ๋ฒ•์„ ํ†ตํ•ด ์•„๋ฏธ๋”˜๊ทธ๋ฃน์œผ๋กœ ํ‘œ๋ฉด์ด ๊ฐœ์งˆ๋˜์—ˆ๋‹ค. ์ƒ์ฒด์นœํ™”์„ฑ์„ ๊ฐ€์ง€๊ณ  ์žˆ๋Š” ํ˜•๊ด‘ ์•„๋ฏธ๋”˜-ํด๋ฆฌ์•„ํฌ๋ฆด๋กœ๋‹ˆํŠธ๋ฆด ๋‚˜๋…ธ ์ž…์ž๋Š” ์‚ด์•„์žˆ๋Š” ์„ธํฌ ์•ˆ์— ์žˆ๋Š” ๊ตฌ๋ฆฌ ์ด์˜จ์— ๋Œ€ํ•ด ๋†’์€ ๋ฏผ๊ฐ๋„์™€ ์„ ํƒ์„ฑ์„ ๊ฐ€์ง€๋Š” ์„ผ์„œ ๊ฐœ๋ฐœ์— ์žˆ์–ด ์ƒˆ๋กœ์šด ๋ฐฉํ–ฅ์„ฑ์„ ์ œ์‹œํ•˜์—ฌ ์ฃผ์—ˆ๋‹ค. ๋˜ํ•œ, ๊ธˆ ๋‚˜๋…ธ ํด๋Ÿฌ์Šคํ„ฐ๋ฅผ ํ•ฉ์„ฑํ•˜์—ฌ ๋ณธ ์•„๋ฏธ๋”˜-ํด๋ฆฌ์•„ํฌ๋ฆด๋กœ๋‹ˆํŠธ๋ฆด ๋‚˜๋…ธ ์ž…์ž ํ‘œ๋ฉด์— ๋„์ž…ํ•˜์˜€์œผ๋ฉฐ, ์ด์— ๋‘ ๊ฐ€์ง€ ํ˜•๊ด‘์„ ๋™์‹œ์— ๋ฐœํœ˜ํ•˜๋Š” ๋ณตํ•ฉ ๋‚˜๋…ธ ์ž…์ž๊ฐ€ ์ œ์กฐ ๋˜์—ˆ๋‹ค. ์ด์ค‘ ํ˜•๊ด‘ ์„ฑ์งˆ์€ ํŠน์ • ํ™œ์„ฑ์‚ฐ์†Œ์ข…์— ๋Œ€ํ•ด ๋†’์€ ์„ ํƒ์„ฑ์„ ๋ฐœํœ˜ํ•˜์˜€์œผ๋ฉฐ, ๋˜ํ•œ ๋น„๋ก€์ ์ธ ๊ฐ์ง€๋ฅผ ์œ„ํ•œ ๋†’์€ ๋ฏผ๊ฐ๋„์™€ ํ•ด์ƒ๋„๋ฅผ ์ œ๊ณตํ•˜์˜€๋‹ค. ๋‚ฎ์€ ๋…์„ฑ์„ ๊ฐ€์ง€๊ณ  ์žˆ๋Š” ๊ธˆ ๋‚˜๋…ธ ํด๋Ÿฌ์Šคํ„ฐ-์•„๋ฏธ๋”˜-ํด๋ฆฌ์•„ํฌ๋ฆด๋กœ๋‹ˆํŠธ๋ฆด ๋ณตํ•ฉ ๋‚˜๋…ธ ์ž…์ž๋Š” ์ƒ์ฒด ๋‚ด์—์„œ ํšจ๊ณผ์ ์œผ๋กœ ์„ธํฌ๋ฅผ ์ด๋ฏธ์ง•ํ•˜๋Š” ์—์ด์ „ํŠธ๋กœ ์ ์šฉ์ด ๋  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ๋™์‹œ์— ํŠน์ • ํ™œ์„ฑ์‚ฐ์†Œ์ข…์„ ๊ฐ์ง€ํ•˜๋Š” ์„ผ์„œ๋กœ๋„ ์ ์šฉ ๋  ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ํ•™์œ„ ๋…ผ๋ฌธ์—์„œ๋Š” ๋ณตํ•ฉ ๋‚˜๋…ธ ์ž…์ž๋ฅผ ์ œ์กฐํ•˜๋Š” ๋‹ค์–‘ํ•œ ๋ฐฉ๋ฒ•๊ณผ ์ƒ๋ช…๊ณผํ•™๋ถ„์•ผ ์‘์šฉ ๊ฐ€๋Šฅ์„ฑ์— ๊ด€ํ•œ ์—ฐ๊ตฌ๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์—์„œ ์ œ์กฐ๋œ ๋‹ค ๊ธฐ๋Šฅ์„ฑ ๋ณตํ•ฉ ๋‚˜๋…ธ ์ž…์ž๋“ค์€ ์‹ ๊ฒฝ๋ถ„ํ™” ์ด‰์ง„์ œ, ์นดํ…Œ์ฝœ์•„๋ฏผ ์„ผ์„œ, ๊ทธ๋ฆฌ๊ณ  ํ˜•๊ด‘ ๊ฐ์ง€ ํƒ์นจ ๊ฐ™์€ ์ƒ๋ช…๊ณผํ•™๋ถ„์•ผ์— ์‘์šฉํ•˜์˜€๋‹ค. ๋ณธ ์ž…์ž๋“ค์€ ๊ฐ๊ฐ์˜ ์‘์šฉ์— ์ ํ•ฉํ•˜๊ณ  ์ตœ์ ์˜ ์„ฑ๋Šฅ์„ ๋‚ผ ์ˆ˜ ์žˆ๋„๋ก ๋””์ž์ธ๋˜๊ณ  ์ œ์กฐ๋˜์—ˆ๋‹ค. ์ด๋Ÿฐ ๊ฒฐ๊ณผ๋“ค์€ ๋‹ค์–‘ํ•œ ๋‹ค ๊ธฐ๋Šฅ์„ฑ์˜ ๋ณตํ•ฉ ๋‚˜๋…ธ ์ž…์ž๋ฅผ ์ œ์กฐํ•˜๊ณ , ์ด๋“ค์„ ์ƒ๋ช…๊ณผํ•™๋ถ„์•ผ์— ์ ์šฉํ•˜๋Š” ๊ฒƒ์— ๊ด€ํ•œ ์ •๋ณด๋“ค์„ ์ œ๊ณตํ•˜๊ฒŒ ๋  ๊ฒƒ์ด๋‹ค.In recent decades, to incorporate diverse components into a single nanoscale system have been a great deal of interest in biomedical fields. These hybrid nanomaterials provide multifunctionality and the extraordinarily enhanced performance than bulk sized material- or single component nanomaterial-based applications. Therefore, with advancing in nanotechnology, many efforts have been also paid to the fabrication of hybrid materials. Nanoparticle is the basic structure to achieve such hybridization. Additionally, nanoparticle is the most internalized structure in the cells compared to other nanostructures. However, there is still lack of literature about fabrication of hybrid nanoparticles for biomedical applications. The dissertation describes fabricating multifunctional hybrid nanoparticles, evaluating their cytotoxicity, and applying them into neuronal differentiation enhancer and specific molecule detection. This dissertation consists of three partssilica based, PEDOT based, and PAN based hybrid nanoparticles. Three types of silica based hybrid nanoparticles were suggested by chemical reduction method and sonication mediated etching/redeposition methods. Five different metal oxide (MOxCeO2, CuO, Fe2O3, MnO2, and ZnO) decorated SiO2 NP and HNPs were exhibited element- and size-dependent toxicity. The p-HNP, Ba-HNP, and Sr-HNPs were applied as neuronal differentiation enhancer, and further modified as encapsulating agent for nerve growth factor. Nerve growth factor encapsulating Sr-HNPs were exceptionally efficient for promoting neuronal differentiation. PEDOT nanoparticles were fabricated by oxidation polymerization in reverse microemulsion, and used as substrate. The MnO2 was decorated on the PEDOT nanoparticles by redox deposition, and the hybrid nanoparticles successfully enhanced the neuronal differentiation and detected the catecholamines released from the living cells. APAN nanoparticles were synthesized by sonication mediated emulsion polymerization and modified with amidine group by pinner method. The fluorescent APAN NPs with biocompatibility provide a new direction for the development of highly sensitive and selective sensors for intracellular Cu2+ in living cells. Then, AuNC were decorated on the APAN nanoparticles, which exhibits dual emission property. This fluorescence behavior was highly selective for hROS, and change in dual emission wavelengths results in the enhanced sensitivity and resolution for ratiometric detection. They could provide both efficient cell imaging agents as well as hROS detection probe in vitro with low toxicity. This dissertation provides the possibility of various approaches for the preparation of multifunctional hybrid nanoparticles and their biomedical applications. The hybrid nanoparticles presented in the dissertation could be applied into biomedical fields such as neuronal differentiation enhancer, catecholamine sensor, and fluorescence sensing probe. Each hybrid nanoparticle are deliberately designed and customized for superior performance in specific applications. This study may provide understanding of fabricating various hybrid nanoparticles with multifunctionality and application of hybrid nanoparticles to biomedical application.Table of Contents Abstract i List of Abbreviations iv List of Figures vii List of Tables xxiii Table of Contents xxiv 1. INTRODUCTION 1 1.1. Background 1 1.1.1. Nanomaterials 1 1.1.1.1. Synthesis of polymer nanoparticles 4 1.1.1.2. Synthesis of inorganic nanoparticles 7 1.1.1.3. Synthetic strategies of multifunctional hybrid nanoparticles 10 1.1.2. Hybrid nanoparticles for biomedical application 12 1.1.2.1. Cytotoxicity evaluation 12 1.1.2.2. Neuronal differentiation enhancer 16 1.1.2.3. Catecholamine detector 21 1.1.2.4. Fluorescent sensor 22 1.2. Objectives and Outlines 25 1.2.1. Objectives 25 1.2.2. Outlines 27 2. EXPERIMENTAL DETAILS 29 2.1. SiO2 based hybrid nanoparticles 29 2.1.1. Metal oxide decorated SiO2 nanoparticles 29 2.1.1.1. Fabrication of metal oxide decorated SiO2 nanoparticles 29 2.1.1.2. Cytotoxicity evaluation with element dependence 32 2.1.2. SiO2/TiO2 hollow nanoparticles 35 2.1.2.1. Fabrication of SiO2/TiO2 hollow nanoparticles 35 2.1.2.2. Cytotoxicity evaluation with size dependence 36 2.1.3. Ba/Sr doped SiO2/TiO2 hollow nanoparticles 38 2.1.3.1. Fabrication of Ba/Sr doped SiO2/TiO2 hollow nanoparticles 38 2.1.3.2. Application for neuronal differentiation 39 2.2. PEDOT based hybrid nanoparticles 42 2.2.1. MnO2 decorated PEDOT nanoparticles 42 2.2.1.1. Fabrication of MnO2 decorated PEDOT nanoparticles 42 2.2.1.2. Application for neuronal differentiation 44 2.2.1.3. Application for catecholamine detection 45 2.3. PAN based hybrid nanoparticles 46 2.3.1. Amidine-PAN nanoparticles 46 2.3.1.1. Fabrication of amidine-PAN nanoparticles 46 2.3.1.2. Application for intracellular Cu2+ detection 47 2.3.2. Au decorated amidine-PAN nanoparticles 49 2.3.2.1. Fabrication of Au decorated amidin-PAN nanoparticles 49 2.3.2.2. Application for intracellular highly reactive oxygen species detection 51 3. RESULTS AND DISCUSSION 53 3.1. SiO2 based hybrid nanoparticles 53 3.1.1. Metal oxide decorated SiO2 nanoparticles 53 3.1.1.1. Fabrication of metal oxide decorated SiO2 nanoparticles 53 3.1.1.2. Cytotoxicity evaluation with element dependence 59 3.1.2. SiO2/TiO2 hollow nanoparticles 71 3.1.2.1. Fabrication of SiO2/TiO2 hollow nanoparticles 71 3.1.2.2. Application for neuronal differentiation 75 3.1.3. Ba/Sr doped SiO2/TiO2 hollow nanoparticles 87 3.1.3.1. Fabrication of Ba/Sr doped SiO2/TiO2 hollow nanoparticles 87 3.1.3.2. Application for neuronal differentiation 100 3.2. PEDOT based hybrid nanoparticles 116 3.2.1. MnO2 decorated PEDOT nanoparticles 116 3.2.1.1. Fabrication of MnO2 decorated PEDOT nanoparticles 116 3.2.1.2. Application for neuronal differentiation 126 3.2.1.3. Application for catecholamine detection 140 3.3. PAN based hybrid nanoparticles 149 3.3.1. Amidine-PAN nanoparticles 149 3.3.1.1. Fabrication of amidine-PAN nanoparticles 149 3.3.1.2. Application for intracellular Cu2+ detection 157 3.3.2. Au decorated amidine-PAN nanoparticles 161 3.3.2.1. Fabrication of Au decorated amidin-PAN nanoparticles 161 3.3.2.2. Application for intracellular highly reactive oxygen species detection 173 4. CONCLUSIONS 179 REFERENCES 185 ๊ตญ๋ฌธ์ดˆ๋ก 192Docto

    The role of polycomb repressive complex 2 and effects of lobarstin in glioblastoma multiforme

    Get PDF
    Dept. of Biomedical Laboratory Science/๋ฐ•์‚ฌGlioblastoma multiforme (GBM) is a grade IV primary malignant brain tumor. The elevated expression of polycomb repressive complex 2 (PRC2) proteins such as EZH2 and SUZ12 have been found in GBM and their expression levels often correlate with poor prognosis. In order to find anti-proliferative factors and to increase the potential of anti-cancer drug for glioblastoma treatment, I studied two diffetent approaches. First, I tested that PRC2 may play as master regulator in GBM. Second, I investigated the influence of co-treatment with lobarstin and TMZ on chemosesitivity of glioblastoma cells. Upon knock-down of PRC2, cell growth was attenuated and cells were accumulated at G1 phase of the cell cycle. Among several G1 regulators, the total and nuclear CDKN1B protein levels were drastically up-regulated by PRC2 depletion. Interestingly, the expression of SKP2, a component of the SCFSKP2 E3 ubiquitin ligase which is known to promote the degradation of CDKN1B protein degradation was significantly reduced under depleted expression of PRC2. Furthermore, PRC2-depletion led to down-regulation of MYC expression at both mRNA and protein levels. In agreement with the in vitro results, glioblastoma patients with elevated EZH2 expression showed high MYC expression but reduced CDKN1B expression. Temozolomide (TMZ) has been used as standard therapy for glioblastoma patients, however, this treatment does not improve the prognosis and survival of patients because of rapid DNA repair system. Upon transient PRC2-depletion, TMZ-induced cytotoxicity and the DNA damage were found to are extended. Interestingly, PRC2-depletion had no effect on MGMT expression, but the expressions of the base excision repair (BER) genes such as PARP1, XRCC1, and LIG3 were significantly decreased. In agreement with the in vitro results, glioblastoma patients with high EZH2 expression showed increased PARP1 expression level. In order to evaluate the possibility of developing combinatorial therapy for GBM, I tested the combination effect of lobarstin and TMZ on T98G cells. Co-treatment with lobarstin and TMZ resulted in enhanced cytotoxicity for GBM cells through repressing DNA-recovery. Expressions of DNA repair genes such as MGMT, PARP1 and LIG 3 were significantly reduced in lobarstin and TMZ co-treated cells. Taken together, these results showed that the PRC2-depletion enhances inhibitory effect on GBM growth and potentiates TMZ antitumor activity. In summary, the effects of PRC2 can be considered as a potential targets for developing a novel therapeutic approaches. Additionally, lobarstin can be used as a potential combination drugs with TMZ for efficient GBM therapy.ope

    ์™€ํŽธ๋ชจ๋ฅ˜์ธ ์Šคํฌ๋ฆฝ์‹œ์—˜๋ผ 4์ข…์— ๋Œ€ํ•œ ์ข…์†์˜์–‘์„ฑ ํฌ์‹์ž์˜ ์„œ๋กœ ๋‹ค๋ฅธ ๋ฐ˜์‘ ๋ฐ ์ข…์†์˜์–‘์„ฑ ๋ฏธ์„ธํŽธ๋ชจ๋ฅ˜ ์นดํƒ€๋ธ”๋ ˆํŽ˜๋ฆฌ์Šค ์žํฌ๋‹ˆ์นด์™€์˜ ์ƒํ˜ธ์ž‘์šฉ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ž์—ฐ๊ณผํ•™๋Œ€ํ•™ ์ง€๊ตฌํ™˜๊ฒฝ๊ณผํ•™๋ถ€, 2019. 2. ์ •ํ•ด์ง„.The dinoflagellate genus Scrippsiella is widely distributed and known to cause red tides. However, the nationwide distributions of Scrippsiella species in Korea have not been fully understood yet. Recently, four Scrippsiella species (S. acuminata, S. donghaiensis, S. lachrymosa, and S. masanensis) were isolated from the Korean coastal waters. To investigate nationwide distributions of these Scrippsiella species in Korean coastal waters, the species specific primers of each species were developed and then the abundance of each species in the 28 stations was measured using the quantitative real-time PCR method. These four Scrippsiella species had different temporal and spatial distributionsS. donghaiensis was usually observed at 18 stations in July 2016-2017 and S. lachrymosa was often found at 9 stations in March 2016-2017. S. masanensis was detected at 11 stations in January, March, July, October, and December in 2016 and March and July in 2017, while S. acuminata was rarely observed in the study period. To understand population dynamics of Scrippsiella species, mortality due to predation as well as growth should be determined. To investigate predation by heterotrophic protists on Scrippsiella species, interactions between four Scrippsiella species and common heterotrophic dinoflagellates and a ciliate were explored. All heterotrophic protists tested were able to feed on all four Scrippsiella species, however, the growth and ingestion rates of the heterotrophic dinoflagellates Oxyrrhis marina, Gyrodinium dominans, and Polykrikos kofoidii on one of four Scrippsiella species were clearly different from those on the other Scrippsiella species. Therefore, it may cause a selection of the bloom causative species among these 4 Scrippsiella species. Furthermore, differential responses by each predator to four Scrippsiella species may cause different ecological niches of both the predators and prey species. Recently, the heterotrophic nanoflagellate Katablepharis japonica has been revealed to feed on diverse red tide species and thus could be an effective grazer of red-tide organisms. However, if there are effective predators feeding on K. japonica, its grazing impact may be reduced. To investigate potential effective predators on K. japonica, feeding by diverse heterotrophic dinoflagellates and the naked ciliates on K. japonica was explored. None of heterotrophic protists fed on actively swimming K. japonica cells. To the contrary, K. japonica was able to feed on six heterotrophic protists. The results of this study suggest that predation impact by heterotrophic protists on K. japonica be negligible and thus grazing impact by K. japonica on populations of red tide species may not be reduced by mortality due to predation. Furthermore, to understand their population dynamics, I investigated the distribution and abundance of K. japonica in 2016-2017 using quantitative real-time PCR. Cells of K. japonica were widely distributed around Korean coastal waters and detected four seasons in the study period. This study provides a basis on understanding the interactions between common heterotrophic protists and 4 Scrippsiella species and also between common heterotrophic protists and the heterotrophic nanoflagellate K. japonica, which are able to feed on red-tide species.์™€ํŽธ๋ชจ๋ฅ˜ ์†์ธ Scrippsiella๋Š” ๋…์„ฑ์€ ์—†์ง€๋งŒ ์ ์กฐ๋ฅผ ๋ฐœ์ƒ์‹œํ‚จ๋‹ค๊ณ  ์•Œ๋ ค์ ธ ์žˆ๋‹ค. Scrippsiella์†์—์„œ ๊ฐ€์žฅ ํ”ํ•œ ์ข…์ธ S. acuminata๋Š” ํ•œ๊ตญ์˜ ๋‚จํ•ด์•ˆ์—์„œ ๋•Œ๋•Œ๋กœ ์ ์กฐ๋ฅผ ๋ฐœ์ƒ์‹œํ‚ค๊ธฐ๋„ ํ•œ๋‹ค. ์ด๋“ค์€ ๋™์ค‘๊ตญ ํ•ด์— ์ข…์ข… ๋ถ„ํฌํ•˜๋Š” ๊ฒƒ์œผ๋กœ ์•Œ๋ ค์ ธ ์žˆ์ง€๋งŒ ์ฃผ๋กœ ํœด๋ฉดํฌ์ž(cyst)ํ˜•ํƒœ๋กœ ๋ฐœ๊ฒฌ๋œ๋‹ค. ์ตœ๊ทผ ํ•œ๊ตญ์—ฐ์•ˆ ํ‘œ์ธต์ˆ˜์— ์šด๋™์„ฑ ํ˜•ํƒœ(motile form)์˜ 4์ข…์˜ Scrippsiella (S. acuminata, S. donghaiensis, S. lachrymosa, S. masanensis) ๊ฐ€ ์ข…์ข… ๋ฐœ๊ฒฌ๋˜๋ฉฐ ์šฐ๋ฆฌ๋‚˜๋ผ ์—ฐ์•ˆ์—๋„ ๋‹ค์–‘ํ•œ Scrippsiella ์ข…๋“ค์ด ํ”ํžˆ ์กด์žฌํ•˜๊ณ  ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋”ฐ๋ผ์„œ Scrippsiella ์ข…๋“ค์€ ํ•œ๊ตญ ์—ฐ์•ˆ์˜ ์นจ์ „๋ฌผ์— ํœด๋ฉดํฌ์ž(cyst)ํ˜•ํƒœ๋กœ ์กด์žฌํ•จ์œผ๋กœ์„œ ์ ์กฐ๋ฅผ ๋ฐœ์ƒ์‹œํ‚ฌ์ˆ˜ ์žˆ๋Š” ์ž ์žฌ์„ฑ์„ ๊ฐ€์ง€๊ณ  ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ์ด๋“ค์˜ ๋ถ„ํฌ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ฐ ์ข…๋“ค์˜ ์ข… ํŠน์ด์  ํ”„๋ผ์ด๋จธ๋ฅผ ์ œ์ž‘ํ•˜์—ฌ qPCR์„ ํ†ตํ•ด ํ•œ๊ตญ์—ฐ์•ˆ์—์„œ 4์ข…์˜ Scrippsiella๋ถ„ํฌ๋ฅผ ํŒŒ์•…ํ•˜์˜€๋‹ค. ๊ทธ ๊ฒฐ๊ณผ ๋„ค ์ข…์˜ Scrippsiella๋Š” ์šฐ๋ฆฌ๋‚˜๋ผ ์—ฐ์•ˆ์— ๊ฐ๊ฐ ๋‹ค๋ฅด๊ฒŒ ๋ถ„ํฌํ•˜๊ณ  ์žˆ์œผ๋ฉฐ, ๋‹ค์–‘ํ•œ ์ˆ˜์˜จ๊ณผ ์—ผ๋ถ„ ๋ฒ”์œ„๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ์—ˆ๋‹ค. ๊ทธ ์ค‘ S. donghaiensis๋Š” 7์›”, S. lachrymosa๋Š” 3์›”์— ์œ ๋… ๋งŽ์ด ์ถœํ˜„ํ•˜์—ฌ ๊ณ„์ ˆ์„ฑ์„ ๊ฐ€์ง€๊ณ  ์žˆ๋Š”๊ฒƒ์œผ๋กœ ๋ณด์ด๋Š” ๋ฐ˜๋ฉด S. masanensis๋Š” ์‹คํ—˜ ๊ธฐ๊ฐ„ ์ค‘ 2017๋…„ 10์›”์„ ์ œ์™ธํ•œ ๋ชจ๋“  ๋‹ฌ์—์„œ ๋น„๊ต์  ๋‚ฎ์€ ๋†๋„๋กœ ์ถœํ˜„ํ•˜์˜€์œผ๋ฉฐ S. acuminata๋Š” ๋‹ค๋ฅธ ์ข…๋“ค์— ๋น„ํ•ด ๋น„๊ต์  ๋“œ๋ฌผ๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ด์™€ ๋”๋ถˆ์–ด Scrippsiella์ข…์˜ ๊ฐœ์ฒด๊ตฐ ๋™ํƒœ๋ฅผ ์ดํ•ดํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ํฌ์‹์ž๋“ค์˜ ํฌ์‹์— ์˜ํ•œ ์‚ฌ๋ง๋ฅ ์„ ์•Œ์•„์•ผํ•œ๋‹ค. Scrippsiella์ข…์— ๋Œ€ํ•œ ์ข…์†์˜์–‘ ์›์ƒ์ƒ๋ฌผ์— ์˜ํ•œ ํฌ์‹์„ ์—ฐ๊ตฌํ•˜๊ธฐ ์œ„ํ•ด, 4์ข…์˜ Scrippsiella์™€ ํ•ด์–‘ํ™˜๊ฒฝ์—์„œ ํ”ํ•˜๊ฒŒ ์กด์žฌํ•˜๋Š” ์ข…์†์˜์–‘ ์™€ํŽธ๋ชจ๋ฅ˜์™€ ์„ฌ๋ชจ์ถฉ ์‚ฌ์ด์˜ ์ƒํ˜ธ์ž‘์šฉ ์—ฐ๊ตฌ๋ฅผ ์ง„ํ–‰ํ•˜์˜€๋‹ค. ์‹คํ—˜์— ์‚ฌ์šฉ๋œ ๋ชจ๋“  ์ข…์†์˜์–‘ ์›์ƒ์ƒ๋ฌผ๋“ค์€ 4์ข…์˜ Scrippsiella๋ฅผ ์„ญ์‹ํ•  ์ˆ˜ ์žˆ์—ˆ์œผ๋‚˜, 4์ข…์˜ Scrippsiella๋ฅผ ์„ญ์‹ํ•œ Oxyrrhis marina, Polykrikos kofoidii, Gyrodinium dominans์˜ ์„ฑ์žฅ๋ฅ ๊ณผ ์„ญ์‹๋ฅ ์€ ์ข…๋งˆ๋‹ค ๋งค์šฐ ๋‹ค๋ฅธ ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๋”ฐ๋ผ์„œ ์ด๋Ÿฌํ•œ ์„ ํƒ์  ์„ญ์‹์€ ์ ์กฐ์ข…์„ ๋จน์ด๋กœ ํ•˜๋Š” ํฌ์‹์ž์˜ ๊ฐœ์ฒด์ˆ˜๋ฅผ ์ค„์ž„์œผ๋กœ์จ ์ ์กฐ์ข…์˜ ์ฆ๊ฐ€๋ฅผ ์•ผ๊ธฐํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ฒŒ๋‹ค๊ฐ€ ํฌ์‹์ž๋“ค์— ์˜ํ•œ 4์ข…์˜ Scrippsiella์— ๋Œ€ํ•œ ์ฐจ๋ณ„์ ์ธ ๋ฐ˜์‘์€ ํฌ์‹์ž์™€ ๋จน์ด์ข… ๋ชจ๋‘ ์„œ๋กœ ๋‹ค๋ฅธ ์ƒํƒœํ•™์  ์ง€์œ„๋ฅผ ์•ผ๊ธฐํ•  ์ˆ˜ ์žˆ๋‹ค. ์ตœ๊ทผ ์ข…์†์˜์–‘ ๋ฏธ์„ธํŽธ๋ชจ๋ฅ˜์ธ Katablepharis japonica๋Š” ๋‹ค์–‘ํ•œ์ ์กฐ์ƒ๋ฌผ ์ข…๋“ค์„ ์„ญ์‹ํ•จ์— ๋”ฐ๋ผ ์ ์กฐ์ƒ๋ฌผ์˜ ํšจ๊ณผ์ ์ธ ํฌ์‹์ž๊ฐ€ ๋  ์ˆ˜๋„ ์žˆ๋‹ค๊ณ  ๋ฐํ˜€์กŒ๋‹ค. ํ•˜์ง€๋งŒ, K. japonica๋ฅผ ์ž˜ ์„ญ์‹ํ•˜๋Š” ํฌ์‹์ž๋“ค์ด ์žˆ๋‹ค๋ฉด ์ด๋“ค์˜ grazing impact๋Š” ๊ฐ์†Œํ•  ์ˆ˜๋„ ์žˆ๋‹ค. K. japonica์— ๋Œ€ํ•œ ์ž ์žฌ์ ์ธ ํฌ์‹์ž๋ฅผ ์—ฐ๊ตฌํ•˜๊ธฐ ์œ„ํ•ด ๋‹ค์–‘ํ•œ ์ข…์†์˜์–‘ ์™€ํŽธ๋ชจ๋ฅ˜์™€ ์„ฌ๋ชจ์ถฉ์— ์˜ํ•œ ํฌ์‹๋ฅ ์„ ์—ฐ๊ตฌํ•˜์˜€๋‹ค. ๊ทธ ๊ฒฐ๊ณผ ํ™œ๋ฐœํ•˜๊ฒŒ ์›€์ง์ด๋Š” K. japonica๋ฅผ ์„ญ์‹ํ•˜๋Š” ์ข…์†์˜์–‘ ์›์ƒ์ƒ๋ฌผ์€ ์—†์—ˆ๋‹ค. ๋ฐ˜๋ฉด, K. japonica๋Š” ์—ฌ์„ฏ์ข…์˜ ์ข…์†์˜์–‘ ์›์ƒ์ƒ๋ฌผ์„ ์„ญ์‹ํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ด ์—ฐ๊ตฌ๊ฒฐ๊ณผ์— ๋”ฐ๋ฅด๋ฉด K. japonica์˜ ์ข…์†์˜์–‘ ์›์ƒ์ƒ๋ฌผ์— ์˜ํ•œ ์‚ฌ๋ง๋ฅ ์€ ๋ฌด์‹œํ•ด๋„ ๋  ์ •๋„๋กœ ๋‚ฎ๊ธฐ๋•Œ๋ฌธ์— K. japonica์˜ ์ ์กฐ ์ƒ๋ฌผ ๊ฐœ์ฒด๊ตฐ grazing impact๋Š” ํฌ์‹์— ์˜ํ•œ ์‚ฌ๋ง๋ฅ ์— ์˜ํ•ด ๊ฐ์†Œ๋˜์ง€ ์•Š์„ ์ˆ˜ ์žˆ์Œ์„ ์‹œ์‚ฌํ•œ๋‹ค. ๋˜ํ•œ, K. japonica์˜ ๊ฐœ์ฒด๊ตฐ์—ญํ•™์„ ์ดํ•ดํ•˜๊ธฐ ์œ„ํ•ด์„œ, qPCR ์ •๋Ÿ‰๋ถ„์„์„ ํ†ตํ•ด ์ด๋“ค์˜ ๋ถ„ํฌ๋ฅผ ์—ฐ๊ตฌํ•œ ๊ฒฐ๊ณผ K. japonica๋Š” ํ•œ๊ตญ์—ฐ์•ˆ์— ๋„๋ฆฌ ๋ถ„ํฌํ•˜๊ณ  ์žˆ์œผ๋ฉฐ ์‹คํ—˜ ๊ธฐ๊ฐ„๋™์•ˆ ๋งค ๊ณ„์ ˆ๋งˆ๋‹ค ์ถœํ˜„ํ•˜์˜€๋‹ค. ์ด๋Š” K. japonica์˜ ํฌ์‹์ž์— ์˜ํ•œ ๋‚ฎ์€ ์‚ฌ๋ง๋ฅ ๊ณผ ์ ์กฐ ์ƒ๋ฌผ์˜ grazing impact๋กœ ์šฐ๋ฆฌ๋‚˜๋ผ ์ „ ํ•ด์—ญ์—์„œ ์ƒ์‹œ ์กด์žฌํ•˜๊ณ  ์žˆ์œผ๋ฉฐ ๋‹ค์–‘ํ•œ ํ™˜๊ฒฝ์š”์ธ์—์„œ๋„ ์ƒ์กดํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋‹ค์–‘ํ•œ ์ƒํƒœ๊ณ„ ๋จน์ด๋ง(microbial loop)์˜ ์ƒํ˜ธ์ž‘์šฉ ์ค‘ ์‹๋ฌผ์„ฑ ํ”Œ๋ž‘ํฌํ†ค์˜ ์ฃผ์š”ํ•œ ์† ์ค‘ ํ•˜๋‚˜์ธ ๋…๋ฆฝ์˜์–‘ ์™€ํŽธ๋ชจ๋ฅ˜ Scrippsiella์™€ ์ข…์†์˜์–‘์„ฑ ์›์ƒ์ƒ๋ฌผ๊ฐ„์˜ ์ƒํ˜ธ์ž‘์šฉ, ๊ทธ๋ฆฌ๊ณ  ๊ณตํ†ต๋œ ์ ์กฐ์ƒ๋ฌผ์„ ์„ญ์‹ํ•˜๋Š” ์ข…์†์˜์–‘์„ฑ ์›์ƒ์ƒ๋ฌผ๊ณผ ์ข…์†์˜์–‘์„ฑ ๋ฏธ์„ธํŽธ๋ชจ๋ฅ˜ Katablepharis japonica๊ฐ„์˜ ์ƒํ˜ธ์ž‘์šฉ์„ ์—ฐ๊ตฌํ•˜์˜€๋‹ค.Abstract โ…ฐ List of Tables โ…ด List of Figures โ…ถ Chapter 1. Overall introduction 1 Chapter 2. Distribution of four Scrippsiella species in Korean coastal waters during 2016-2017 using quantitative real-time PCR 5 2.1. Introduction 5 2.2. Materials and Methods 7 2.3. Results 13 2.4. Discussion 29 Chapter 3. Differential interactions between four Scrippsiella species and common heterotrophic protists. 33 3.1. Introduction 33 3.2. Materials and Methods 36 3.3. Results 48 3.4. Discussion 62 Chapter 4. Interactions between the voracious heterotrophic nanoflagellate Katablepharis japonica and common heterotrophic protists and distribution of K. japonica 79 4.1. Introduction 79 4.2. Materials and Methods 83 4.3. Results 93 4.4. Discussion 106 Chapter 5. Conclusions 111 References 116 Abstract (Korean) 147Maste

    ์ •์ •๋ ฌ์ œ ์ถ˜ํ–ฅ๊ฐ€ ์ค‘ ์ด๋ณ„๊ฐ€๋ฅผ ์ค‘์‹ฌ์œผ๋กœ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ์Œ์•…๋Œ€ํ•™ ์Œ์•…๊ณผ, 2021.8. ๊น€๊ฒฝ์•„.๋ณธ ๋…ผ๋ฌธ์€ ํŒ์†Œ๋ฆฌ ์ •์ •๋ ฌ์ œ ์ถ˜ํ–ฅ๊ฐ€ ์ค‘ ์ด๋ณ„๊ฐ€์— ๋‚˜ํƒ€๋‚˜๋Š” โ€˜ใ…กโ€™ ๋ฐœ์Œ์˜ โ€˜ใ…“โ€™ ๋ฐœ์Œ์œผ๋กœ์˜ ์Œ์šด๋ณ€ํ™” ์–‘์ƒ์— ๊ด€ํ•œ ์—ฐ๊ตฌ์ด๋‹ค. ์‹œ๋Œ€๋ณ„ ์Œ์šด๋ณ€ํ™” ์–‘์ƒ์„ ํŒŒ์•…ํ•˜๊ธฐ ์œ„ํ•ด ์ •์ •๋ ฌ์ œ ์ถ˜ํ–ฅ๊ฐ€์˜ 1์„ธ๋Œ€ ๋ช…์ฐฝ ์ •์ •๋ ฌ, 2์„ธ๋Œ€ ๋ช…์ฐฝ ๊น€์—ฌ๋ž€, 3์„ธ๋Œ€ ๋ช…์ฐฝ ์ตœ์Šนํฌ์˜ ์ฐฝ๋ณธ์„ ๋น„๊ตํ•˜์—ฌ โ€˜ใ…กโ€™ ๋ฐœ์Œ์˜ โ€˜ใ…“โ€™ ๋ฐœ์Œ์œผ๋กœ์˜ ์Œ์šด๋ณ€ํ™” ๋นˆ๋„๋ฅผ ์‚ดํŽด๋ณด์•˜์œผ๋ฉฐ, ์‹œ๊น€์ƒˆ, ์Œ์ ˆ์˜ ๊ฐ€์ฐฝ ๊ธธ์ด ๋ฐ ๋ง๋ถ™์ž„์ƒˆ, ์ธ์ ‘ ์Œ์šด๊ณผ์˜ ๊ด€๊ณ„๋ฅผ ํ†ตํ•ด ์Œ์šด๋ณ€ํ™”์˜ ์š”์ธ์„ ๋ฐํžˆ๊ณ ์ž ํ•˜์˜€๋‹ค. ์ •์ •๋ ฌ, ๊น€์—ฌ๋ž€, ์ตœ์Šนํฌ์˜ ์ถ˜ํ–ฅ๊ฐ€ ์ค‘ ์ด๋ณ„๊ฐ€ ์ฐฝ๋ณธ์„ ๋น„๊ตํ•œ ๊ฒฐ๊ณผ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. ์ฒซ์งธ, ์„ธ ์ฐฝ๋ณธ ์ค‘ ์ด๋ณ„๊ฐ€ ์ดˆ์•ž์— ๋‚˜ํƒ€๋‚˜๋Š” โ€˜ใ…ก โ‡’ ใ…“โ€™ ์Œ์šด๋ณ€ํ™”๋Š” ์ •์ •๋ ฌ ์ฐฝ๋ณธ๊ณผ ๊น€์—ฌ๋ž€ ์ฐฝ๋ณธ์—์„œ ๋น„์Šทํ•œ ๋นˆ๋„๋กœ ๋‚˜ํƒ€๋‚ฌ๊ณ  ์ตœ์Šนํฌ ์ฐฝ๋ณธ์—์„œ๋Š” 2๋ฐฐ ์ด์ƒ ๋งŽ์ด ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๋‘˜์งธ, ์‹œ๊น€์ƒˆ ์ธก๋ฉด์—์„œ๋Š” ๊บพ๋Š”๋ชฉ, ํ‡ด์„ฑ, ๋– ๋Š”๋ชฉ, ๋‹ค๋ฃจ์น˜๋Š”๋ชฉ์ด ์Œ์šด๋ณ€ํ™”์— ์˜ํ–ฅ์„ ์ฃผ์—ˆ์œผ๋ฉฐ ๊ทธ ์ค‘ ๊บพ๋Š”๋ชฉ์˜ ์˜ํ–ฅ์„ ๋ฐ›์•„ ๋ณ€ํ™”ํ•œ ๋นˆ๋„๊ฐ€ ๊ฐ€์žฅ ๋งŽ์•˜๋‹ค. ์…‹์งธ, ์Œ์ ˆ์˜ ๊ฐ€์ฐฝ ๊ธธ์ด ๋ฐ ๋ง๋ถ™์ž„์ƒˆ ์ธก๋ฉด์—์„œ๋Š” ํ•œ ์Œ์ ˆ์„ ๊ธธ๊ฒŒ ๋ถ€๋ฅด๋ฉด์„œ ์†Œ๋ฆฌ๋ฅผ ํž˜์ฃผ์–ด ๋ฐ€์–ด๋‚ด๋Š” ๊ฒฝ์šฐ, ๋ง๋ถ™์ž„์ƒˆ์˜ ๊ธธ์ด๊ฐ€ ์žฅ-๋‹จ-์žฅ์˜ ์ˆœ์„œ๋กœ ๋ณ€ํ™”ํ•˜๋Š” ๊ฒฝ์šฐ, ์ผ์ •ํ•˜๊ฒŒ ๊ธธ๊ฒŒ ๋ถ€๋ฅด๋‹ค๊ฐ€ ๋งˆ์ง€๋ง‰ ์Œ์ ˆ์„ ๋” ๊ธธ๊ฒŒ ๋ถ€๋ฅด๋Š” ๊ฒฝ์šฐ, ๊ทธ๋ฆฌ๊ณ  2์Œ์ ˆ ์‚ฌ์„ค์˜ ๋ง๋ถ™์ž„์ƒˆ๊ฐ€ ๋‹จ-์žฅ์œผ๋กœ ๋ณ€ํ™”ํ•˜๋Š” ๊ฒฝ์šฐ์— ์Œ์šด๋ณ€ํ™”๊ฐ€ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๋„ท์งธ, ์ธ์ ‘ ์Œ์šด์„ ์‚ดํŽด๋ณธ ๊ฒฐ๊ณผ, โ€˜ใ…กโ€™ ์Œ์ ˆ์˜ ์•ž ์Œ์ ˆ ๋ชจ์Œ์ด ์ค‘๋ชจ์Œ โ€˜ใ…“โ€™์™€ ๊ฐ™์€ ์ค‘๋ชจ์Œ์ด๊ฑฐ๋‚˜ ๊ณ ๋ชจ์Œ โ€˜ใ…กโ€™์˜ ๋Œ€์ฒ™์ ์— ์žˆ๋Š” ์ €๋ชจ์Œ์ธ ๊ฒฝ์šฐ โ€˜ใ…ก โ‡’ ใ…“โ€™ ์Œ์šด๋ณ€ํ™”๊ฐ€ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๋˜ํ•œ ์ด์–ด์ง€๋Š” ๋ฐ›์นจ์ด ์žˆ๋Š” ๊ฒฝ์šฐ, ๋ช…์‚ฌยท๋Œ€๋ช…์‚ฌ๋ฅผ ๊พธ๋ฉฐ์ฃผ๋Š” ์กฐ์‚ฌ๋กœ ์‚ฌ์šฉ๋œ ๊ฒฝ์šฐ์—๋„ ์Œ์šด๋ณ€ํ™”๊ฐ€ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ด์™€ ๊ฐ™์ด ์ •์ •๋ ฌ์ œ ์ถ˜ํ–ฅ๊ฐ€ 1์„ธ๋Œ€์™€ 2์„ธ๋Œ€์— ๋งŽ์ง€ ์•Š์•˜๋˜ โ€˜ใ…ก โ‡’ ใ…“โ€™ ์Œ์šด๋ณ€ํ™”๊ฐ€ 3์„ธ๋Œ€์—์„œ 2๋ฐฐ ์ด์ƒ ๋งŽ์•„์ง„ ๊ฒƒ์€ ์‹œ๋Œ€๊ฐ€ ์ง€๋‚˜๋ฉด์„œ ์‹œ๊น€์ƒˆ, ์Œ์ ˆ์˜ ๊ฐ€์ฐฝ ๊ธธ์ด ๋ฐ ๋ง๋ถ™์ž„์ƒˆ, ์ธ์ ‘ ์Œ์šด๊ณผ ๊ฐ™์€ ์Œ์•…์  ์š”์†Œ์™€ ์–ธ์–ด์  ์š”์†Œ๋“ค์ด ๋ณตํ•ฉ์ ์œผ๋กœ ์˜ํ–ฅ์„ ์ฃผ์—ˆ๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ํŠนํžˆ ์ด๋Ÿฌํ•œ ์Œ์šด๋ณ€ํ™”๋Š” ํŒ์†Œ๋ฆฌ๊ฐ€ ๊ธด ์‹œ๊ฐ„ ๋…ธ๋ž˜ํ•˜๋Š” ์„ฑ์•… ์žฅ๋ฅด์ธ ๋งŒํผ ์‚ฌ์„ค์„ ์ œํ•œ๋œ ํ˜ธํก ์•ˆ์—์„œ ์šด์šฉํ•ด์•ผํ•˜๋Š” ํŠน์„ฑ๊ณผ๋„ ๊ด€๋ จ๋œ๋‹ค. ์ฐฝ์ž๋“ค์ด ๊ฒฝ์ œ์ ์ด๊ณ  ํšจ์œจ์ ์ธ ๋ฐœ์„ฑ์„ ์œ„ํ•ด ๋ฐœ์Œ์˜ ํŽธ์˜์„ฑ์„ ์ถ”๊ตฌํ•œ ๊ฒฐ๊ณผ ์ž…๋ชจ์–‘์ด ํฌ๊ฒŒ ๋ณ€ํ™”ํ•˜์ง€ ์•Š๋Š” ๋ฐฉํ–ฅ์œผ๋กœ ์Œ์šด๋ณ€ํ™”๊ฐ€ ์ผ์–ด๋‚œ ๊ฒƒ์ด๋‹ค. ๋˜ํ•œ, ๊ฐ€์‚ฌ ์ „๋‹ฌ์ด ์ค‘์š”ํ•œ ํŒ์†Œ๋ฆฌ์—์„œ ๋ช…์‚ฌยท๋Œ€๋ช…์‚ฌ์— ๋น„ํ•ด ์กฐ์‚ฌ๋Š” ๋ฐœ์Œ์ด ๋‹ฌ๋ผ์ ธ๋„ ์˜๋ฏธ ์ „๋‹ฌ์— ํฐ ์˜ํ–ฅ์„ ๋ฏธ์น˜์ง€ ์•Š๊ธฐ ๋•Œ๋ฌธ์— ์กฐ์‚ฌ์—์„œ ์Œ์šด๋ณ€ํ™”๊ฐ€ ์žฆ์€ ๊ฒƒ๋„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ด์™€ ๊ฐ™์ด ํŒ์†Œ๋ฆฌ์—์„œ ๋ฐœ์Œ์˜ ํŽธ์˜์„ฑ์„ ์ถ”๊ตฌํ•˜๊ฒŒ ๋œ ๊ฒƒ์€ ํŒ์†Œ๋ฆฌ ์™„์ฐฝ ๋ฌธํ™”์˜ ๋ณดํŽธํ™”์— ๋”ฐ๋ผ ๋ฐœ์„ฑ๊ณผ ๋ฐœ์Œ์„ ๊ฒฝ์ œ์ ์œผ๋กœ ์šด์šฉํ•˜๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•ด์กŒ๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ๋”ฐ๋ผ์„œ ์ •์ •๋ ฌ์ œ ์ถ˜ํ–ฅ๊ฐ€ ์ค‘ ์ด๋ณ„๊ฐ€์˜ โ€˜ใ…ก โ‡’ ใ…“โ€™ ์Œ์šด๋ณ€ํ™”๊ฐ€ ํ›„์„ธ๋Œ€์— ์ด๋ฅด๋Ÿฌ์„œ ๋” ๋งŽ์ด ๋‚˜ํƒ€๋‚˜๋Š” ๊ฒƒ์€ ๊ฐ€์‚ฌ ์ „๋‹ฌ์„ ์ค‘์š”์‹œํ•˜๋Š” ํŒ์†Œ๋ฆฌ์˜ ํŠน์„ฑ, ์˜ค๋žœ ์‹œ๊ฐ„ ๋…ธ๋ž˜ํ•˜๊ธฐ ์œ„ํ•ด ๊ฒฝ์ œ์ ์ด๊ณ  ํšจ์œจ์ ์ธ ๋ฐœ์„ฑ๊ณผ ๋ฐœ์Œ์„ ์ฐพ๋Š” ํŠน์„ฑ ๋“ฑ์ด ๋ฐ˜์˜๋˜๋ฉด์„œ ๋ณ€ํ™”๋˜์–ด์˜จ ๊ฒƒ์œผ๋กœ ๋ณผ ์ˆ˜ ์žˆ๋‹ค.This paper is a study on the patterns of phonological changes from โ€˜ใ…กโ€™(eu) pronunciation to โ€˜ใ…“โ€™(eo) pronunciation that appears in the song โ€œIbyeol-ga/Song of partingโ€ of pansori โ€œJeong jeong-ryeol style Chunhyang-gaโ€. To understand the changes in phonemes of โ€œJeong jeong-ryeol style Chunhyang-gaโ€ over time, I compared and analyzed the frequency of the phonological changes in the recordings of 1st generation master singer Jeong Jeong-ryeol, 2nd generation master singer Kim Yeo-ran, and 3rd generation master singer Choi Seung-hee. The followings are the results of comparitive analysis. First, the change from โ€˜ใ…กโ€™ to โ€˜ใ…“โ€™, which appears at the beginning of the three songs, was similar in frequency in the Jeong Jeong-ryeolโ€™s and Kim Yeo-ranโ€™s recordings, and more than doubled in Choi Seung-heeโ€™s recording. Second, in terms of the sigimsae(ornamentation), kkeongneun-mok(flow down sound), toeseong(fall of sound), tteouneun-mok(vibration) and daruchineun-mok(decorative sound) affected the phonological change. Among them, the kkeongneun-mok induces the most changes. Third, in terms of the length and the pronunciation of a syllable, phonological changes appeared in the following four cases: i) the singer pushes a sound away while singing a syllable long, ii) the length of mal-butchimsae changes in the order of long, short, and long, iii) the case that the singer maintains the length of syllables consistently and then sings the last syllable longer, and iv) the length of mal-butchimsae of two syllable lyrics changes in the order of short, then long. Fourth, an investigation on the adjacent phonemes presents that there is a change from โ€˜ใ…กโ€™ to โ€˜ใ…“โ€™ if the vowel of the syllable preceding the โ€˜ใ…กโ€™ syllable was a middle vowel such as โ€˜ใ…“โ€™, or a low vowel at the opposite point of the high vowel โ€˜ใ…กโ€™. In addition, the phonological change was also found when there is a subsequent final consonant or when the syllable is a proposition decorating nouns and pronouns. The number of changes in โ€˜ใ…กโ€™ sounds, which were not much in the first and second generations of Chunhyang recording, more than doubled in the third generation owing to musical and linguistic factors such as tone, vocal length, voice, and adjacent phonemes. It is also worthy to note that pansori consists of long stretches of singing, so the pansori singers should efficiently use the limited amount of breath. Thus, while pursuing convenient pronunciation for economical and efficient vocalization, phonological changes occurred which helped limit drastic changes of mouth shape. In addition, the pronunciation changes are frequent in postpositions since the changes in the postpositions do not significantly affect the ability to deliver the meaning of lyrics. As the wanchang (full rendition) pansori performance was popularized, the ability to manage vocalization and pronunciation economically became important and therefore, the pansori singers further pursued more convenient pronunciation. In conclusion, the phonological changes from โ€˜ใ…กโ€™ pronunciation to โ€˜ใ…“' pronunciation appeared more frequently in the recording of the later generation because the pansori singers needs to deliver the lyrics precisely and to find the economical and efficient pronunciation method for a long time performance at the same time.โ…  ์„œ๋ก  1 1. ๋ฌธ์ œ์ œ๊ธฐ ๋ฐ ์—ฐ๊ตฌ๋ชฉ์  1 2. ์—ฐ๊ตฌ๋ฒ”์œ„ ๋ฐ ์—ฐ๊ตฌ๋ฐฉ๋ฒ• 4 โ…ก โ€˜ใ…กโ‡’ใ…“โ€™ ์Œ์šด๋ณ€ํ™”์˜ ์‹œ๋Œ€๋ณ„ ์–‘์ƒ 12 1. 1์„ธ๋Œ€ ์ •์ •๋ ฌ 12 2. 2์„ธ๋Œ€ ๊น€์—ฌ๋ž€ 18 3. 3์„ธ๋Œ€ ์ตœ์Šนํฌ 24 4. ์†Œ๊ฒฐ 32 โ…ข. โ€˜ใ…ก โ‡’ ใ…“โ€™ ์Œ์šด๋ณ€ํ™”์˜ ์›์ธ ๋ถ„์„ 37 1. ์‹œ๊น€์ƒˆ์— ์˜ํ•œ ๋ณ€ํ™” 37 2. ์Œ์ ˆ์˜ ๊ฐ€์ฐฝ ๊ธธ์ด์™€ ๋ง๋ถ™์ž„์ƒˆ์— ์˜ํ•œ ๋ณ€ํ™” 45 3. ์ธ์ ‘ ์Œ์šด์— ์˜ํ•œ ๋ณ€ํ™” 54 4. ์†Œ๊ฒฐ 60 โ…ฃ. ๊ฒฐ๋ก  62 ์ฐธ๊ณ  ๋ฌธํ—Œ 65 Abstract 68 ๋ถ€๋ก์•…๋ณด 71์„
    corecore