39 research outputs found

    ์ง„๊ณตํฌ์žฅํ•œ ๊ฑด์‹์ˆ™์„ฑ ์šฐ์œก์˜ ๋ƒ‰์žฅ ๋ณด๊ด€ (4ยฐC) ์ค‘ ์ €์žฅ์•ˆ์ •์„ฑ ๊ทœ๋ช…

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๋†์—…์ƒ๋ช…๊ณผํ•™๋Œ€ํ•™ ๋†์ƒ๋ช…๊ณตํ•™๋ถ€, 2019. 2. ์กฐ์ฒ ํ›ˆ.๋ณธ ์—ฐ๊ตฌ์˜ ๋ชฉ์ ์€ ๋ฏธ์ƒ๋ฌผ ์ƒ์žฅ ๋ณ€ํ™”์™€ ๋ฌผ๋ฆฌํ™”ํ•™์  ๋ฐ ๊ด€๋Šฅ์  ํ‰๊ฐ€๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜์—ฌ ์ง„๊ณตํฌ์žฅ๋œ ๊ฑด์‹์ˆ™์„ฑ ์šฐ์œก์˜ ์ €์žฅ์•ˆ์ •์„ฑ๊ณผ ์œ ํ†ต๊ธฐํ•œ์„ ํ™•์ธํ•˜๊ณ ์ž ํ•œ๋‹ค. ์ด 9๋งˆ๋ฆฌ์˜ ์†Œ ๋„์ฒด(3๋“ฑ๊ธ‰ ํ™€์Šคํƒ€์ธ)์—์„œ 28์ผ ๋™์•ˆ 4ยฐC, 75% ์ƒ๋Œ€์Šต๋„, 2.5 m/s ํ’์†์˜ ์กฐ๊ฑด์œผ๋กœ ๊ฑด์‹์ˆ™์„ฑ์„ ์™„๋ฃŒํ•œ ์ฑ„๋์„ ๋ณธ ์‹คํ—˜์„ ์œ„ํ•ด ์‚ฌ์šฉํ•˜์˜€๋‹ค. ๊ฑด์‹์ˆ™์„ฑ ์šฐ์œก์˜ ๋ฐ”๊นฅ ๋ถ€๋ถ„(ํฌ๋Ÿฌ์ŠคํŠธ)์„ ์ œ๊ฑฐํ•œ ๋’ค ์‹คํ—˜์„ ์œ„ํ•ด ์ง„๊ณตํฌ์žฅ ํ•˜์—ฌ 21์ผ๊ฐ„ ๋ƒ‰์žฅ์˜จ๋„์—์„œ ๋ณด๊ด€ํ•˜์˜€์œผ๋ฉฐ, ๋ฏธ์ƒ๋ฌผ ์„ฑ์žฅ, pH, ํœ˜๋ฐœ์„ฑ ์—ผ๊ธฐํƒœ ์งˆ์†Œ(VBN), ์ง€๋ฐฉ์‚ฐํ™” ๋ฐ ๊ด€๋Šฅํ‰๊ฐ€๋ฅผ ์‹ค์‹œํ•˜์˜€๋‹ค. ๊ทธ ๊ฒฐ๊ณผ, ์‹ํ’ˆ์˜ ์œ ํ†ต์•ˆ์ •์„ฑ์„ ์œ„ํ•ด ๊ฒ€์ถœ๋Ÿ‰์ด 6 log CFU/g ์ดํ•˜๋กœ ๊ทœ์ œ๋˜์–ด ์žˆ๋Š” ์ด ํ˜ธ๊ธฐ์„ฑ ๋ฏธ์ƒ๋ฌผ์€ ์ง„๊ณตํฌ์žฅ๋œ ๊ฑด์‹์ˆ™์„ฑ ์šฐ์œก์˜ ์ €์žฅ 7์ผ์ฐจ์™€ 14์ผ ์‚ฌ์ด์—์„œ ๊ทธ ์ˆ˜์ค€์„ ๋„˜์–ด์„ฐ๋‹ค. ํ•˜์ง€๋งŒ ํšŒ๊ท€๋ฐฉ์ •์‹์„ ํ†ตํ•ด ์ง„๊ณตํฌ์žฅ๋œ ๊ฑด์‹์ˆ™์„ฑ ์šฐ์œก์„ 11.5์ผ๋™์•ˆ ์•ˆ์ „ํ•˜๊ฒŒ ์ €์žฅํ•  ์ˆ˜ ์žˆ์Œ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋˜ํ•œ ์‹ํ’ˆ์˜ ๋ถ€ํŒจ ์ง€ํ‘œ๊ฐ€ ๋˜๋Š” pH ๋ฐ VBN์€ ์ €์žฅ 14์ผ์—์„œ 21์ผ ์‚ฌ์ด์— ์œ ์˜์ ์œผ๋กœ ๋ณ€ํ™”ํ•˜๋Š” ๋ฐ˜๋ฉด, ์ง€๋ฐฉ์‚ฐํŒจ๋„๋ฅผ ๋‚˜ํƒ€๋‚ด๋Š” 2-thiobarbitruic acid reactive substances(TBARS) ๊ฐ’์€ ๊ฐ์†Œํ•˜๋Š” ๊ฐ’์„ ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค. ์ง„๊ณตํฌ์žฅ๋œ ๊ฑด์‹์ˆ™์„ฑ ์šฐ์œก์˜ ๋ƒ‰์žฅ ์ €์žฅ ์ค‘ ์ ์ฐฉ์„ฑ์„ ์ œ์™ธํ•œ ๊ฒฝ๋„, ํƒ„์„ฑ, ์”นํž˜์„ฑ ๋ฐ ์‘์ง‘์„ฑ๊ณผ ๊ฐ™์€ ๋ฌผ๋ฆฌํ™”ํ•™์  ๋ณ€ํ™”๋Š” ์œ ์˜์ ์œผ๋กœ ๋ณ€ํ•˜๋Š” ๋ฐ˜๋ฉด, ์‹์œก์˜ ์™ธ๊ด€, ํ–ฅ, ๋ง›, ๊ทธ๋ฆฌ๊ณ  ์—ฐ๋„์— ์ €์žฅ 21์ผ์ฐจ๋™์•ˆ ์œ ์˜์ ์ธ ๋ณ€ํ™”๊ฐ€ ์—†์—ˆ๋‹ค. ๋ฐ˜๋ฉด์—, ์ง„๊ณตํฌ์žฅ๋œ ๊ฑด์‹์ˆ™์„ฑ ์šฐ์œก์˜ ๋‹ค์ฆ™์„ฑ์€ ์ €์žฅ 14์ผ์— ์œ ์˜์ ์ธ ๊ฐ์†Œ๋ฅผ ๋ณด์˜€๊ณ , ์ „์ฒด์ ์ธ ๊ธฐํ˜ธ๋„ ๋˜ํ•œ 21์ผ์ฐจ์—์„œ ์œ ์˜์ ์œผ๋กœ ๊ฐ์†Œํ•˜์˜€๋‹ค. ๋”ฐ๋ผ์„œ ์ง„๊ณตํฌ์žฅ๋œ ๊ฑด์‹์ˆ™์„ฑ ์šฐ์œก์˜ ์œ ํ†ต๊ธฐํ•œ์€ ์ด ํ˜ธ๊ธฐ์„ฑ ๋ฏธ์ƒ๋ฌผ ์ˆ˜์˜ ์ˆ˜์ค€์„ ๋„˜์ง€ ์•Š๊ณ  ํ’ˆ์งˆ์— ๋ถ€์ •์ ์ธ ์˜ํ–ฅ์„ ๋ฏธ์น˜์ง€ ์•Š๋Š” ๋ƒ‰์žฅ ์กฐ๊ฑด ํ•˜์—์„œ 11์ผ๋™์•ˆ ์œ ํ†ต ๊ฐ€๋Šฅํ•  ๊ฒƒ์œผ๋กœ ์‚ฌ๋ฃŒ๋œ๋‹ค.Recently, the production of dry-aged beef has been increasing worldwide due to consumers interest in the product. Therefore, appropriate condition for its distribution is important to supply dry-aged beef without quality deterioration. However, most producers are not aware of the changes in dry-aged beef with different packaging methods after completion of aging period and do not have any guideline for its storage. Therefore, the objective of this study was to investigate the storage stability of vacuum-packaged dry-aged beef based on the changes in microbial growth and physicochemical and sensory properties during refrigerated condition (4ยฐC). A total of nine sirloins were taken from nine beef carcasses (Holstein steer, quality grade 3) and dry aged for 28 days (temperature, 4ยฐCrelative humidity, 75%air flow velocity, 2.5 m/s). After the completion of dry aging, the samples were trimmed off the dried surface, vacuum-packaged, and stored for 21 days at refrigerated condition (4ยฐC) for the analyses of microbial growth, pH, volatile basic nitrogen (VBN), 2-thiobarbituric acid reactive substances (TBARS), and sensory evaluation. As a result, the total aerobic bacterial (TAB) count was significantly increased until day 14 and exceeded 6 log CFU/g possibly at 11 days of storage. pH and VBN content were significantly changed between days 14 and 21, whereas TBARS value was constant (P < 0.05). n the sensory evaluation juiciness and overall acceptability of vacuum-packaged dry-aged beef were significantly decreased at 14 and 21 days of storage, respectively, while others showed no difference. Therefore, the vacuum-packaged dry-aged beef could be stored 11 days at 4ยฐC without any adverse effect on its microbial level and sensory quality.Chapter I. General introduction 1 1.1. Dry aging of beef 1 1.1.1. Aging type 1 1.1.1.1. Beef aging 1 1.1.1.2. Wet aging 2 1.1.1.3. Dry aging 3 1.1.2. Dry aging process condition 4 1.1.2.1. Aging time 4 1.1.2.2. Temperature 5 1.1.2.3. Air flow 6 1.1.2.4. Relative humidity 7 1.1.3. Microbiology in dry-aged beef 8 1.1.3.1. Microorganisms and their growth during dry aging process 8 1.1.3.2. Limitation in shelf-life establishment of dry-aged beef 9 1.2. Shelf life of beef 12 1.2.1. Spoilage in beef 12 1.2.1.1. Microbial spoilage 12 1.2.1.2. Chemistry spoilage 12 1.2.2. Factors affecting spoilage 13 1.2.2.1. Packaging system 13 1.2.2.2. Temperature 14 1.2.3. Shelf-life of dry-aged beef 15 1.2.3.1. Current studies in the shelf-life of dry-aged beef 15 Chapter II. Storage stability of vacuum-packaged dry-aged beef during refrigerated condition (4C) 18 2.1. Introduction 18 2.2. Materials and methods 20 2.2.1. Dry-aging process and packaging conditions. 20 2.2.2. Microbial growth 21 2.2.3. Physicochemical properties 21 2.2.3.1. pH 21 2.2.3.2. Volatile basic nitrogen (VBN) 22 2.2.3.3. 2-Thiobarbituric acid reactive substances (TBARS) value 22 2.2.3.4. Instrumental color 23 2.2.3.5. Myoglobin (Mb) content 24 2.2.3.6. Texture profile analysis 24 2.2.3.7. Proteolysis index 24 2.2.4. Sensory property 25 2.2.5. Statistical analysis 26 2.3. Results and discussion 27 2.3.1. Microbial growth 27 2.3.2. Physicochemical properties 32 2.3.2.1. Spoilage indicator 32 2.3.2.2. TBARS 33 2.3.2.3. Instrumental color and Mb content 36 2.3.2.4. Texture profile analysis 42 2.3.2.5. Proteolysis index 44 2.3.3. Sensory property 46 2.4. Conclusion 49 References 50 Summary in Korean 62Maste

    ๊ณก์„  ์œ ๋กœ์—์„œ์˜ ๋น„๋“ฑ ์—ด์ „๋‹ฌ์„ ์ด์šฉํ•œ ์ „๊ธฐ์ž๋™์ฐจ์šฉ ๋ชจํ„ฐ ์—ด๊ด€๋ฆฌ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ณต๊ณผ๋Œ€ํ•™ ๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€,2019. 8. ๊น€๋ฏผ์ˆ˜.In this study, in order to improve motor cooling performance, flow boiling cooling was proposed, and experiments and simulations were conducted. Motor thermal management is important for performance improvement and failure prevention. Motor thermal management is becoming more and more important as the demand and power output of permanent magnet motor increases for eco-friendly vehicles. Due to the improved power output and reduced size, the heat loss of the motor increases and a new method is needed to replace the conventional water cooling method. For this reason, flow boiling cooling using existing cooling channel with refrigerant is proposed in this research. In order to apply flow boiling cooling with the motor cooling, study on the flow boiling characteristics in a curved channel is required. Therefore, the experiments of heat transfer with R245fa and R134a was conducted by copying the motor cooling channel and motor heat loss. Thereby, the heat transfer coefficient according to the location in the channel was obtained. The sudden drop of the heat transfer coefficient is observed based on the location, and bubble dynamics are used to predict bubble motion to account for the heat transfer coefficient variation. Moreover, actual bubble movement is investigated using high speed camera. As a result, it was confirmed that the heat transfer coefficient decreases when the bubble adheres to the heating surface and moves in the direction opposite to the main flow. In order to prevent the reduction of the heat transfer coefficient, it is necessary to control the mass flow rate appropriately. A lumped parameter thermal model for motor was developed to verify the performance of flow boiling cooling. Transient thermal analysis was performed by calculating the temperature and heat loss according to the position in the motor using the model. The performance of the flow boiling cooling was confirmed comparing the motor winding temperature and heat loss with the conventional water cooling method. Flow boiling cooling with the same pump power consumption condition could keep the motor winding temperature 6.3oC lower than water cooling. Furthermore, the motor power output can be improved by 6.0% without increasing pump power consumption. In order to apply the proposed method to actual vehicle, an integrated system is proposed that uses refrigerant from existing heat pump system. The performance of the cabin thermal management and motor cooling is calculated and compared for both the PCVC (Parallel Cooling Vapor Compression) system and LPVC (Liquid Pump and Vapor Compressor) system. By pumping the refrigerant from the outlet of the condenser, the LPVC system presented high performance regardless of the season. The method proposed in this research can be integrated to the existing vehicle system. It greatly improves the motor cooling performance compared to the conventional method. Therefore, this method will improve the performance and the safety significantly of the eco-friendly vehicle.๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋ชจํ„ฐ์˜ ๋ƒ‰๊ฐ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•ด ์œ ๋™ ๋น„๋“ฑ ๋ƒ‰๊ฐ ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•˜๊ณ  ์ด์— ๋Œ€ํ•œ ์‹คํ—˜๊ณผ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ์‹ค์‹œํ–ˆ๋‹ค. ๋ชจํ„ฐ ์—ด๊ด€๋ฆฌ๋Š” ์„ฑ๋Šฅ ํ–ฅ์ƒ๊ณผ ๊ณ ์žฅ ๋ฐฉ์ง€๋ฅผ ์œ„ํ•ด ๋งค์šฐ ์ค‘์š”ํ•˜๋‹ค. ์˜๊ตฌ์ž์„ํ˜• ๋ชจํ„ฐ์˜ ์ˆ˜์š”์™€ ์ถœ๋ ฅ์ด ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ ๋ชจํ„ฐ ์—ด๊ด€๋ฆฌ๋Š” ์ ์  ๋” ์ค‘์š”ํ•ด์ง€๊ณ  ์žˆ๋‹ค. ์ถœ๋ ฅ์ด ํ–ฅ์ƒ๋˜๊ณ  ํฌ๊ธฐ๊ฐ€ ์ž‘์•„์ง€๊ธฐ ๋•Œ๋ฌธ์— ๋ชจํ„ฐ์˜ ์—ด ์†์‹ค์ด ์ฆ๊ฐ€ํ•˜์—ฌ ๊ธฐ์กด์˜ ์ˆ˜๋ƒ‰ ๋ฐฉ์‹์„ ๋Œ€์ฒดํ•˜๋Š” ์ƒˆ๋กœ์šด ๋ƒ‰๊ฐ ๋ฐฉ์‹์ด ํ•„์š”ํ•˜๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ธฐ์กด์˜ ๋ƒ‰๊ฐ ์œ ๋กœ์— ๋ƒ‰๋งค๋ฅผ ์ด์šฉํ•˜๋Š” ์œ ๋™ ๋น„๋“ฑ ๋ƒ‰๊ฐ ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ์œ ๋™ ๋น„๋“ฑ ๋ƒ‰๊ฐ์„ ๋ชจํ„ฐ ๋ƒ‰๊ฐ์— ์ ์šฉํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๊ณก์„  ์œ ๋กœ์—์„œ์˜ ์œ ๋™ ๋น„๋“ฑ ํŠน์„ฑ์— ๊ด€ํ•œ ์—ฐ๊ตฌ๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ๋”ฐ๋ผ์„œ R245fa์™€ R134a๋ฅผ ์ด์šฉํ•œ ์—ด์ „๋‹ฌ ์‹คํ—˜์„ ๋ชจํ„ฐ ๋ƒ‰๊ฐ ์ฑ„๋„๊ณผ ๋ชจํ„ฐ ์—ด์†์‹ค์„ ๋ชจ์‚ฌํ•จ์œผ๋กœ์จ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ์œ ๋กœ ๋‚ด์˜ ์œ„์น˜์— ๋”ฐ๋ฅธ ๊ตญ์†Œ ์—ด์ „๋‹ฌ ๊ณ„์ˆ˜๋ฅผ ๋„์ถœํ•˜์˜€๋‹ค. ์—ด์ „๋‹ฌ ๊ณ„์ˆ˜์˜ ๋ณ€ํ™”๊ฐ€ ์ฑ„๋„ ๋‚ด ์œ„์น˜์— ๋”ฐ๋ผ ๊ด€์ฐฐ๋˜๋Š”๋ฐ, ์ด๋ฅผ ์„ค๋ช…ํ•˜๊ธฐ ์œ„ํ•ด ๊ธฐํฌ์˜ ๋™์  ๊ฑฐ๋™์„ ์˜ˆ์ธกํ•˜์˜€๋‹ค. ๋˜ํ•œ ์‹ค์ œ ๊ธฐํฌ์˜ ์›€์ง์ž„์„ ์ดˆ๊ณ ์† ์นด๋ฉ”๋ผ๋กœ ์ดฌ์˜ํ•˜์˜€๋‹ค. ๊ทธ ๊ฒฐ๊ณผ, ๊ธฐํฌ๊ฐ€ ๊ฐ€์—ด๋ฉด์— ๋ถ™์€ ์ฑ„๋กœ ์ฃผ ์œ ๋™๊ณผ ๋ฐ˜๋Œ€ ๋ฐฉํ–ฅ์œผ๋กœ ์ด๋™ํ•˜๋ฉด ์—ด์ „๋‹ฌ ๊ณ„์ˆ˜๊ฐ€ ๊ฐ์†Œํ•˜๋Š” ๊ฒƒ์ด ํ™•์ธ๋˜์—ˆ๋‹ค. ๋”ฐ๋ผ์„œ ์—ด์ „๋‹ฌ ๊ณ„์ˆ˜์˜ ๊ฐ์†Œ๋ฅผ ๋ฐฉ์ง€ํ•˜๊ธฐ ์œ„ํ•ด ์งˆ๋Ÿ‰ ์œ ๋Ÿ‰์„ ์ ์ ˆํ•˜๊ฒŒ ์ œ์–ดํ•˜์—ฌ ๊ธฐํฌ๋ฅผ ๋ฐ€์–ด๋‚ผ ์ˆ˜ ์žˆ๋„๋ก ์šด์ „ํ•  ํ•„์š”๊ฐ€ ์žˆ๋‹ค. ์œ ๋™ ๋น„๋“ฑ ๋ƒ‰๊ฐ ์„ฑ๋Šฅ์„ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•ด ๋ชจํ„ฐ์˜ ์ง‘์ค‘ํ˜• ์—ด๋ชจ๋ธ์„ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ์ด ๋ชจ๋ธ์„ ์ด์šฉํ•˜์—ฌ ๋ชจํ„ฐ์˜ ์œ„์น˜์— ๋”ฐ๋ผ ์˜จ๋„์™€ ์—ด์†์‹ค์„ ๊ณ„์‚ฐํ•˜์—ฌ ๊ณผ๋„ ์—ดํ•ด์„์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ๋ชจํ„ฐ์˜ ๊ถŒ์„  ์˜จ๋„์™€ ์—ด์†์‹ค์„ ๊ธฐ์กด์˜ ์ˆ˜๋ƒ‰ ๋ฐฉ์‹๊ณผ ๋น„๊ตํ•ด ์œ ๋™ ๋น„๋“ฑ ๋ƒ‰๊ฐ ์„ฑ๋Šฅ์„ ํ™•์ธํ–ˆ๋‹ค. ๋™์ผํ•œ ํŽŒํ”„ ์†Œ๋ชจ ๋™๋ ฅ์„ ํ•„์š”๋กœ ํ•  ๋•Œ, ์œ ๋™ ๋น„๋“ฑ ๋ƒ‰๊ฐ ๋ชจํ„ฐ์˜ ๊ถŒ์„  ์˜จ๋„๋Š” ์ˆ˜๋ƒ‰ ๋ฐฉ์‹๋ณด๋‹ค ์ตœ๋Œ€ 4.6โ„ƒ ๋‚ฎ๊ฒŒ ์œ ์ง€๋  ์ˆ˜ ์žˆ๋‹ค. ๋™์ผํ•œ ๋ƒ‰๊ฐ ์„ฑ๋Šฅ์„ ์œ ์ง€ํ•  ๊ฒฝ์šฐ, ํŽŒํ”„ ์†Œ๋ชจ ๋™๋ ฅ์„ 92.0% ์ €๊ฐํ•  ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ ๋™์ผํ•œ ํŽŒํ”„ ์†Œ๋ชจ ๋™๋ ฅ์œผ๋กœ ๊ธฐ์กด๋ณด๋‹ค ์ถœ๋ ฅ์ด 6.0% ํ–ฅ์ƒ๋œ ๋ชจํ„ฐ๋ฅผ ์•ˆ์ •์ ์œผ๋กœ ๋ƒ‰๊ฐํ•  ์ˆ˜ ์žˆ๋‹ค. ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•์„ ์‹ค์ œ ์ฐจ๋Ÿ‰์— ์ ์šฉํ•˜๊ธฐ ์œ„ํ•ด ๊ธฐ์กด์˜ ํžˆํŠธ ํŽŒํ”„ ์‹œ์Šคํ…œ์˜ ๋ƒ‰๋งค๋ฅผ ์ด์šฉํ•œ ํ†ตํ•ฉ ์‹œ์Šคํ…œ์ด ์ œ์•ˆ๋˜์—ˆ๋‹ค. ์ฐจ๋Ÿ‰ ์‹ค๋‚ด์˜ ์—ด๊ด€๋ฆฌ ๋ฐ ๋ชจํ„ฐ ๋ƒ‰๊ฐ ์„ฑ๋Šฅ์„ PCVC (Parallel Cooling Vapor Compression) ์‹œ์Šคํ…œ๊ณผ LPVC (Liquid Pump and Vapor Compressor) ์‹œ์Šคํ…œ ๊ฐ๊ฐ์— ๋Œ€ํ•ด ๊ณ„์‚ฐํ•˜์˜€๋‹ค. ๊ทธ ๊ฒฐ๊ณผ, ์‘์ถ•๊ธฐ ์ถœ๊ตฌ์—์„œ ๋ƒ‰๋งค๋ฅผ ๋Œ์–ด์™€ ๋ชจํ„ฐ ๋ƒ‰๊ฐ์— ์‚ฌ์šฉํ•˜๋Š” LPVC ์‹œ์Šคํ…œ์ด ๊ณ„์ ˆ์— ๊ด€๊ณ„์—†์ด ๋†’์€ ์„ฑ๋Šฅ์„ ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ ์ œ์•ˆ๋œ ์œ ๋™ ๋น„๋“ฑ ๋ƒ‰๊ฐ ๋ฐฉ๋ฒ•์€ ๊ธฐ์กด์˜ ์ฐจ๋Ÿ‰ ์‹œ์Šคํ…œ์— ์‰ฝ๊ฒŒ ํ†ตํ•ฉ๋  ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ ๊ธฐ์กด ์ˆ˜๋ƒ‰ ๋ฐฉ์‹์— ๋น„ํ•ด ๋ชจํ„ฐ์˜ ๋ƒ‰๊ฐ ์„ฑ๋Šฅ์ด ํฌ๊ฒŒ ํ–ฅ์ƒ๋œ๋‹ค. ๋”ฐ๋ผ์„œ ์œ ๋™ ๋น„๋“ฑ์„ ์ด์šฉํ•œ ๋ชจํ„ฐ ๋ƒ‰๊ฐ ๋ฐฉ๋ฒ•์€ ์นœํ™˜๊ฒฝ ์ž๋™์ฐจ์˜ ์„ฑ๋Šฅ๊ณผ ์•ˆ์ „์„ฑ์„ ํ–ฅ์ƒ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋‹ค.Chapter 1. Introduction 1 1.1 Background of the study 1 1.2 Literature survey 8 1.2.1 Boiling heat transfer in curved channel 8 1.2.2 Thermal management for electric motor 10 1.2.3 Thermal management system for electric vehicle 13 1.3 Objective and scopes 15 Chapter 2. Experimental study on the flow boiling of R245fa and R134a in curved rectangular channel 18 2.1 Introduction 18 2.2 Experimental setup 19 2.2.1 Experimental apparatus 19 2.2.2 Design of test section 20 2.2.3 Test condition 26 2.3 Data reduction and validation 27 2.3.1 Calculating local pressure 27 2.3.2 Calculating local heat transfer coefficient 33 2.3.3 Experimental setup validation 36 2.4 Results and discussion 37 2.4.1 Flow boiling heat transfer coefficient of R245fa and R134a 37 2.4.2 Bubble movement and heat transfer characteristics in curved rectangular channel 53 2.5 Summary 69 Chapter 3. Numerical study on the motor cooling performance of flow boiling using lumped thermal model 71 3.1 Introduction 71 3.2 Theoretical model 73 3.2.1 Thermal circuit in the cylindrical coordinate 73 3.2.2 Loss calculation model 80 3.2.3 Heat transfer model for fluid 85 3.2.4 Fully lumped parameter thermal model for motor 89 3.3 Results and discussion 96 3.3.1 Model validation 96 3.3.2 Temperature distribution inside the motor 99 3.3.3 Cooling performance comparison 107 3.3.4 Dynamic cooling performance 112 3.4 Summary 115 Chapter 4. Parametric study on the integrated system with refrigerant pump and vapor compressor for electric vehicle 117 4.1 Introduction 117 4.2 Integrated heat pump system proposal 118 4.2.1 Basic heat pump system for electric vehicle 118 4.2.2 Parallel Cooling Vapor Compression (PCVC) system 121 4.2.3 Integrated system with Liquid Pump and Vapor Compressor (LPVC) 123 4.3 Modeling 126 4.3.1 Compressor and expansion valve 126 4.3.2 Condenser and evaporator 128 4.3.3 Plate heat exchanger 130 4.3.4 Cycle modeling 132 4.4 Results and discussion 139 4.4.1 Comparison of characteristics and performance in the summer season 139 4.4.2 Comparison of characteristics and performance in the winter season 146 4.5 Summary 153 Chapter 5. Concluding remarks 155 References 158 Abstract (in Korean) 172Docto

    Fatigue crack growth characteristics of nitrogen-alloyed type 347 stainless steel under operating conditions of a pressurized water reactor

    No full text
    The fatigue crack growth behavior of Type 347 (S347) and Type 347N (S347N) stainless steel was evaluated under the operating conditions of a pressurized water reactor (PWR). These two materials showed different fatigue crack growth rates (FCGRs) according to the changes in dissolved oxygen content and frequency. Under the simulated PWR conditions for normal operation, the FCGR of S347N was lower than that of S347 and insensitive to the changes in PWR water conditions. The higher yield strength and better corrosion resistance of the nitrogen-alloyed Type 347 stainless steel might be a main cause of slower FCGR and more stable properties against changes in environmental conditions. (C) 2017 Korean Nuclear Society, Published by Elsevier Korea LLC.This work was supported by grant No. NRF-2017M2A8A4015156 funded by the Korean government (MSIP)

    ๋‹จ์„ธํฌ ์ „๊ธฐ ์˜๋™๋ฒ•์œผ๋กœ ๋ถ„์„ํ•œ 1,2,4-Benzenetriol์— ์˜ํ•œ HL-60 ์„ธํฌ์˜ DNA์†์ƒ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋ณด๊ฑด๋Œ€ํ•™์› :๋ณด๊ฑดํ•™๊ณผ ๋ณด๊ฑดํ•™์ „๊ณต,2000.Maste

    (The)Meaning of the school career in the elderly learning

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ต์œกํ•™๊ณผ ํ‰์ƒ๊ต์œก์ „๊ณต,2005.Maste

    ๊ต์ˆ˜ ์นผ๋Ÿผ-์ฒด์œกํ™œ๋™๊ณผ ๋„์ „

    No full text

    The Effect of UCC Experience on Evaluation toward High-tech Products

    No full text

    Evaluation of Usability for Mobile Streaming Application

    No full text
    corecore