23 research outputs found

    Analysis of the parameters affecting LiDAR intensity and its application in determining rock joint surface alteration

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์—๋„ˆ์ง€์‹œ์Šคํ…œ๊ณตํ•™๋ถ€, 2020. 8. ์ „์„์›.Rock mass characterization is required in many rock engineering projects. Among the parameters used to determine the rock mass rating (RMR), the discontinuity of rock mass, which includes the separation and weathering of the discontinuity surfaces, accounts for the largest share. In another method of classifying rock mass, the Geological Strength Index (GSI), the joint alteration factor (), which also indicates the discontinuity condition of rock mass such as the weathering of the discontinuity and the state of the filling, has a greater influence than any other parameters. There is a tendency lately for the classification of rock mass, which have previously been carried out in a variety of manual ways, to be automated due to the development of photogrammetry and light detection and ranging (LiDAR) technologies. For characterizing rockmass using LiDAR, qualities of rock discontinuities such as joint spacing, waviness, smoothness, and alteration should be determined. Estimating joint spacing, waviness, and smoothness factor by LiDAR have been studied using quantitative point cloud coordinates, but the task of estimating the joint alteration factor is more subjective. As previously mentioned, the effect of the joint alteration factor on the overall GSI is large. This study examines accurate approach for determining joint alteration factor from LiDAR intensity data, which is the return strength of the laser pulse that generated the point. Previous studies have found that the reflective percentages or intensity of LiDAR are high for hard and less weathered rocks and small for more weathered and weak rocks. Therefore, through a number of laboratory experiments, a method of determining the joint alteration factor using LiDAR intensity was formulated by analyzing the factors directly affecting LiDAR. Factors that were not directly related to rock weathering were corrected. Laboratory experiments were performed to assess the impact of the scanning distance, incidence angle, roughness, micro-roughness, RGB color values, water saturation, and the mechanical properties of the rock on the LiDAR intensity and to ascertain how they affect it. As a result, it was concluded that the direct relationship between LiDAR intensity and the joint alteration factor could be obtained by correcting the scan distance, incidence angle, and RGB color values, which are the most influential factors to the LiDAR intensity when determining the joint alteration factor. The separation of a discontinuity and the type of filling material also have a significant influence on the and on LiDAR intensity and this was what the laboratory experiment was also designed to measure. The separation was increased from 1 mm to 6 mm at 1 mm interval to measure the change in intensity. Bentonite and sand were used as a filling material to examine how they affected the intensity. As a result of the experiment, it was concluded that it was possible to estimate which and how much filling material existed through the degree of the change in the intensity in the separation or in the filling position. A comparison of the hand-mapped data of rock alteration and the LiDAR intensity at three sites of rock slope also indicated a good relationship between intensity and joint alteration factor. The LiDAR intensity was high in the case of rock mass that was estimated to have a large GSI joint alteration factor or discontinuity condition within the RMR by means of hand mapping, and the degree to which this was the case was more apparent after correction on distance, incidence angle, and RGB value. Although correcting for each point would be the ideal, it would take significant time and effort. Consequently, for convenient and quick rock mass classification, the average value of the scanning distance, the incidence angle, or the RGB can be used alternatively.RMR์„ ์‚ฐ์ •ํ•˜๊ธฐ ์œ„ํ•ด ์‚ฌ์šฉ๋˜๋Š” ์—ฌ๋Ÿฌ ์ธ์ž ์ค‘ ๋ถˆ์—ฐ์†๋ฉด์˜ ํ‹ˆ์ƒˆ, ํ’ํ™”๋„ ๋“ฑ์„ ํฌํ•จํ•˜๋Š” ๋ถˆ์—ฐ์†๋ฉด ์ƒํƒœ๋Š” ๊ฐ€์žฅ ํฐ ๋น„์ค‘์„ ์ฐจ์ง€ํ•œ๋‹ค. ์•”๋ฐ˜ ๋ถ„๋ฅ˜๋ฅผ ์œ„ํ•œ ๋˜ ๋‹ค๋ฅธ ๋ฐฉ์‹์ธ GSI ์‚ฐ์ •์— ์žˆ์–ด์„œ๋„ joint alteration factor, ์ฆ‰ ๋ถˆ์—ฐ์†๋ฉด์˜ ํ’ํ™”๋„, ์ถฉ์ง„๋ฌผ ์ƒํƒœ ๋“ฑ ๋ถˆ์—ฐ์†๋ฉด ์ƒํƒœ ์ง€์ˆ˜๋Š” joint condition factor๋ฅผ ์ตœ๋Œ€ 10๋ฐฐ ์ฆ๊ฐ€์‹œํ‚ฌ ๋งŒํผ ๋‹ค๋ฅธ ์–ด๋–ค ์ง€์ˆ˜๋ณด๋‹ค ๊ทธ ์˜ํ–ฅ๋ ฅ์ด ํฌ๋‹ค. ๊ธฐ์กด ์ˆ˜๊ธฐ๋กœ ๋งŽ์ด ์ง„ํ–‰๋˜๋˜ ์•”๋ฐ˜ ๋ถ„๋ฅ˜๊ฐ€ photogrammetry, LiDAR ๋“ฑ์˜ ๊ธฐ์ˆ  ๋ฐœ์ „์œผ๋กœ ์ž๋™ํ™” ๋˜๊ณ  ์žˆ๋Š” ์ถ”์„ธ์ด๋‹ค. ๊ทธ ์ค‘ LiDAR๋ฅผ ์ด์šฉํ•ด ์•”๋ฐ˜ ๋ถ„๋ฅ˜๋ฅผ ํ•จ์— ์žˆ์–ด joint spacing, waviness, smoothness ๋“ฑ์€ ์ •๋Ÿ‰์ ์ธ ์ ๊ตฐ์˜ ์ขŒํ‘œ๋ฅผ ์ด์šฉํ•ด ์–ป๋Š” ์—ฐ๊ตฌ๊ฐ€ ์ด๋ฃจ์–ด์ง„ ๋ฐ” ์žˆ์œผ๋‚˜ joint alteration factor๋ฅผ ์‚ฐ์ •ํ•˜๋Š” ์ž‘์—…์€ ๋ณด๋‹ค ์ฃผ๊ด€์ ์œผ๋กœ ์‚ฐ์ • ์‹œ ์–ด๋ ค์›€์ด ์กด์žฌํ–ˆ๋‹ค. ์•ž์„œ ๋งํ–ˆ๋“ฏ์ด joint alteration factor๊ฐ€ ์ „์ฒด GSI์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์€ ํฌ๋ฏ€๋กœ, ๋”ฐ๋ผ์„œ LiDAR๋ฅผ ์ด์šฉํ•ด ์ด๋ฅผ ๋ณด๋‹ค hand mapping์— ๊ฐ€๊นŒ์›Œ์ง€๊ฒŒ ๊ตฌํ•˜๋Š” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•ด ์—ฐ๊ตฌํ•˜์˜€๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์„ ํ†ตํ•ด LiDAR์˜ ๋ฐ˜์‚ฌ ๊ฐ•๋„๋Š” ๋‹จ๋‹จํ•˜๊ณ  ํ’ํ™”๊ฐ€ ๋œ ๋œ ์•”๋ฐ˜์— ๋Œ€ํ•ด์„œ๋Š” ๊ทธ ๊ฐ’์ด ํฌ๊ณ  ๋งŽ์ด ํ’ํ™”๋˜๊ณ  ์•ฝํ•ด์ง„ ์•”๋ฐ˜์— ๋Œ€ํ•ด์„œ๋Š” ๊ทธ ๊ฐ’์ด ์ž‘์Œ์„ ์•Œ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋”ฐ๋ผ์„œ, ์—ฌ๋Ÿฌ ์‹ค๋‚ด ์‹คํ—˜์„ ํ†ตํ•ด LiDAR์— ์ง์ ‘์ ์œผ๋กœ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ์ธ์ž๋ฅผ ์‚ฐ์ •ํ•˜๊ณ  ๊ทธ ์ค‘ ์•”๋ฐ˜ ํ’ํ™”๋„์™€๋Š” ์ง์ ‘์ ์œผ๋กœ ๊ด€๋ จ ์—†๋Š” ์ธ์ž๋Š” ๋ณด์ •ํ•ด LiDAR ๋ฐ˜์‚ฌ ๊ฐ•๋„๋ฅผ ์ด์šฉํ•ด joint alteration factor๋ฅผ ๊ตฌํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์—ฐ๊ตฌํ–ˆ๋‹ค. LiDAR intensity์— ์ง์ ‘์ ์ธ ์˜ํ–ฅ์„ ์ฃผ๋Š” ์ธ์ž๋กœ ์ฃผ์‚ฌ ๊ฑฐ๋ฆฌ, ์ž…์‚ฌ๊ฐ, ๊ฑฐ์น ๊ธฐ, ์‚ฌํฌ๋ฅผ ์ด์šฉํ•œ ๋ฏธ์„ธ ๊ฑฐ์น ๊ธฐ, RGB ์ƒ‰์ƒ ๊ฐ’, ์•”์„ ๊ธฐ๋ณธ ๋ฌผ์„ฑ (UCS, ํƒ„์„ฑํŒŒ ์†๋„, ๊ณต๊ทน๋ฅ ), ์•”์„์„ ์ด๋ฃจ๋Š” ๊ด‘๋ฌผ ์กฐ์„ฑ, ํฌํ™”๋„๋ฅผ ์„ ์ •ํ•˜๊ณ  ์–ผ๋งˆ๋‚˜ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š”์ง€ ๊ณ ์ฐฐํ•˜๊ธฐ ์œ„ํ•ด ์ผ๋ จ์˜ ์‹ค๋‚ด ์‹คํ—˜์„ ์ˆ˜ํ–‰ํ–ˆ๋‹ค. LiDAR ๋ฐ˜์‚ฌ ๊ฐ•๋„์— ๊ฐ€์žฅ ์˜ํ–ฅ์„ ๋งŽ์ด ๋ฏธ์น˜๋Š” ์š”์ธ๋“ค์ธ ์ฃผ์‚ฌ ๊ฑฐ๋ฆฌ, ์ž…์‚ฌ๊ฐ, RGB ์ƒ‰์ƒ ๊ฐ’์„ ๋ณด์ •ํ•ด ๋ฐ˜์‚ฌ ๊ฐ•๋„์™€ joint alteration factor์˜ ์ง์ ‘์ ์ธ ๊ด€๊ณ„๋ฅผ ์‚ฐ์ •ํ–ˆ๋‹ค. ํ‹ˆ์ƒˆ ๊ฐ„๊ฒฉ, ์ถฉ์ง„๋ฌผ์˜ ์ข…๋ฅ˜ ์—ญ์‹œ ๋ฐ˜์‚ฌ ๊ฐ•๋„์— ๋งŽ์€ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š”๋ฐ, ์‹ค๋‚ด์—์„œ ํ‹ˆ์ƒˆ๋ฅผ 1 mm๋ถ€ํ„ฐ 6 mm๊นŒ์ง€ 1 mm ๊ฐ„๊ฒฉ์œผ๋กœ ๋Š˜๋ ค๊ฐ€๋ฉฐ ๋ฐ˜์‚ฌ ๊ฐ•๋„์˜ ๋ณ€ํ™”๋ฅผ ์ธก์ •ํ–ˆ๊ณ  ์ถฉ์ง„๋ฌผ๋กœ bentonite, sand๋ฅผ ์‚ฌ์šฉํ•ด ๊ฐ๊ฐ intensity์— ์–ด๋–ค ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š”์ง€ ์‚ดํŽด๋ณด์•˜๋‹ค. ์‹คํ—˜ ๊ฒฐ๊ณผ ํ‹ˆ์ƒˆ๋‚˜ ์ถฉ์ง„๋ฌผ ๊ตฌ๊ฐ„์—์„œ ๋ฐ˜์‚ฌ ๊ฐ•๋„๊ฐ€ ๋ณ€ํ•˜๋Š” ์ •๋„๋ฅผ ํ†ตํ•ด ์–ด๋–ค ์ถฉ์ง„๋ฌผ์ด ์ด์šฉ๋˜์—ˆ๋Š”์ง€ ์ถ”์ธกํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒฐ๋ก ์„ ๋‚ด๋ ธ๋‹ค. ๋ถˆ์—ฐ์†๋ฉด์˜ ๋ณ€์งˆ๋„๊ฐ€ ๋‹ค๋ฅธ ์„ธ ์•”๋ฐ˜ ์‚ฌ๋ฉด์„ LiDAR๋กœ ์Šค์บ”ํ•˜๊ณ  ๊ทธ ๋ฐ˜์‚ฌ ๊ฐ•๋„๋ฅผ ์–ป์–ด ์•ž์„œ ์–ธ๊ธ‰ํ•œ ์ธ์ž๋“ค์„ ๋ณด์ •ํ–ˆ๋‹ค. ๊ทธ ๊ฒฐ๊ณผ๋ฅผ hand mapping์„ ํ†ตํ•ด ์–ป์€ ๋ถˆ์—ฐ์†๋ฉด ๋ณ€์งˆ๋„์™€ ๋น„๊ตํ•ด๋ณธ ๊ฒฐ๊ณผ ๋ฐ˜์‚ฌ ๊ฐ•๋„๋Š” ๋ถˆ์—ฐ์†๋ฉด ๋ณ€์งˆ๋„๋ฅผ ๋ฒ”์œ„๋กœ ์‚ฐ์ •ํ•˜๊ธฐ์— ์ถฉ๋ถ„ํ–ˆ๋‹ค.Chapter 1. Introduction ................................................................. 1 1.1 Background .................................................................................. 1 1.2 Previous researches........................................................................ 2 1.2.1 GSI system for rock mass classification...........................................2 1.2.2 Relationship between the degree of weathering and LiDAR intensity ...........................................................................................................................7 1.3 Objectives .................................................................................. 10 Chapter 2. LiDAR Technology ...................................................... 11 2.1 Characteristics of LiDAR.............................................................. 11 2.2 LiDAR Intensity ......................................................................... 18 Chapter 3. Experimental work ..................................................... 21 3.1 Method Overview ........................................................................ 21 3.2 Laboratory experiments ................................................................ 21 3.2.1 Specimens used ..............................................................................21 3.2.2 Specification of the LiDAR used ...................................................29 Chapter 4. Results and Discussion................................................. 33 4.1 Relationship between LiDAR intensity and related variables ............... 33 4.1.1 Distance..........................................................................................33 4.1.2 Incidence angle...............................................................................35 4.1.3 JRC.................................................................................................37 4.1.4 Micro-roughness ............................................................................38 4.1.5 Degree of saturation .......................................................................40 4.1.6 Mechanical and physical properties ...............................................41 4.1.7 Mineral composition ......................................................................45 4.1.8 RGB value......................................................................................49 4.1.9 Separation.......................................................................................53 4.1.10 Filling material .............................................................................56 4.1.11 Summary ......................................................................................63 4.2 Application of LiDAR intensity to determination of the joint alteration factor determination .......................................................................... 65 4.2.1 GSI joint alteration factor...............................................................65 4.2.2 Field applications ...........................................................................65 Chapter 5. Conclusions ................................................................ 80 Reference ................................................................................... 83 Appendix A. LiDAR intensity of point clouds in each site before and after correction .................................................................................. 87 ์ดˆ ๋ก .................................................................................... 90Maste

    A Robust Stochastic Optimization Model for Petroleum Logistic Network

    Get PDF
    ๋‹ค์ˆ˜์˜ ์›์œ  ์„ ์ ํ•ญ์œผ๋กœ๋ถ€ํ„ฐ ์—ฌ๋Ÿฌ ์ •์œ ๊ณต์žฅ์œผ๋กœ ์ˆ˜์†ก๋œ ์›์œ ๋ฅผ ์ •์ œํ•˜์—ฌ ์ƒ์‚ฐํ•œ ์ œํ’ˆ์œ ๋ฅผ ๊ธ€๋กœ๋ฒŒ ์ˆ˜์š”์‹œ์žฅ์œผ๋กœ ๋ฐฐ๋ถ„ํ•˜๋Š” ์„์œ ๋ฌผ๋ฅ˜๋„คํŠธ์›Œํฌ์˜ ์ตœ์ ํ™”๋Š” ๊ธ€๋กœ๋ฒŒ ์„์œ  ๋ฉ”์ด์ €์˜ ์ค‘์š”ํ•œ ์˜์‚ฌ๊ฒฐ์ •๋ฌธ์ œ์ด๋‹ค. ์ด ๋…ผ๋ฌธ์€ ์ œํ’ˆ์œ  ์‹œ์žฅ์˜ ๊ฐ€๊ฒฉ, ์ˆ˜์†ก๋น„ ๋ฐ ์ˆ˜์š” ๋ณ€๋™์˜ ์˜ํ–ฅ์„ ๋ฐ˜์˜ํ•˜์—ฌ ์›์œ  ์ˆ˜์†ก, ์ •์ œ ๋ฐ ์ œํ’ˆ์œ  ๋ฐฐ๋ถ„์„ ์ตœ์ ํ™”ํ•˜๊ธฐ ์œ„ํ•œ ์„์œ ๋ฌผ๋ฅ˜๋„คํŠธ์›Œํฌ์˜ ๋กœ๋ฒ„์ŠคํŠธ ์ถ”๊ณ„์  ๋ชจํ˜•์„ ์ œ์‹œํ•œ๋‹ค. ๊ณ„์‚ฐ์‹คํ—˜์€ ์ œํ’ˆ์œ  ์‹œ์žฅ์˜ ๊ฐ€๊ฒฉ, ์ˆ˜์†ก๋น„ ๋ฐ ์ˆ˜์š” ๋ณ€๋™์— ๊ด€ํ•œ ์‹œ๋‚˜๋ฆฌ์˜ค ๊ธฐ๋ฐ˜์˜ ๋ฐ์ดํ„ฐ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์ตœ์ ํ™” ๋ชจํ˜•์— ์ ์šฉํ•˜์˜€์œผ๋ฉฐ, ๊ทธ ๊ฒฐ๊ณผ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์ œ์‹œํ•œ ์ตœ์ ํ™” ๋ชจํ˜•์˜ ์œ ์šฉ์„ฑ๊ณผ ํƒ€๋‹น์„ฑ์„ ๊ฒ€์ฆํ•˜์—ฌ ๋ณด๊ณ ํ•˜์˜€๋‹ค. |It is important for major oil companies to make decisions about the optimization of two-stage petroleum logistic networks which transport crude oil from loading sources to various other refineries and distribute them to the global market to satisfy demand. In this paper, a robust stochastic model of the petroleum logistics network is presented for optimized transportation refining distribution reflecting the effects of price, cost and demand fluctuations in the product market. Calculation experiments were applied to the optimization model using scenario-based data on price, cost and demand fluctuations in the product market. Based on the results, the validity of the proposed optimization model is verified and reported.1. ์„œ๋ก  1 2. ์„์œ ๋ฌผ๋ฅ˜๋„คํŠธ์›Œํฌ ๋ฌธ์ œ 2.1 ์ •์œ ์‚ฐ์—…์˜ ์ดํ•ด 3 2.2 ์„์œ ๋ฌผ๋ฅ˜๋„คํŠธ์›Œํฌ 7 2.3 ์„ ํ–‰์—ฐ๊ตฌ 9 3. ๋ฌธ์ œ์˜ ์ •์‹ํ™” 3.1 ํ™•์ •์  ๋ชจํ˜•์˜ ์ •์‹ํ™” 10 3.2 2๋‹จ๊ณ„ ์ถ”๊ณ„์  ๋ชจํ˜•์˜ ์ •์‹ํ™” 12 3.3 ๋กœ๋ฒ„์ŠคํŠธ ์ตœ์ ํ™” ๋ชจํ˜• 16 3.3.1 RO ๋ชจํ˜• 16 3.3.2 RR ๋ชจํ˜• 20 4. ๊ณ„์‚ฐ์‹คํ—˜ ๋ฐ ๊ฒฐ๊ณผ ๊ฒ€ํ†  4.1 ์ž๋ฃŒ ์ค€๋น„ 22 4.2 ๊ณ„์‚ฐ์‹คํ—˜ 23 4.2.1 ํ™•์ •์  ๋ชจํ˜• 23 4.2.2 2๋‹จ๊ณ„ ์ถ”๊ณ„์  ๋ชจํ˜• 34 4.2.3 ๋กœ๋ฒ„์ŠคํŠธ ์ตœ์ ํ™” ๋ชจํ˜• 41 4.3 ์‹คํ—˜๊ฒฐ๊ณผ ๊ฒ€ํ†  53 4.3.1 ๋ฏผ๊ฐ๋„ ๋ถ„์„ 53 4.3.2 ์™„์ „์ •๋ณด์˜ ๊ธฐ๋Œ€๊ฐ€์น˜ 58 4.3.3 ์ถ”๊ณ„์  ํ•ด์˜ ๊ธฐ๋Œ€๊ฐ€์น˜ 59 4.3.4 ์ •์ œ๋งˆ์ง„์˜ ๋น„๊ต 61 4.3.5 ๋กœ๋ฒ„์ŠคํŠธ ์ตœ์ ํ™” ๋ชจํ˜•์˜ ์œ ํšจ์„ฑ 62 5. ๊ฒฐ๋ก  64 ์ฐธ๊ณ ๋ฌธํ—Œ 66Maste

    ๋ฏธ๊ตญ ๋ฐ ์œ ๋Ÿฝ์—ฐํ•ฉ์˜ ๅฐ์ธ๋„ ์ƒ๊ณ„๊ด€์„ธ ์‚ฌ๋ก€์—ฐ๊ตฌ ๋ฐ ํ–ฅํ›„ ํ•œ๊ตญ์˜ ์ƒ๊ณ„๊ด€์„ธ ํ™œ์šฉ ๊ด€๋ จ ์‹œ์‚ฌ์ 

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ตญ์ œ๋Œ€ํ•™์› ๊ตญ์ œํ•™๊ณผ(๊ตญ์ œํ†ต์ƒ์ „๊ณต), 2021.8. ์•ˆ๋•๊ทผ.Countervailing duty or anti-subsidy measure had been mostly utilized by countries with power such as the United States and the European Union in the past. Today, however, many emerging countries, especially India, are increasingly utilizing it as their trade remedy measure more and more while Korea has never utilized it before in its history. As India has never been an easy trading partner to many countries, especially for Korea, such recent change in India cannot be welcomed to the rest of the world. In 2019, India initiated its first anti-subsidy investigation on Korea concerning imports of Styrene Butadiene Rubber originating in Korea which was recently decided by the Central Government of India not to impose countervailing measures as of March 2021. Korean products have been subject to the second most numerous anti-dumping investigations by India, that is after China. Given that Korea is merely the 8th largest trading partner of India accounting for three percent of its total trade volume, whereas China is Indiaโ€™s major trading country accounting for 14% of its entire trade volume, India has been particularly harsh on Korean products. Despite the effort of two countries to have free and harmonized trade by signing Korea-India CEPA, Indiaโ€™s frequent application of trade remedy measures against products originating in Korea have brought difficulties for many Korean exporters to expand their market into India. Today India is already the fifth country for filing the most CVD measures in the world, which is growing at a rapid rate, despite the fact that it had its first final finding in 2016. Until several years ago, India used to be only a victim of frequent CVD measures taken by other countries, mainly United Sates, and the European Union, the two of their main trading partners. The United States currently imposes the most CVD measures on Indian imports, which is tallied up to 26 CVD measures as of July 2021. As a single country, the US is the largest goods export market for India accounting for about 16% share. Recently, the U.S. government has taken off India from the preferential list, which puts India in a vulnerable position for the future incoming AD and CVD measures against India. As for the European Union, it is the largest trading partner for India. The EU has four ongoing CVD measure upon Indian products. It has initiated its first CVD investigations against India in 1997 and has continued its imposition. This paper looked into the ongoing CVD cases initiated by the US and the EU against Indian products that have been found to be countervailable, and will answer the following questions: What are the CVD cases that have been investigated on products originating in India by the U.S. and the EU that are found to be countervailable? Are there any product lines or industry in India that are frequently accused of CVD measures? How had Indian government dealt with the CVD measures imposed on the country? What are the commonly used export incentives granted by the Indian government? What can be the implications for Korea based on the analysis of CVD cases by the EU and the US? How much is Korea importing the Indian products that have been accused of being countervailable by the US or/and the EU? Will it be possible that Korea is also being injured from its imports of the very same products from India? What can these findings imply to Koreaโ€™s potential CVD utilization? Answering these questions will not only facilitate the understanding of Indiaโ€™s subsidy schemes that have been frequently accused of CVD measures, but also throw lights on Koreaโ€™s potential CVD measure utilization.๊ตญ๋ฌธ ์ดˆ๋ก ์ƒ๊ณ„๊ด€์„ธ ๋˜๋Š” ๋ฐ˜๋ณด์กฐ๊ธˆ ์ •์ฑ…์€ ๊ทธ๊ฐ„ ๋ฏธ๊ตญ๊ณผ ์œ ๋Ÿฝ์—ฐํ•ฉ๊ณผ ๊ฐ™์€ ๊ฐ•๋Œ€๊ตญ์— ์˜ํ•ด ์ฃผ๋กœ ํ™œ์šฉ๋˜์–ด์™”๋‹ค. ํ•˜์ง€๋งŒ ์˜ค๋Š˜๋‚ ์€ ํŠนํžˆ ์ธ๋„์™€ ๊ฐ™์€ ๋งŽ์€ ์‹ ํฅ ๊ตญ๊ฐ€๋“ค ๋˜ํ•œ ์ƒ๊ณ„๊ด€์„ธ ์ •์ฑ…์„ ํ™œ์šฉํ•˜๋Š” ๊ฒƒ์ด ์ฆ๊ฐ€ํ•˜๋Š” ์ถ”์„ธ์— ์žˆ๋‹ค. ๊ทธ์— ๋ฐ˜๋ฉด์— ์šฐ๋ฆฌ๋‚˜๋ผ๋Š” ์—ญ์‚ฌ์ƒ ์ƒ๊ณ„๊ด€์„ธ์กฐ์น˜๋ฅผ ์ทจํ•ด๋ณธ ์ ์ด ์—†๋‹ค. ์ธ๋„๊ฐ€ ๊ทธ๊ฐ„ ํŠนํžˆ ํ•œ๊ตญ์„ ํฌํ•จํ•œ ๋งŽ์€ ๋‚˜๋ผ๋“ค์—๊ฒŒ ์žˆ์–ด์„œ ์‰ฌ์šด ๋ฌด์—ญ ํŒŒํŠธ๋„ˆ์˜€๋˜ ์ ์ด ์—†๋˜ ๋งŒํผ, ์ตœ๊ทผ ์ด๋Ÿฌํ•œ ๋ณ€ํ™”๋Š” ๋‹จ์—ฐ ์ข‹์€ ๋‰ด์Šค๋Š” ์•„๋‹ˆ๋‹ค. 2019๋…„, ์ธ๋„๊ฐ€ ์šฐ๋ฆฌ๋‚˜๋ผ์˜ ์Šคํƒ€์ด๋ Œ๋ทฐํƒ€๋‹ค์ด์—”๊ณ ๋ฌด(Styrene Butadiene Rubber)์— ๋Œ€ํ•˜์—ฌ ์ƒ๊ณ„๊ด€์„ธ ์กฐ์‚ฌ๋ฅผ ๊ฐœ์‹œํ•˜์˜€๋‹ค. 2021๋…„ 3์›”, ์ธ๋„ ์ •๋ถ€๊ฐ€ ํ•ด๋‹น ์กฐ์‚ฌ๋ฅผ ์ฒ ํšŒํ•˜์˜€์ง€๋งŒ, ๊ทธ๊ฐ„ ์šฐ๋ฆฌ๋‚˜๋ผ์—๊ฒŒ ๋ฐ˜๋คํ•‘ ์กฐ์น˜๋งŒ์„ ๋ถ€๊ณผํ•ด์™”๋˜ ์ธ๋„๊ฐ€ ํ•œ๊ตญ์„ ์ƒ๋Œ€๋กœ ์ฒซ ์ƒ๊ณ„๊ด€์„ธ ์กฐ์‚ฌ ๊ฐœ์‹œ๋ฅผ ํ•˜์˜€๋‹ค๋Š” ๊ฒƒ์€ ๋ˆˆ์—ฌ๊ฒจ๋ณผ ๋งŒํ•˜๋‹ค. ํ•œ๊ตญ์€ ์ธ๋„๊ฐ€ ์ค‘๊ตญ ๋‹ค์Œ์œผ๋กœ ๋งŽ์€ ๋ฐ˜๋คํ•‘๊ด€์„ธ๋ฅผ ๋ถ€๊ณผํ•˜๋Š” ๋‚˜๋ผ๋‹ค. ํ•œ๊ตญ์€ ์ „์ฒด ๋ฌด์—ญ๋Ÿ‰์˜ 3%๋ฅผ ์ฐจ์ง€ํ•˜๋Š” ์ธ๋„์˜ 8๋ฒˆ์งธ ๋ฌด์—ญ ์ƒ๋Œ€๊ตญ์ด๊ณ , ์ค‘๊ตญ์€ ์ „์ฒด ๋ฌด์—ญ๋Ÿ‰์˜ 14%๋ฅผ ์ฐจ์ง€ํ•˜๋Š” ๊ฐ€์žฅ ํฐ ๋ฌด์—ญ์ƒ๋Œ€๊ตญ์ธ ๊ฒƒ์„ ๊ฐ์•ˆํ•  ๋•Œ, ์ธ๋„๊ฐ€ ํ•œ๊ตญ ์ƒํ’ˆ์— ํŠนํžˆ ์ ๋Œ€์ ์ธ ์ธก๋ฉด์ด ๊ฐ•ํ•˜๋‹ค๋Š” ๊ฒƒ์„ ๋ถ€์ธํ•  ์ˆ˜ ์—†๋‹ค. ์ž์œ ๋กญ๊ณ  ์กฐํ™”๋กœ์šด ๋ฌด์—ญ ๊ต๋ฅ˜๋ฅผ ์œ„ํ•œ ๋…ธ๋ ฅ์˜ ์ผ๋ถ€์ธ ํ•œยท์ธ CEPA ์ฒด๊ฒฐ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ์ธ๋„์˜ ์žฆ์€ ๋ฌด์—ญ๊ตฌ์ œ์กฐ์น˜๋Š” ํ•œ๊ตญ ์ˆ˜์ถœ์—…์ž๋“ค์ด ์ธ๋„ ์‹œ์žฅ์„ ์ง„์ถœํ•˜๋Š” ๋ฐ์— ์žˆ์–ด ๋งŽ์€ ์–ด๋ ค์›€์„ ์•ˆ๊ฒจ์™”๋‹ค. ์ธ๋„๋Š” 2016๋…„๋„ ์ฒซ ์ƒ๊ณ„๊ด€์„ธ ํŒ์ •์กฐ์น˜ ์ดํ›„, ์˜ค๋Š˜๋‚  ์ด๋ฏธ ์„ธ๊ณ„์—์„œ ๋‹ค์„ฏ๋ฒˆ ์งธ๋กœ ๊ฐ€์žฅ ๋งŽ์€ ์ƒ๊ณ„๊ด€์„ธ ์กฐ์น˜๋ฅผ ๋ถ€๊ณผํ•˜๋Š” ๊ตญ๊ฐ€๋กœ ๊ธ‰๋ถ€์ƒํ–ˆ๋‹ค. ๋ช‡ ๋…„ ์ „๋งŒํ•ด๋„ ์ธ๋„๋Š” ํ•œ๊ตญ๊ณผ ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ ๋ฏธ๊ตญ, ์œ ๋Ÿฝ ์—ฐํ•ฉ ๋“ฑ ์ฃผ๋กœ ๋‹ค๋ฅธ ๊ฐ•๋Œ€๊ตญ๋“ค์— ์˜ํ•ด ์žฆ์€ ์ƒ๊ณ„๊ด€์„ธ๋ฅผ ๋ถ€๊ณผ๋ฐ›๊ธฐ๋งŒ ํ–ˆ๋˜ ๊ตญ๊ฐ€ ์ค‘ ํ•˜๋‚˜์˜€๊ณ  ์ด๋“ค์€ ์ธ๋„์˜ ์ฃผ์š” ๋ฌด์—ญ ์ƒ๋Œ€๊ตญ์ด๋‹ค. ๋ฏธ๊ตญ์€ 2021๋…„ 7์›” ๊ธฐ์ค€, ์ธ๋„๋ฅผ ๋Œ€์ƒ์œผ๋กœ 26๊ฐœ์˜ ์ƒ๊ณ„๊ด€์„ธ ์กฐ์น˜๋ฅผ ์‹œํ–‰์ค‘์œผ๋กœ ์ด๋Š” ๊ฐ€์žฅ ๋งŽ์€ ์ˆซ์ž๋‹ค. ๋‹จ์ผ๊ตญ์œผ๋กœ๋Š” ๋ฏธ๊ตญ์ด ์ธ๋„์˜ ๊ฐ€์žฅ ํฐ ์ˆ˜์ถœ ์‹œ์žฅ์œผ๋กœ, ์ „์ฒด ๋ฌด์—ญ๊ทœ๋ชจ์˜ 16%๋ฅผ ์ฐจ์ง€ํ•œ๋‹ค. ์ตœ๊ทผ ๋ฏธ๊ตญ์€ ์ธ๋„๋ฅผ ์šฐ๋Œ€๋ชฉ๋ก(preferential list)์—์„œ ์ œ์™ธํ•˜๋ฉฐ ํ–ฅํ›„ ์ธ๋„๋ฅผ ํ–ฅํ•œ ์ƒ๊ณ„๊ด€์„ธ ๋ฐ ๋ฐ˜๋คํ•‘ ์กฐ์น˜๋ฅผ ๋” ์ˆ˜์›”ํ•˜๊ฒŒ ํ•œ๋ฐ”์žˆ๋‹ค. ์œ ๋Ÿฝ์—ฐํ•ฉ์€ ์ธ๋„์˜ ๊ฐ€์žฅ ํฐ ๋ฌด์—ญ์ƒ๋Œ€๊ตญ์œผ๋กœ, ํ˜„์žฌ ์ธ๋„์—๊ฒŒ 4๊ฐœ์˜ ์ƒ๊ณ„๊ด€์„ธ ์กฐ์น˜๋ฅผ ์ทจํ•˜๊ณ  ์žˆ๋‹ค. ์œ ๋Ÿฝ์—ฐํ•ฉ์€ 1997๋…„ ์ธ๋„๋ฅผ ์ƒ๋Œ€๋กœ ์ฒซ ๋ฒˆ์งธ ์ƒ๊ณ„๊ด€์„ธ ์กฐ์น˜ ์ดํ›„ ์ง€๊ธˆ๊นŒ์ง€ ๊พธ์ค€ํžˆ ์กฐ์น˜๋ฅผ ์ทจํ•˜๊ณ ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ๋ฏธ๊ตญ๊ณผ ์œ ๋Ÿฝ์—ฐํ•ฉ์ด ์ธ๋„๋ฅผ ์ƒ๋Œ€๋กœ ์กฐ์น˜์ค‘์ธ ์ƒ๊ณ„๊ด€์„ธ ์‚ฌ๋ก€๋“ค์„ ๋ณด์กฐ๊ธˆ ์ค‘์‹ฌ์œผ๋กœ ๋ถ„์„ํ•œ๋‹ค. ๊ฐ ๊ตญ์˜ ์ฃผ์žฅ์„ ํ†ตํ•ฉํ•˜์—ฌ ๋ณต์ˆ˜์˜ ์‚ฌ๋ก€์—์„œ ๋ฐ˜๋ณต์ ์œผ๋กœ ๋“ฑ์žฅํ•˜๋Š” ์ฃผ์žฅ ๋ฐ ๊ทผ๊ฑฐ๋“ค์„ ์‚ดํŽด๋ณธ๋‹ค. ๋˜ํ•œ ๋ณธ ์—ฐ๊ตฌ๋Š” ์—ฐ๊ตฌ ๋Œ€์ƒ์˜ ์ธ๋„์ƒํ’ˆ๋“ค์— ๋Œ€ํ•˜์—ฌ ํ•œ๊ตญ๊ณผ์˜ ๋ฌด์—ญ ํ๋ฆ„์„ ํŒŒ์•…ํ•˜๊ณ , ํ•ด๋‹น ํ’ˆ๋ชฉ์— ๋Œ€ํ•œ ํ•œ๊ตญ์˜ ์ธ๋„์— ๋Œ€ํ•œ ๋ฌด์—ญ์˜์กด๋„๋ฅผ ์‚ดํ•€๋‹ค. ์—ฐ๊ตฌ ๊ฒฐ๊ณผ ์—ฐ๊ตฌ ๋Œ€์ƒ 8๊ฐœ์ƒํ’ˆ ๋ชจ๋‘ ํ•œ๊ตญ์ด ์ˆ˜์ž…๊ตญ ์ธก์ด๋ฉฐ, ์ด ์ค‘์—์„œ๋„ ํ•œ๊ตญ์€ Carbazole Violet Pigment 23, Polyester Textured Yarn, ๊ทธ๋ฆฌ๊ณ  Graphite Electrode systems์—์„œ ์œ ๋… ๋งŽ์€ ์ˆ˜์ž…๋Ÿ‰์„ ๋ณด์˜€๋Š”๋ฐ ์ฒซ ๋‘ ํ’ˆ๋ชฉ์˜ ๊ฒฝ์šฐ ๋ฏธ๊ตญ์ด ๋ฐ˜๋คํ•‘ ๋ฐ ์ƒ๊ณ„๊ด€์„ธ ๋ชจ๋‘ ๋ถ€๊ณผ์ค‘์ด๋ฉฐ, ๋งˆ์ง€๋ง‰ ํ’ˆ๋ชฉ์˜ ๊ฒฝ์šฐ์—๋Š” ์œ ๋Ÿฝ์—ฐํ•ฉ์ด 2004๋…„๋ถ€ํ„ฐ ๊พธ์ค€ํžˆ ๋ฐ˜๋คํ•‘ ๋ฐ ์ƒ๊ณ„๊ด€์„ธ ๋ชจ๋‘ ๋ถ€๊ณผํ•ด์™”๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ์ด์™€ ๊ฐ™์€ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋“ค์„ ๋ฐ”ํƒ•์œผ๋กœ ํ•œ๊ตญ์˜ ์ž ์žฌ์  ์ƒ๊ณ„๊ด€์„ธ ํ™œ์šฉ์„ ์ด‰๊ตฌํ•œ๋‹ค.I. INTRODUCTION 10 1.1. Background and Significance of the Study 10 1.2. Purpose of the Study 11 II. INDIA'S TRADE OVERVIEW 13 2.1. India's Trade Status quo 13 2.2. Overview of India's trade policy 17 III. CASE STUDY THE UNITED STATES 23 3.1. Background: Trade Relations with India 23 3.2. US's CVD measures status quo 25 3.3. US's CVD measures in force towards India 27 3.3.1. Carbazole Violet Pigment 23 29 3.3.2. Polyester Textured Yarn 39 3.3.3. Quartz Surface Products 48 3.3.4. Stainless Steel Flanges 55 IV. CASE STUDY EUROPEAN UNION 60 4.1. Background: Trade Relations with India 60 4.2. EU's CVD measures status quo 62 4.3. EU's CVD measures in force towards India 64 4.3.1. Stainless steel bars and rods 66 4.3.2. PET 71 4.3.3. Tubes and pipes of ductile cast iron 75 4.3.4. Graphite Electrode systems 80 V. CASE STUDY REVIEW 85 5.1. Overall Case Study Review 85 5.2. The US-India CVD case reviews in relation to Korea 88 5.2.1. US-India CVD cases overview 88 5.2.2 Carbazole Violet Pigment(CVP) 23 90 5.2.3. Polyester Textured Yarn 92 5.2.4. Quartz Surface Products 95 5.2.5. Stainless Steel Flanges 98 5.3. The EU-India CVD cases reviews in relation to Korea 100 5.3.1. EU-India CVD cases Overview 100 5.3.2. Stainless steel bars and rods 101 5.3.3. PET 104 5.3.4. Tubes and pipes of ductile cast iron 105 5.3.5. Graphite Electrode systems 106 VI. KOREA's CVD UTILIZATION 108 6.1. Korea's Trade Remedy Measure Overview Focus on CVD Measures 108 6.2. Implications for Korea's Potential CVD Utilization 111 VII. CONCLUSION 113 APPENDIX 115 REFERENCES 120 ๊ตญ๋ฌธ์ดˆ๋ก 122์„

    ๋‹ค๊ณต์„ฑ ๋งค์งˆ ํ๋ฆ„์žฅ์—์„œ์˜ ๋ฐ”์ด์˜คํ•„๋ฆ„ ๋ฉ”์นด๋‹ˆ์ฆ˜์— ๊ด€ํ•œ ์ˆ˜์น˜ ๋ชจ๋ธ๋ง

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :ํ† ๋ชฉ๊ณตํ•™๊ณผ ํ† ๋ชฉ๊ณตํ•™์ „๊ณต,1998.Maste

    Partial Differential Equations for Financial Portfolios

    No full text
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ˆ˜๋ฆฌ๊ณผํ•™๋ถ€, 2012. 8. ์ด๊ธฐ์•”.์ด ๋…ผ๋ฌธ์—์„œ๋Š” ๊ธˆ์œต๋ฌธ์ œ์˜ ๋ณ€๋™์„ฑ๊ณผ ๊ด€๋ จ๋œ ๋ฌธ์ œ์˜ ์ˆ˜ํ•™์  ๋ชจ๋ธ์„ ๊ฒ€์ฆํ•œ๋‹ค. ์ด๋ฅผ ์ด์šฉํ•˜์—ฌ ์—ฐ์†๋ชจ๋ธ์— ๋Œ€ํ•œ ์˜ต์…˜์˜ ๊ฐ€๊ฒฉ์„ ๊ฒฐ์ •ํ•ด์ฃผ๋Š” Black-Scholes-Merton ๋ฐฉ์ •์‹์„ ์œ ๋„ํ•˜๊ณ , ๋‘๊ฐ€์ง€ ๋ฐฉ๋ฒ•์œผ๋กœ ๋ฐฉ์ •์‹์˜ ํ•ด๋ฅผ ๊ตฌํ•œ๋‹ค. ๋˜ํ•œ, ๋‹ค์–‘ํ•œ ์˜ต์…˜๋ชจ๋ธ๊ณผ ๊ทธ์— ๋”ฐ๋ฅธ ์˜ต์…˜ ๊ฐ€๊ฒฉ์˜ ์ˆ˜์‹์„ ์—ฐ๊ตฌํ•œ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ ๊ธˆ๋ฆฌ ํŒŒ์ƒ์ƒํ’ˆ๋“ค์˜ ์ข…๋ฅ˜์™€ ๊ฐ๊ฐ์˜ ๋ชจ๋ธ์— ๋Œ€ํ•œ ์ˆ˜์‹์„ ๊ฒ€์ฆํ•œ๋‹ค.1 Introduction 2 Wiener Processes and Ito's lemma 3 The Black-Scholes-Merton Model 4 Exotic Options 5 Interest Rate DerivativesMaste

    ์ผ๋ฐ˜์  ์œ„์น˜์™€ 3์ฐจ์› ๋‹ค์–‘์ฒด์˜ ์œ„์ƒ

    No full text
    Thesis (master`s)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์ˆ˜ํ•™๊ณผ,1998.Maste

    ์—ฌ๋Œ€์ƒ์˜ ๋น„๋งŒ ๊ต์œก ํšจ๊ณผ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ : ์ธ์‹๊ณผ ๊ฑด๊ฐ•ํ–‰ํƒœ ๋ณ€ํ™”๋ฅผ ์ค‘์‹ฌ์œผ๋กœ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๋ณด๊ฑดํ•™๊ณผ ๋ณด๊ฑดํ•™์ „๊ณต,2001.Maste
    corecore