138 research outputs found

    Focusing on Diversity and Core Competency

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ํ˜‘๋™๊ณผ์ • ๊ธฐ์ˆ ๊ฒฝ์˜ยท๊ฒฝ์ œยท์ •์ฑ…์ „๊ณต, 2022.2. ํ™ฉ์ค€์„.๋ณธ ์กธ์—…๋…ผ๋ฌธ์—์„œ๋Š” ํ•œ๊ตญ ์ •๋ถ€๊ฐ€ ์‹ ์žฌ์ƒ์—๋„ˆ์ง€ํ•ต์‹ฌ๊ธฐ์ˆ ๊ฐœ๋ฐœ ์‚ฌ์—…์„ ๋ณด๋‹ค ์ „๋žต์ ์œผ๋กœ ๊ด€๋ฆฌํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐฉ์•ˆ์— ๋Œ€ํ•˜์—ฌ ๋‹ค๋ฃจ๊ณ  ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ํ•ด๋‹น ๋ถ„์•ผ์— ์ž์›๊ธฐ๋ฐ˜๊ด€์ (RBV)์„ ์ ์šฉํ•ด ๊ทธ ๋™์•ˆ ๊ด€๋ฆฌ ์š”์ธ์œผ๋กœ ๊ณ ๋ ค๋˜์ง€ ์•Š์•˜๋˜ ํˆฌ์ž…๋ฌผ๊ณผ ์‚ฐ์ถœ๋ฌผ์„ ์ž์›์œผ๋กœ์จ ๊ด€๋ฆฌํ•  ํ•„์š”๊ฐ€ ์žˆ์Œ์„ ์ฃผ์žฅํ•˜๊ณ ์ž ํ•œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ์—ฐ๊ตฌํŒ€๊ณผ ์ปจ์†Œ์‹œ์—„์˜ ๋‹ค์–‘์„ฑ๊ณผ ์‚ฐ์ถœ๋ฌผ์˜ ๋‹ค์–‘์„ฑ์ด ์„ฑ๊ณผ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ๋ถ„์„ํ•˜๊ณ , ์—ฌ๊ธฐ์— ๊ธฐ์ˆ ์  ์ฐจ๋ณ„์„ฑ๊ณผ ํ•ต์‹ฌ๊ณผ์ œ ๊ตฐ์„ ํ™œ์šฉํ•œ ์ „๋žต์  ๊ด€๋ฆฌ ๋ฐฉ์•ˆ์„ ์ œ์‹œํ•จ์œผ๋กœ์จ ์ •์ฑ…๊ฒฐ์ •์ž์˜ ์˜์‚ฌ๊ฒฐ์ •์— ํ•„์š”ํ•œ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜๊ณ ์ž ํ•œ๋‹ค. ๊ตญ๋‚ด ์‹ ์žฌ์ƒ์—๋„ˆ์ง€ํ•ต์‹ฌ๊ธฐ์ˆ ๊ฐœ๋ฐœ์‚ฌ์—…์€ ์—ฐ๊ฐ„ 2,000์–ต ์ด์ƒ ํˆฌ์ž๋˜๋Š” ๊ทœ๋ชจ๊ฐ€ ๋งค์šฐ ํฐ ์‚ฌ์—…์ด๋‹ค. ํŠนํžˆ ์ตœ๊ทผ ์ „ ์„ธ๊ณ„์ ์œผ๋กœ ์‹ ์žฌ์ƒ์—๋„ˆ์ง€๊ธฐ์ˆ ๊ฐœ๋ฐœ ํˆฌ์ž๊ฐ€ ๋Š˜์–ด๋‚˜๋Š” ํ๋ฆ„์— ๋”ฐ๋ผ, ๊ตญ๋‚ด์‚ฌ์—…๋„ ์˜ˆ์‚ฐ ๋น„์ค‘์ด ๋”์šฑ ๋Š˜์–ด๋‚˜๊ณ  ์žˆ์–ด ํ˜„ ์‹œ์ ์—์„œ ๋ณธ ์—ฐ๊ตฌ์˜ ๊ฒฐ๊ณผ๊ฐ€ ํ–ฅํ›„ ์˜ˆ์‚ฐ ์ง‘ํ–‰์˜ ํšจ์œจ์„ฑ ํ–ฅ์ƒ์— ๋„์›€์„ ์ค„ ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ํŒ๋‹จํ•œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ์„ธ ๊ฐœ์˜ ์„ธ๋ถ€ ์—ฐ๊ตฌ๋กœ ๊ตฌ์„ฑ๋˜์–ด ์žˆ๋‹ค. ์ฒซ ๋ฒˆ์งธ ์—ฐ๊ตฌ์—์„œ๋Š” ์—ฐ๊ตฌ๊ฐœ๋ฐœ ์ปจ์†Œ์‹œ์—„ ๋‚ด์˜ ์ธ๊ตฌํ•™ ๋ฐ ํ˜‘๋ ฅ ๋‹ค์–‘์„ฑ์ด ๊ธฐ์ˆ ๊ฐœ๋ฐœ ์‚ฐ์ถœ๋ฌผ์— ์–ด๋– ํ•œ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š”์ง€์— ๋Œ€ํ•ด ์ค‘์ ์ ์œผ๋กœ ๋ถ„์„ํ•˜์˜€๋‹ค. ์ข…์†๋ณ€์ˆ˜๋กœ๋Š” ์ง€์  ๋ฐ ์‹คํ—˜ ์‚ฐ์ถœ๋ฌผ์„ ํ™œ์šฉํ–ˆ๊ณ , ๋ถ„์„ ๋ฐฉ๋ฒ•์€ ์œ„๊ณ„์  ํšŒ๊ท€๋ถ„์„์„ ์‚ฌ์šฉํ–ˆ๋‹ค. 2009๋…„๋ถ€ํ„ฐ 2015๋…„ ์‚ฌ์ด์— ์‹ ์žฌ์ƒ์—๋„ˆ์ง€ํ•ต์‹ฌ๊ธฐ์ˆ ๊ฐœ๋ฐœ์‚ฌ์—…์—์„œ ์ข…๋ฃŒ๋œ ๊ณผ์ œ์— ๋Œ€ํ•ด ๋ถ„์„ํ•œ ๊ฒฐ๊ณผ, ์—ฌ๋Ÿฌ๊ฐ€์ง€ ์ „๋žต์  ๊ด€๋ฆฌ๋ฐฉ์•ˆ์ด ๋„์ถœ๋˜์—ˆ๋‹ค. ์ธ๊ตฌํ•™์  ๋‹ค์–‘์„ฑ์€ ๋‚˜์ด์˜ ๊ฒฝ์šฐ ์ผ๊ด€์ ์œผ๋กœ ๋ถ€์ •์ ์ธ ์˜ํ–ฅ์„ ๋ณด์˜€์œผ๋‚˜, ๊ทธ ์™ธ์—๋Š” ์–‘๋ฐฉํ–ฅ์œผ๋กœ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ์œผ๋ฉฐ ์ด์งˆ์  ํ˜‘๋ ฅ์€ ๊ฒฐ๊ณผ์— ๊ธ์ •์ ์ด์—ˆ๋‹ค. ๋‘ ๋ฒˆ์งธ ์—ฐ๊ตฌ์—์„œ๋Š” ์‚ฐ์ถœ๋ฌผ์˜ ๋‹ค์–‘์„ฑ์ด ๊ฒฐ๊ณผ๋ฌผ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์— ๋Œ€ํ•ด ๋ถ„์„ํ•ด ๋ณด์•˜๋‹ค. ๋˜ํ•œ, ์‚ฐ์ถœ๋ฌผ์˜ ๋‹ค์–‘์„ฑ ์™ธ์— ์‚ฐ์ถœ๋ฌผ์˜ ์–‘์  ์š”์†Œ์™€ ์งˆ์  ์š”์†Œ๊ฐ€ ๊ฒฐ๊ณผ๋ฌผ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์— ๋Œ€ํ•ด์„œ๋„ ๋ถ„์„ํ•˜์˜€๋‹ค. ์ข…์†๋ณ€์ˆ˜๋กœ๋Š” ์‚ฌ์—…ํ™” ์—ฌ๋ถ€์™€ ๊ณ ์šฉ ํšจ๊ณผ๋ฅผ ์‚ฌ์šฉํ•˜์˜€์œผ๋ฉฐ, ๋ถ„์„ ๋ฐฉ๋ฒ•์œผ๋กœ๋Š” ์œ„๊ณ„์  ํšŒ๊ท€๋ถ„์„์„ ์‚ฌ์šฉํ–ˆ๋‹ค. ์‹ ์žฌ์ƒ์—๋„ˆ์ง€ํ•ต์‹ฌ๊ธฐ์ˆ ๊ฐœ๋ฐœ์‚ฌ์—…์—์„œ 2009๋…„๋ถ€ํ„ฐ 2015๋…„ ์‚ฌ์ด์— ์ข…๋ฃŒ๋œ ๊ณผ์ œ์— ๋Œ€ํ•ด ๋ถ„์„ํ•œ ๊ฒฐ๊ณผ, ์‚ฐ์ถœ๋ฌผ์˜ ๋‹ค์–‘์„ฑ์€ ์‚ฌ์—…ํ™”์™€ ๊ณ ์šฉ ํšจ๊ณผ์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ๊ฒƒ์œผ๋กœ ๋ณด์•˜๋‹ค. ๋˜ํ•œ, ํ•ต์‹ฌ๊ณผ์ œ ๊ตฐ์˜ ๊ฒฝ์šฐ ํŠนํ—ˆ์˜ ์งˆ์  ์š”์ธ์ด ์‚ฌ์—…ํ™”์— ์ค‘์š”ํ•œ ์˜ํ–ฅ์„ ๋ฏธ์ณค์œผ๋‚˜, ์ „์ฒด๊ณผ์ œ ๊ตฐ์—์„œ๋Š” ๊ตญ๊ฐ€์ธ์ฆ์˜ ํ™•๋ณด๊ฐ€ ๋”์šฑ ์ค‘์š”ํ•œ ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์„ธ ๋ฒˆ์งธ ์—ฐ๊ตฌ์—์„œ๋Š” ์•ž์„œ ๋‘ ๊ฐœ์—์„œ ๋ถ„์„ํ•œ ์—ฐ๊ตฌ๋ชจ๋ธ์— ๋Œ€ํ•˜์—ฌ ๊ธฐ์ˆ ์  ์ฐจ๋ณ„์„ฑ๊ณผ ํ•ต์‹ฌ๊ณผ์ œ์— ๋Œ€ํ•œ ๋…ผ์˜๋ฅผ ๋”ํ•˜์—ฌ ์‹ ์žฌ์ƒ์—๋„ˆ์ง€ํ•ต์‹ฌ๊ธฐ์ˆ ๊ฐœ๋ฐœ์‚ฌ์—…์˜ ๋Œ€ํ•œ ์ „๋žต์  ๊ด€๋ฆฌ ๋ฐฉ์•ˆ์— ๋Œ€ํ•˜์—ฌ ํฌ๊ด„์ ์œผ๋กœ ๊ธฐ์ˆ ํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์•ž์„œ ์—ฐ๊ตฌ์˜ ๋ณ€์ˆ˜๋“ค์˜ ๋ถ„์„ ๋ชจํ˜•์— ๊ธฐ์ˆ ์˜ ์ฐจ๋ณ„์„ฑ์„ ์กฐ์ ˆ๋ณ€์ˆ˜๋กœ ๋”ํ•˜์˜€์œผ๋ฉฐ, ํ•ต์‹ฌ๊ณผ์ œ ๊ตฐ์„ ๋ณ„๋„๋กœ ๋ถ„๋ฅ˜ํ•˜์—ฌ ํšŒ๊ท€๋ถ„์„ ๊ฒฐ๊ณผ์˜ ์ฐจ์ด๊ฐ€ ์žˆ๋Š”์ง€ ํ™•์ธํ•˜์˜€๋‹ค. ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ 2009๋…„๋ถ€ํ„ฐ 2015๋…„ ์‚ฌ์ด์— ์ข…๋ฃŒ๋œ ๊ณผ์ œ์— ๋Œ€ํ•ด ๋ถ„์„ํ•œ ๊ฒฐ๊ณผ, ๊ธฐ์ˆ ์  ์ฐจ๋ณ„์„ฑ์€ ํ•ต์‹ฌ๊ณผ์ œ ๊ตฐ๊ณผ ์ „์ฒด๊ณผ์ œ ๊ตฐ์— ๋‹ค๋ฅธ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ํŠนํžˆ, ํ•ต์‹ฌ๊ณผ์ œ ๊ตฐ์˜ ๊ฒฝ์šฐ, ํŠนํ—ˆ์˜ ์งˆ์  ์š”์†Œ์— ๋Œ€ํ•œ ๋…ผ์˜์™€ ๋”ํ•ด์ ธ, ๊ธฐ์ˆ ์  ์ฐจ๋ณ„์„ฑ์ด ์„ฑ๊ณผ์— ์ค‘์š”ํ•œ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๋ถ„์„ ๊ฒฐ๊ณผ๋ฅผ ์ข…ํ•ฉํ•˜๋ฉด ์‹ ์žฌ์ƒ์—๋„ˆ์ง€ํ•ต์‹ฌ๊ธฐ์ˆ ๊ฐœ๋ฐœ์—์„œ ์ „์ฒด๊ณผ์ œ ๊ตฐ๊ณผ ํ•ต์‹ฌ๊ณผ์ œ ๊ตฐ์€ ๊ธฐ์ˆ ์  ์ฐจ๋ณ„์„ฑ์— ๋Œ€ํ•œ ์ค‘์š”๋„๊ฐ€ ๋‹ค๋ฆ„์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ, ๋‹ค์–‘์„ฑ์˜ ๊ฒฝ์šฐ ์ „๋ฐ˜์ ์œผ๋กœ ์ค‘์š”ํ•˜์ง€๋งŒ, ์ธ๊ตฌํ•™์  ๋‹ค์–‘์„ฑ ์š”์†Œ์˜ ๊ฒฝ์šฐ ๊ธ์ •์ ์ธ ์š”์†Œ์™€ ๋ถ€์ •์ ์ธ ์š”์†Œ๊ฐ€ ๋‚˜๋‰˜๋ฏ€๋กœ, ๋ฌด๋ถ„๋ณ„ํ•œ ๋‹ค์–‘์„ฑ์˜ ์กฐ์„ฑ์€ ๊ถŒ์žฅ๋˜์ง€ ์•Š๋Š”๋‹ค. ์ „๋žต์  R&D ๊ด€๋ฆฌ๋ฐฉ์•ˆ์€ ์ฃผ์–ด์ง„ ๋ฐ์ดํ„ฐ๋ฅผ ์—ฌ๋Ÿฌ ๊ด€์ ์—์„œ ๋ถ„์„ํ•˜๊ณ , ์ด๋ฅผ ํ†ตํ•ด ์‹œ์‚ฌ์ ์„ ๋„์ถœํ•˜๋Š” ๊ฒƒ์œผ๋กœ๋ถ€ํ„ฐ ์‹œ์ž‘ํ•œ๋‹ค๊ณ  ํ•  ์ˆ˜ ์žˆ๋‹ค. ํ˜„์žฌ ๊ตญ๋‚ด ์‹ ์žฌ์ƒ ์—๋„ˆ์ง€๊ธฐ์ˆ ๊ฐœ๋ฐœ์‚ฌ์—…์€ ๋‹ค๋ฅธ ์—๋„ˆ์ง€๊ธฐ์ˆ ๊ฐœ๋ฐœ์‚ฌ์—…๊ณผ ๋ถ„๋ฆฌ๋œ ํŠน์„ฑ์˜ ํ‰๊ฐ€์ œ๋„๊ฐ€ ์‹œํ–‰๋˜๊ณ  ์žˆ์ง€ ์•Š๊ธฐ ๋•Œ๋ฌธ์—, ์‚ฌ์—…์˜ ์„ฑ๊ณผ์ œ๊ณ ์™€ ๊ด€๋ฆฌ๊ธฐ๊ด€์˜ ์ „๋ฌธ์„ฑ ์ œ๊ณ ๋ฅผ ์œ„ํ•ด ๋” ๋‹ค์–‘ํ•œ ์ „๋žต์  ์‚ฌ์—…๊ด€๋ฆฌ ๋ฐฉ์•ˆ์ด ์ œ์‹œ๋  ํ•„์š”๊ฐ€ ์žˆ๋‹ค. ์ด์™€ ๊ฐ™์€ ๊ด€์ ์—์„œ ๋ณธ ์กธ์—…๋…ผ๋ฌธ์€ ๊ณต๊ณต๋ถ„์•ผ R&D ๊ด€๋ฆฌ์ž์™€ ์ •์ฑ…๊ฒฐ์ •์ž๋“ค์—๊ฒŒ ์œ ์šฉํ•œ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์ด๋Š” ๋‹ค์–‘์„ฑ์˜ ๊ด€๋ฆฌ ์‹ค๋ฌด์ฒด๊ณ„ ํ–ฅ์ƒ์—๋„ ํ™œ์šฉ๋  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค.This dissertation addresses key issues on the strategic management in public renewable energy technology development program (PRETDP). Strategic R&D management is important for PRETDP because innovation in technology grows to be more important for national competitiveness, yet governments only have finite resources. Adopting resource-based view on public R&D management, this study viewed diversity as a resource that could be studied and used to achieve better performance of PRETDP. This study also wants to blend diversity with discussion of technology difference and core competency, which are classic subjects of study for strategic R&D management. By adding perspectives on technology difference and core competency, this study sought to provide practical insights for managerial practice of PRETDP. The first article aims to provide managerial insights for R&D portfolio by analyzing the effect of R&D team diversity on outputs of PRETDP. This article approached diversity with two different perspectives: one as a demography and another as a collaboration. For output variables, this article considered intellectual and experimental outputs. This study analyzed 430 projects completed between 2009 and 2015 in PRETDP by using hierarchical regression analysis. As a result, this study found that demographic diversity of R&D teams in PRETDP can have impacts on performance at both directions. This study found that heterogeneous collaboration can have a positive impact on experimental output for all projectsโ€™ group. Also, this study found that technology difference is important for projectsโ€™ group with core competency, while it has negative impact for all projectsโ€™ group in PRETDP. The second article aims to investigate relationship between output diversity and outcome with consideration of both in output quantity and quality. For output quantity variables, this article used academic publication, patent registrations, prototypes, and certifications. For output quality, this article considered Impact Factor, SMART patent index, national certification, and type of prototype. Two types of outcome variables were considered as dependent variables: commercialization and employment effect. Using same data sample as previous study and research method, this study found that output diversity has influence on commercialization and employment effects of all projects. The third article aims to re-investigate relationship between input-to-output and output-to-outcome with consideration on technology difference and core competency. Based on same research model of previous two essays, this article added technology difference as a moderating variable to observe interaction between technology difference and diversity variables. Also, this article extracted core projectsโ€™ group from PRETDP to observe difference between all projectsโ€™ group and core projectsโ€™ group in terms of diversity and technology difference. Using same data sample as previous study and research method, this study found that technology difference works differently for core projectsโ€™ group and all projectsโ€™ group. This finding links with another finding that quality of patent is important for core projects while earning certification is more important for all projectsโ€™ group. Findings from three studies can provide managerial insights for R&D managers to make strategical decision on PRETDP management. The implementation of strategic R&D management can be started from the analysis of accumulated data. By turning random data into meaningful information, R&D managers can have more insights to make strategical decision. PRETDP has been receiving uniformized assessment as rest of energy technology development program. It did not have strategic managerial plan for its core projects management, either. Findings in these studies can provide valuable information to managerial institution of PRETDP to think about the change in their managerial practice.Abstract i Table of contents v List of figures and tables x Chapter 1. Introduction 1 1.1. Research background 1 1.2. Problem statement 3 1.3. Research objectives 5 1.4. Research question 7 1.5. Research outline 11 Chapter 2. Literature Review 13 2.1. Public Renewable Energy Technology Development Program (PRETDP) 13 2.1.1. Why strategic R&D management gains attention in PRETDP 15 2.1.2. Importance of core project and technology difference management 17 2.1.3. Importance of R&D team diversity management 21 2.2. Applying strategic R&D management in public sector 25 2.2.1. Adoption of Resource-Based View 26 2.2.2. Management control and R&D team diversity 29 2.2.3. Technology difference and core competency 32 2.2.4. Diagnostic system to measure R&D performance 34 Chapter 3. Analysis on the relationship between R&D team diversity and output in PRETDP with respect to demography and collaboration 45 3.1. Introduction 45 3.2. Demographic diversity 48 3.2.1. Gender diversity 50 3.2.2. Age diversity 52 3.2.3. Diversity in educational background 53 3.2.4. Diversity in educational level 55 3.3. Collaboration diversity 56 3.3.1. UIG Collaboration 57 3.3.2. Homogeneous and heterogeneous collaboration 60 3.4. Methodology 62 3.4.1. Data set 62 3.4.2. Research model and variables 63 3.4.2.1. Dependent variables 63 3.4.2.2. Independent variables 64 3.4.2.3. Control variables 68 3.4.2.4. Hierarchical regression model 70 3.5. Results 72 3.5.1. Dataset analysis 72 3.5.2. Econometric analysis result on R&D output 72 3.6. Discussion 77 3.7. Conclusion 82 Chapter 4. Analysis on the relationship between output diversity and outcome in PRETDP: focusing on output quantity and quality 85 4.1. Introduction 85 4.2. Strategic management of public R&D output 88 4.2.1. Importance of output in public R&D 89 4.2.2. Output diversity 90 4.2.3. Output quantity and quality 92 4.3. Methodology 97 4.3.1. Data Collection and Research Model 97 4.3.2. Research model and variables 98 4.3.2.1. Dependent variables 98 4.3.2.2. Independent variables 99 4.3.2.3. Moderating variable 100 4.3.2.4. Control variables 101 4.3.2.5. Hierarchical regression model 103 4.4. Result and Discussion 106 4.4.1. Dataset analysis 106 4.4.2. Econometric analysis result on R&D outcome 106 4.5. Discussion 109 4.6. Conclusion 113 Chapter 5. Consideration on the strategic R&D management of PRETDP: focusing on technology difference and core competency 116 5.1. Introduction 116 5.2. Technology difference and core competency 118 5.3. Strategic management of PRETDP 121 5.4. Methodology 124 5.4.1. Data Collection and Research Model 124 5.4.2. Research model and variables 125 5.4.2.1. Dependent variables 125 5.4.2.2. Independent variables 126 5.4.2.3. Moderating variable 128 5.4.2.4. Control variables 130 5.4.2.5. Hierarchical regression model 132 5.5. Result and Discussion 133 5.5.1. Econometric analysis result on moderating effect and core projects 133 5.5.2. Econometric analysis result on moderating effect and core projects 137 5.6. Discussion 141 5.6.1. The moderating effect of technology difference on R&D output 141 5.6.2. The moderating effect of technology difference on R&D outcome 146 5.7. Conclusion 150 Chapter 6. Conclusion 154 6.1. Summary 154 6.2. Contribution 158 6.3. Limitation and future research 162 Reference 164 Appendix 204 ๊ตญ๋ฌธ ์ดˆ๋ก 210๋ฐ•

    The development of Ballast water treatment process using Micro Bubbles

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ฑด์„คํ™˜๊ฒฝ๊ณตํ•™๋ถ€, 2013. 2. ํ•œ๋ฌด์˜.๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ํ•ด์ƒ์—์„œ ์„ ๋ฐ•์˜ ํ‰ํ˜•์œ ์ง€๋ฅผ ์œ„ํ•ด ์ฑ„์šฐ๋Š” ์„ ๋ฐ•ํ‰ํ˜•์ˆ˜(Ballast water)๋กœ ๋ฐœ์ƒ๋˜๋Š” ํ•ด์–‘์ƒํƒœ๊ณ„ ๊ต๋ž€ ๋ฐ ์˜ค์—ผ์„ ์ €๊ฐ์‹œํ‚ค๊ธฐ ์œ„ํ•œ ์ฒ˜๋ฆฌ๊ณต์ • ๊ฐœ๋ฐœ์— ๊ด€ํ•œ ์—ฐ๊ตฌ๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ์ฒซ ๋ฒˆ์งธ, ์„ ๋ฐ•ํ‰ํ˜•์ˆ˜๋‚ด ์˜ค์—ผ๋ฌผ์งˆ์˜ DAF๊ณต์ •์—์„œ ํšจ์œจ์ ์ธ ์ฒ˜๋ฆฌ๋ฅผ ์œ„ํ•ด ์ฒ˜๋ฆฌ๋Œ€์ƒ ๋ฌผ์งˆ์ธ oil droplet(์œ ์ )๊ณผ ๋ฏธ์ƒ๋ฌผ์˜ ํฌ๊ธฐ์™€ ์ œํƒ€์ „์œ„ ํŠน์„ฑ์„ ํŒŒ์•…ํ•˜์˜€๋‹ค. ๋‘ ๋ฒˆ์งธ, DAF๊ณต์ •์„ ์ด์šฉํ•œ oil droplet์˜ ์ฒ˜๋ฆฌํšจ์œจ์— ํ™”ํ•™ ๋ฐ ์‘์ง‘์ œ, ๊ธฐํฌ ๋ฐ ์••๋ ฅ, ์šฉ์•ก, ์‘์ง‘์ œ ์ข…๋ฅ˜์˜ 4๊ฐ€์ง€ ์šด์ „์กฐ๊ฑด์˜ ์˜ํ–ฅ์ด ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ์•Œ์•„๋ณด์•˜๊ณ  ์ตœ์ ์˜ ์šด์ „์กฐ๊ฑด์„ ๋„์ถœํ•˜์˜€๋‹ค. ์„ธ ๋ฒˆ์งธ, ์˜ค์กด์„ ์ด์šฉํ•œ DAF๊ณต์ •์—์„œ ๋ฏธ์ƒ๋ฌผ์˜ ์†Œ๋…ํšจ์œจ์„ ์••๋ ฅ ๋ฐ ์ ‘์ด‰์‹œ๊ฐ„ ๋ณ€ํ™”์— ๋”ฐ๋ผ ์ฒ˜๋ฆฌํšจ์œจ์„ ๋ถ„์„ํ•˜์˜€๊ณ , ์‹ค์ œ ํ•ด์ˆ˜์˜ ์„ ๋ฐ•ํ‰ํ˜•์ˆ˜๋‚ด ์ ์šฉ๊ฐ€๋Šฅ์„ฑ์„ ๊ฒ€์ฆํ•˜์˜€๋‹ค. ์ด์™€ ๊ฐ™์€ ์—ฐ๊ตฌ๋‚ด์šฉ๋“ค์— ๋Œ€ํ•œ ์„ธ๋ถ€๋‚ด์šฉ์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. ์„ ๋ฐ•ํ‰ํ˜•์ˆ˜๋กœ ์œ ์ž…๋˜๋Š” ์˜ค์—ผ๋ฌผ์งˆ์€ ์™ธ๋ž˜์ข… ์ƒ๋ฌผ๊ตฐ, ์—ฐ์•ˆํ•ด์—ญ์˜ ์ž…์ž์„ฑ ๋ฌผ์งˆ, ์˜ค์ผ ๋ฐ ๊ณ„๋ฉดํ™œ์„ฑ์ œ ์„ฑ๋ถ„์œผ๋กœ ๋‹ค์–‘ํ•˜๋‹ค. ํŠนํžˆ oil droplet์˜ ๊ฒฝ์šฐ ์˜ค์ผ์ด ๊ณ„๋ฉดํ™œ์„ฑ์ œ์™€ ๋‚œ๋ฅ˜์˜ ์˜ํ–ฅ์œผ๋กœ ๋ฏธ์„ธํ•œ ํฌ๊ธฐ์˜ ๋ฐฉ์šธ๋กœ ํ˜•์„ฑ๋˜์–ด ์ˆ˜์ค‘์—์„œ ๋ถ€์œ ์ƒํƒœ๋กœ ์กด์žฌํ•˜๋Š”๋ฐ ๊ณ„๋ฉดํ™œ์„ฑ์ œ ์–‘์ด ๋Š˜์–ด๋‚  ์ˆ˜ ๋ก oil droplet์˜ ์ž”๋ฅ˜๋Ÿ‰, ํƒ๋„ ๋ฐ ํฌ๊ธฐ๊ฐ€ ์ฆ๊ฐ€๋˜๋Š” ํ˜„์ƒ์ด ๋‚˜ํƒ€๋‚ฌ์œผ๋ฉฐ, ํ‘œ๋ฉด์ „์œ„๋Š” pH๊ฐ€ ์ปค์งˆ์ˆ˜๋ก ๋‚ฎ์•„์ง€๋ฉฐ, ๊ณ„๋ฉดํ™œ์„ฑ์ œ ์„ฑ๋ถ„์ด ํฌํ•จ๋ ์ˆ˜๋ก ๋”์šฑ ๋‚ฎ์•„์ง€๋Š” ๊ฒฝํ–ฅ์ด ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์„ ๋ฐ•ํ‰ํ˜•์ˆ˜๋‚ด ์™ธ๋ž˜์ข… ์ƒ๋ฌผ๊ตฐ์—์„œ ๋ถ€์œ ์„ฑ ๋ฏธ์ƒ๋ฌผ์ธ ๋™์‹๋ฌผ์„ฑ ํ”Œ๋ž‘ํฌํ†ค๊ณผ ๋ณ‘์›์„ฑ ์„ธ๊ท ์ด ํฌํ•จ๋˜์–ด ์žˆ์œผ๋ฉฐ, ํ”Œ๋ž‘ํฌํ†ค์ด ์•ฝ 30 ใŽ› ์ดํ•˜, ์„ธ๊ท ์ด ์•ฝ 5 ใŽ›๋กœ ์ดํ•˜์˜ ํฌ๊ธฐ๋ถ„ํฌ๋ฅผ ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค. ์ด์™€ ๊ฐ™์€ ๋ฏธ์ƒ๋ฌผ์˜ ํ‘œ๋ฉด์ „์œ„๋Š” pH๊ฐ€ ์ปค์งˆ์ˆ˜๋ก ๊ณ„๋ฉดํ™œ์„ฑ์ œ ์ฃผ์ž…๋Ÿ‰์ด ๋Š˜์–ด๋‚  ์ˆ˜ ๋ก ๋‚ฎ์•„์กŒ๋‹ค. DAF๊ณต์ •์—์„œ oil droplet์„ Alum์„ ์ฃผ์ž…ํ•˜์ง€ ์•Š๊ณ  ๋ฏธ์„ธ๊ธฐํฌ๋งŒ์œผ๋กœ ๋ถ€์ƒ์‹œํ‚ฌ ๊ฒฝ์šฐ ๊ณ„๋ฉดํ™œ์„ฑ์ œ์˜ ์ฃผ์ž…์€ ์ฒ˜๋ฆฌํšจ์œจ์„ ํฌ๊ฒŒ ์ €ํ•˜์‹œ์ผฐ์ง€๋งŒ, Alum์„ ์ฃผ์ž…ํ–ˆ์„ ๋•Œ ๊ณ„๋ฉดํ™œ์„ฑ์ œ๊ฐ€ ํฌํ•จ๋  ๊ฒฝ์šฐ ์ฒ˜๋ฆฌํšจ์œจ์„ ํฌ๊ฒŒ ํ–ฅ์ƒ์‹œ์ผฐ๋‹ค. oil droplet์„ ์‘์ง‘์ œ๋ฅผ ์ฃผ์ž…ํ•˜์ง€ ์•Š์€ ์ƒํƒœ์—์„œ ๋ฏธ์„ธ๊ธฐํฌ ์šด์ „์กฐ๊ฑด์ธ ์••๋ ฅ๊ณผ ํšŒ์ˆ˜์œจ๋งŒ์„ ๋ณ€ํ™”์‹œ์ผฐ์„ ๋•Œ ๊ณ„๋ฉดํ™œ์„ฑ์ œ๊ฐ€ ํฌํ•จ๋œ ๊ฒฝ์šฐ๋ณด๋‹ค ํฌํ•จ๋˜์ง€ ์•Š์•˜์„ ๋•Œ ์ฒ˜๋ฆฌํšจ์œจ์ด ๋†’์•˜๋‹ค. ํ•ด์ˆ˜ ์šฉ์•ก์กฐ๊ฑด์— ๋”ฐ๋ฅธ DAF๊ณต์ •์˜ ์ฒ˜๋ฆฌํšจ์œจ์—์„œ ์ž…์ž์„ฑ ๋ฌผ์งˆ์ด ํ”Œ๋ก์œผ๋กœ ํ˜•์„ฑ๋˜๋ฉด์„œ ํ”Œ๋ก๊ณต๊ทน์— oil droplet์ด ๋ถ€์ฐฉ๋˜๋ฉด์„œ 90% ์ด์ƒ์˜ ๋†’์€ ์ฒ˜๋ฆฌํšจ์œจ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์‘์ง‘์ œ์ธ PAHCs, FeCl3, Alum ์„ธ ๊ฐ€์ง€ ๊ฒฝ์šฐ์—์„œ ๊ฐ๊ฐ์˜ ์ฒ˜๋ฆฌํšจ์œจ์„ ๋น„๊ตํ•œ ๊ฒฐ๊ณผ ๊ณ ๋ถ„์ž ์‘์ง‘์ œ์ธ PAHCs๊ฐ€ ๊ฐ€์žฅ ๋†’์•˜๊ณ , ๋‹ค์Œ์œผ๋กœ FeCl3, Alum์ˆœ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์˜ค์กด์„ ์ˆ˜์ค‘์— ๊ฐ€์••์‹œ์ผœ ๋ฐœ์ƒ์‹œํ‚จ DAF๊ณต์ •์œผ๋กœ ์˜ค์กด์ด ๋ฌผ๊ณผ ๋ฐ˜์‘ํ•˜์—ฌ ํ˜•์„ฑ๋œ ์ž์œ ๋ผ๋””์นผ์— ์˜ํ•œ ๋ฏธ์ƒ๋ฌผ์„ ์†Œ๋…์‹œํ‚ฌ ๊ฒฝ์šฐ ๋ณ‘์›์„ฑ ์„ธ๊ท ์€ ์ž”๋ฅ˜์„ธ๊ท ์ด ๊ฑฐ์˜ ๊ฒ€์ถœ๋˜์ง€ ์•Š์€ ๋ฐ˜๋ฉด, ํ”Œ๋ž‘ํฌํ†ค์€ ์†Œ๋…๊ณต์ • ํ›„ ์ž”๋ฅ˜๊ฐœ์ฒด์ˆ˜๊ฐ€ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ด๋Š” ํŠนํžˆ ์‹๋ฌผ์„ฑ ํ”Œ๋ž‘ํฌํ†ค์˜ ์„ธํฌ๊ตฌ์กฐ๊ฐ€ ์„ธํฌ๋ง‰์„ ๋‘˜๋Ÿฌ์‹ธ๊ณ  ์žˆ๋Š” ์ง€์งˆ์ธต์ธ ์‹ค๋ฆฌ์นด๊ฒ”์— ์˜ํ•œ ๊ฒƒ์œผ๋กœ ํŒ๋‹จ๋˜์–ด์ง„๋‹ค. ๊ฐ€์••์ˆ˜์˜ ์••๋ ฅ๋ณ€ํ™”์— ๋”ฐ๋ผ ์ž”๋ฅ˜์˜ค์กด๋†๋„๊ฐ€ ์ƒ์Šนํ•˜๋Š” ๊ฒฝํ–ฅ์„ ๋‚˜ํƒ€๋ƒˆ๋Š”๋ฐ ์ด๋Š” ์••๋ ฅ์˜ํ–ฅ์— ๋”ฐ๋ผ ๊ธฐํฌํฌ๊ธฐ๊ฐ€ ์ž‘๊ณ  ๋ฐœ์ƒ๋Ÿ‰์ด ๋งŽ์•„์ง€๋ฉด์„œ ์˜ค์กด์˜ ์ˆ˜์ค‘ ์šฉํ•ด์œจ์ด ์ƒ์Šนํ•œ ๊ฒƒ์œผ๋กœ ํŒ๋‹จ๋œ๋‹ค. ์˜ค์กด๊ธฐํฌ๋ฅผ ๋ฐœ์ƒ์‹œํ‚จ ํ›„ ์ž”๋ฅ˜์˜ค์กด๋†๋„๊ฐ€ ์ปค์งˆ์ˆ˜๋ก ๋ณ‘์›์„ฑ ์„ธ๊ท ์˜ ์ž”๋ฅ˜๊ตฐ์ง‘์ˆ˜๊ฐ€ ์ค„์–ด๋“ค์—ˆ๋Š”๋ฐ ์—ฌ๊ธฐ์„œ ์ž”๋ฅ˜์˜ค์กด๊ณผ ์„ธ๊ท ๊ฐ„์˜ ์ ์ • ์ ‘์ด‰์‹œ๊ฐ„์€ ์ž”๋ฅ˜์˜ค์กด๋†๋„๋ณ„๋กœ ์•ฝ 20๋ถ„์ด์—ˆ๋‹ค. ์ด์™€ ๊ฐ™์ด Pilot plant ๊ทœ๋ชจ์˜ ์˜ค์กด์„ ์ด์šฉํ•œ DAF๊ณต์ •์—์„œ์˜ ์ ์ • ์ ‘์ด‰์‹œ๊ฐ„ ๊ฒฐ๊ณผ๋ฅผ ํ† ๋Œ€๋กœ ์ผ๋ฐ˜์ ์ธ ์‹ค์ œ full-scale์˜ DAF๊ณต์ •์—์„œ ์ฒด๋ฅ˜์‹œ๊ฐ„์ด 30๋ถ„์ด๋ผ๋Š” ์ ์„ ๊ณ ๋ คํ•˜์˜€์„ ๋•Œ ์˜ค์กด๊ธฐํฌ๋ฅผ ์ด์šฉํ•œ DAF๊ณต์ •์ธ DOF๊ณต์ •์œผ๋กœ ์‹ค์ œ๊ทœ๋ชจ์—์„œ ์†Œ๋…ํšจ์œจ์„ ์ถฉ๋ถ„ํžˆ ๋†’์ผ ์ˆ˜ ์žˆ๋‹ค๊ณ  ํŒ๋‹จ๋œ๋‹ค. ์ด๋Ÿฌํ•œ ๊ฒฐ๊ณผ๋“ค์€ ์˜ค์กด๊ธฐํฌ๋ฅผ ์ด์šฉํ•œ DAF๊ณต์ •์ธ ์šฉ์กด์˜ค์กด๋ถ€์ƒ(DOF, Dissolved ozone flotation) ๋‹จ์ผ๊ณต์ •์œผ๋กœ ์„ ๋ฐ•ํ‰ํ˜•์ˆ˜๋‚ด oil droplet ์ฒ˜๋ฆฌ ๋ฐ ๋ฏธ์ƒ๋ฌผ์˜ ์†Œ๋…์„ ์‹ค์ œ๊ฐ€ ๊ฐ€๊น๊ฒŒ ํšจ์œจ์ ์œผ๋กœ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ์Œ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค.1. ์„œ ๋ก  1 1.1. ์—ฐ๊ตฌ์˜ ๋ฐฐ๊ฒฝ 1 1.2. ์—ฐ๊ตฌ์˜ ๋ชฉ์  5 2. ๋ฌธํ—Œ๊ณ ์ฐฐ ๋ฐ ์ด๋ก ์  ๋ฐฐ๊ฒฝ 6 2.1 Oil droplet ํ˜•์„ฑ 6 2.1.1 Oil droplet ๋ถ„์‚ฐ 6 2.1.2 Oil droplet ์•ˆ์ •ํ™” 7 2.1.3 ์„ ๋ฐ•ํ‰ํ˜•์ˆ˜ ์œ ๋ฅ˜์˜ค์—ผ 9 2.2 ๋งž์ถคํ˜• ๊ธฐํฌ 11 2.2.1 ์ด๋ก ์  ๋ฐฐ๊ฒฝ 11 2.2.2 ๊ธฐํฌ์˜ ํฌ๊ธฐ์ œ์–ด 12 2.3 Oil droplet๊ณผ ๊ธฐํฌ์˜ ์ถฉ๋Œ์ด๋ก  15 2.3.1 Oil droplet ํ‘œ๋ฉดํŠน์„ฑ 15 2.3.2 Oil droplet๊ณผ ๊ธฐํฌ์˜ ์ถฉ๋Œํšจ์œจ 15 2.4 ์˜ค์กด 17 2.4.1 ์˜ค์กด์˜ ๋ฌผ๋ฆฌํ™”ํ•™์  ํŠน์„ฑ 17 2.4.2 ์˜ค์กด์˜ ์‚ฐํ™” 17 2.5 ๊ธฐํฌ์˜ ์†Œ๋… 19 2.5.1 ๊ธฐํฌ ํŒŒ์—ด 19 2.5.2 ๊ธฐํฌ ํŒŒ์—ด์— ์˜ํ•œ ์†Œ๋… 19 3. ์‹คํ—˜ ์กฐ๊ฑด ๋ฐ ๋ฐฉ๋ฒ• 21 3.1 ์‹คํ—˜์žฌ๋ฃŒ ๋ฐ ๋ถ„์„๋ฐฉ๋ฒ• 21 3.1.1 ์‹คํ—˜์žฌ๋ฃŒ 21 3.3.2 ์ž…์žํฌ๊ธฐ ๋ฐ ์ œํƒ€์ „์œ„ 22 3.2 Batch test 24 3.2.1 ํ™”ํ•™์ œ ๋ฐ ๊ธฐํฌ์šด์ „ ์กฐ๊ฑด 24 3.2.2 ์šฉ์•ก ๋ณ€ํ™” 25 3.2.3 ์‘์ง‘์ œ ์ข…๋ฅ˜ 26 3.3 Continuous test 27 3.3.1 ๋ฏธ์ƒ๋ฌผ ์†Œ๋… 27 3.4 Pilot test 29 3.4.1 ์ตœ์ ์šด์ „ ์กฐ๊ฑด 29 4. ์‹คํ—˜๊ฒฐ๊ณผ ๋ฐ ๊ณ ์ฐฐ 31 4.1 ์ž…์ž์˜ ํฌ๊ธฐ๋ถ„ํฌ ๋ฐ ์ œํƒ€์ „์œ„ 31 4.1.1 Oil droplet 31 4.1.2 ๋ฏธ์ƒ๋ฌผ 34 4.2 Batch test 37 4.2.1 ํ™”ํ•™์ œ ๋ฐ ๊ธฐํฌ์šด์ „ ์กฐ๊ฑด์˜ ์˜ํ–ฅ 37 4.2.2 ์šฉ์•ก ๋ณ€ํ™”์˜ ์˜ํ–ฅ 40 4.2.3 ์‘์ง‘์ œ ์ข…๋ฅ˜์— ๋”ฐ๋ฅธ ์˜ํ–ฅ 41 4.3 Continuous test 43 4.3.1 ๋ฏธ์ƒ๋ฌผ ์†Œ๋…ํšจ์œจ 43 4.4 Pilot test 48 4.4.1 Oil droplet 48 4.4.1 ๋ฏธ์ƒ๋ฌผ 49 5. ๊ฒฐ ๋ก  50 ์ฐธ๊ณ ๋ฌธํ—Œ 54Maste

    Drop-on-demand jetting and velocity control of droplet by using the hybrid jetting system

    Get PDF
    Nanomedical National Core Research Center/์„์‚ฌDirect write techniques have been widely studied because it is a low-cost, high-speed, and environmentally-friendly manufacturing process. The technique is based on ink-jet or EHD. The ink-jet printing method can make droplets with high jetting-frequency(10-100 kHz), while the droplet size is limited to become larger than the nozzle size. On the contrary to this, the EHD printing method can makes droplets ten-times smaller than the nozzle size, but the jetting-frequency is limited due to time delay for Taylor-Cone formation. In order to generate ultra fine droplets with high-throughput, a technical convergence of ink-jet and EHD methods is required. And also, to realize multi-nozzle jetting systems, a control technique of drop-velocity from each nozzle is required. In this paper, we developed two types of hybrid printing system which are ring extractors integrated hybrid jetting system and thermal bubble hybrid jetting system.Ring extractors integrated hybrid jetting system (HJS) that solves the problems of pin electrode of previous HJS. By using this system, ultra fine droplets (1.33pl) were generated with short jetting cycle at relatively low DC voltage (2.3kV), in comparison with previous HJS (~5kV). In addition, in order to control the droplet velocity, we tested jetting performance for various DC voltages of ring extractors at fixed driving waveform. As a result, the drop velocity could be controlled by tuning the applied DC voltage to the HPS. It can contribute to reduce velocity deviation of droplets in multi-nozzle jetting systems without changing volume of droplets. For multi nozzle HJS, we made thermal inkjet head. By using PCB nozzle, we improved the electrical insulating properties of nozzle surface and reduced fabrication cost. Using these multi nozzle hybrid jetting head, we could control the meniscus and eject droplets with frequency of 500Hz.ope

    ์ง‘ํšŒ์˜ ๋‹ค๋ฉด์„ฑ๊ณผ ์ •์น˜์  ์ฃผ์ฒดํ™”

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์‚ฌํšŒ๊ณผํ•™๋Œ€ํ•™ ์ •์น˜์™ธ๊ตํ•™๋ถ€(์ •์น˜ํ•™์ „๊ณต), 2021. 2. ๊น€์ฃผํ˜•.This thesis critically examines previous studies which sought to clarify the relationship between democracy and the 2016-17 Candlelight Demonstration in South Korea โ€“ the largest street agitation in that nationโ€™s history. Under the influence of its underlying conception, or figure, of democracy, I contend that they overlook multifaceted aspects of the demonstration and complex interactions among diverse practices internal to the scene. They too hastily reduce the whole set of actions to a mere case which implies a malfunction of procedural democracy or which indicates the possibility of democracy governed by an immediate presence of the multitude or left populism of the โ€˜peopleโ€™. These interpretations tacitly posit the figure of circulation as an ideal operation of democracy, which leads them to ignore complexities of the case and consider it as congruous with its presupposed operation of democracy. In contradistinction to these approaches and two figures of democracy โ€“ the procedural circulation of mediated people and the direct circulation of immediate people โ€“, I seek to demonstrate the presence of heterogeneous practices intrinsic to street demonstration or mass insurrection by addressing the process of over- and under-determination among several tendencies in the course of the Candlelight Demonstration. I especially focus on the struggles against the discriminatory and exclusionary practices that took place on the street toward other participants and on which previous studies remain silent or give cursory mention. These struggles โ€“ such as โ€˜Femi-Zoneโ€™ seeking to redress sexist tendencies of the demonstration โ€“ can be defined as political subjectivation, an action of becoming subject within the process to verify unjustness of the dominant-yet-exclusionary perception of the world and to performatively reconfigure it in more egalitarian ways. By identifying such struggles as the third figure of democracy, this thesis lastly proposes to refigure the prevailing conception of democracy โ€“ and its subsequent narrative concerning the repertoire of the Candlelight Demonstration โ€“ by which our political imagination is constrained and the future process of political subjectivation is impeded.์ด ๋…ผ๋ฌธ์€ 2016-17๋…„ ์ด›๋ถˆ์ง‘ํšŒ์™€ ๋ฏผ์ฃผ์ฃผ์˜ ์‚ฌ์ด์˜ ๊ด€๊ณ„๋ฅผ ๊ทœ๋ช…ํ•˜๊ณ  ์„œ์‚ฌ๋ฅผ ๊ตฌ์ถ•ํ•ด์™”๋˜ ํ•™์ˆ ์  ๋…ผ์˜๋“ค์— ๋Œ€ํ•œ ๋น„ํŒ์  ๊ฒ€ํ† ๋ฅผ ์ง„ํ–‰ํ•˜๋ฉฐ, ์ด๋“ค์ด ์ด›๋ถˆ์ง‘ํšŒ๋ฅผ ๋‹ค๋ฅด๊ฒŒ ํ•ด์„ํ•˜๋„๋ก ๋งŒ๋“œ๋Š” ๋ฏผ์ฃผ์ฃผ์˜๊ด€ ๋˜๋Š” ๋ฏผ์ฃผ์ฃผ์˜์˜ ํ˜•์ƒ์„ ์‹๋ณ„ํ•œ๋‹ค. ์ด ๊ณผ์ •์—์„œ ๊ธฐ์กด ๋ฌธํ—Œ๋“ค์ด ์ž์‹ ์˜ ํ˜•์ƒ ์•„๋ž˜ ์ง‘ํšŒ์˜ ๋‹ค๋ฉด์„ฑ๊ณผ ๋‚ด๋ถ€ ์‹ค์ฒœ๋“ค ์‚ฌ์ด์˜ ๋ณต์žกํ•œ ๋™ํ•™์„ ์„ฃ๋ถˆ๋ฆฌ ๊ฐ„๊ณผํ•˜๋ฉฐ, ํŠนํžˆ ์ •์น˜์  ์ฃผ์ฒดํ™”๋กœ ๊ฐœ๋…ํ™”๋  ์ˆ˜ ์žˆ๋Š” ์‹ค์ฒœ์˜ ๊ณ ์œ ์„ฑ์„ ์ถ•์†Œ์‹œํ‚ค๋Š” ๋ฌธ์ œ์ ์„ ์ง€๋‹Œ๋‹ค๋Š” ๊ฒƒ์„ ๋ฐํžŒ๋‹ค. ๊ธฐ์กด ๋…ผ์˜์™€ ๋‹ฌ๋ฆฌ ์ง‘ํšŒ์˜ ๋‹ค๋ฉด์„ฑ์„ ๋ณต์›ํ•˜๊ณ  ์ •์น˜์  ์ฃผ์ฒดํ™”๋ผ๋Š” ๋ฏผ์ฃผ์ฃผ์˜์˜ ์„ธ ๋ฒˆ์งธ ํ˜•์ƒ์„ ํ†ตํ•ด ์ง‘ํšŒ ํ˜„์žฅ์„ ์žฌ์กฐ๋ช…ํ•˜๋ฉด์„œ, ์ด ๋…ผ๋ฌธ์€ ์šฐ๋ฆฌ ์กด์žฌ์˜ ์ •์น˜์  ์ƒ์ƒ๊ณผ ํ–‰์œ„์ž์„ฑ์„ ์ œ์•ฝํ•ด์˜ค๋˜ ์ด›๋ถˆ์ง‘ํšŒ์™€ ๋ฏผ์ฃผ์ฃผ์˜์— ๊ด€ํ•œ ๊ธฐ์กด ์„œ์‚ฌ๋ฅผ ์žฌ๊ตฌ์ถ•ํ•ด์•ผํ•จ์„ ์ฃผ์žฅํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๋ชฉ์  ์•„๋ž˜ ์ด ๋…ผ๋ฌธ์€ ๋‹ค์Œ๊ณผ ๊ฐ™์€ ์ˆœ์„œ์— ๋”ฐ๋ผ ์ง„ํ–‰๋œ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋กœ ์ด›๋ถˆ์ง‘ํšŒ๋ฅผ ๋ถ„์„ํ–ˆ๋˜ ๊ธฐ์กด ๋ฌธํ—Œ๋“ค์˜ ๋ฏผ์ฃผ์ฃผ์˜๊ด€์„ ํฌ๊ฒŒ ๋งค๊ฐœ์  ์ธ๋ฏผ์˜ ์ ˆ์ฐจ์  ์ˆœํ™˜๊ณผ ๋น„๋งค๊ฐœ์  ์ธ๋ฏผ์˜ ์ง์ ‘์  ์ˆœํ™˜์ด๋ž€ ๋‘ ๊ฐ€์ง€ ํ˜•์ƒ์œผ๋กœ ๋ถ„๋ฅ˜ํ•œ๋‹ค. ์ด๋“ค์€ ์„œ๋กœ ๋‹ค๋ฅธ ๋ฏผ์ฃผ์ฃผ์˜๊ด€์„ ์ง€๋‹ˆ๊ณ  ์žˆ์Œ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ๋ฏผ์ฃผ์ฃผ์˜์˜ ์ด์ƒ์ ์ธ ์ž‘๋™๋ฐฉ์‹์„ ์ด๋ฏธ ์ˆœํ™˜์˜ ํ˜•์ƒ์œผ๋กœ ์ƒ์ •ํ•œ ์ƒํƒœ์—์„œ, ์ด›๋ถˆ์ง‘ํšŒ๋ฅผ ์ž์‹ ์˜ ํ˜•์ƒ์— ๊ฑธ๋งž์€ ์‚ฌ๋ก€๋กœ ํ™˜์›ํ•˜์—ฌ ์žฌ๋‹จํ•œ๋‹ค๋Š” ๊ณตํ†ต์ ์„ ๋ณด์ธ๋‹ค. ์ด›๋ถˆ์ง‘ํšŒ๋Š” ๋‹จ์ง€ ์ ˆ์ฐจ์  ๋ฏผ์ฃผ์ฃผ์˜์˜ ๋น„์ •์ƒ์ ์ธ ์ž‘๋™์„ ๋“œ๋Ÿฌ๋‚ด๋Š” ์ฆ์ƒ์œผ๋กœ์„œ๋งŒ ํ•ด์„๋˜๊ฑฐ๋‚˜ ๋‹ค์ค‘ ํ˜น์€ โ€˜์ธ๋ฏผโ€™์˜ ๋ฏผ์ฃผ์ฃผ์˜๋ฅผ ์‹คํ˜„ํ•˜๊ธฐ ์œ„ํ•œ ์ž ์žฌ๋ ฅ์„ ๋ณด์—ฌ์ฃผ๋Š” ์‚ฌ๋ก€๋กœ ๊ฐ„์ฃผ๋  ๋ฟ์ด๋‹ค. ๋‘ ๋ฒˆ์งธ๋กœ ์ด๋Ÿฌํ•œ ๊ณตํ†ต์ ์— ์˜ํ•ด ์ˆœํ™˜์˜ ํ˜•์ƒ์„ ์ทจํ•˜๋Š” ๋ฏผ์ฃผ์ฃผ์˜๊ด€๋“ค์ด ์ง‘ํšŒ ํ˜„์žฅ์˜ ์—ฌํƒ€ ์ธก๋ฉด๋“ค์„ ๊ฐ„๊ณผํ•˜๋ฉด์„œ ์ง‘ํšŒ ๋‚ด๋ถ€์˜ ๋‹ค๋ฉด์„ฑ, ๊ทธ ์ค‘์—์„œ๋„ ์ฐจ๋ณ„๊ณผ ๋ฐฐ์ œ์˜ ๋™ํ•™๊ณผ ์ด์— ์ €ํ•ญํ–ˆ๋˜ ์ •์น˜์  ์‹ค์ฒœ์˜ ๊ณ ์œ ์„ฑ์— ๋Œ€ํ•ด ์นจ๋ฌตํ•œ๋‹ค๋Š” ๋ฌธ์ œ์ ์„ ๋…ธ์ •ํ•œ๋‹ค๊ณ  ๋น„ํŒํ•œ๋‹ค. ์„ธ ๋ฒˆ์งธ๋กœ ๊ธฐ์กด ๋ฌธํ—Œ๋“ค์ด ๊ฐ์ž ๋…๋ฆฝ์ ์œผ๋กœ ํฌ์ฐฉํ–ˆ๋˜ ๋‹ค์–‘ํ•œ ํ–‰์œ„์ž์˜ ๋ชจ์Šต์ด ์‚ฌ์‹ค ๊ด‘์žฅ์—์„œ ๊ณต์กดํ•˜๊ณ  ์žˆ์—ˆ๊ณ , ํŠน์ •ํ•œ ๊ฒฝํ–ฅ์„ฑ์œผ๋กœ ์ง‘ํšŒ์˜ ์ „๊ฐœ๊ณผ์ •์ด ๊ณผ์ž‰ ๋ฐ ๊ณผ์†Œ๊ฒฐ์ •๋˜์—ˆ์Œ์„ ๊ฐ•์กฐํ•˜๋ฉฐ, ์ˆœํ™˜์˜ ํ˜•์ƒ์— ์˜ํ•ด ์™œ๊ณก๋˜์—ˆ๋˜ ๋‹ค๋ฉด์ ์ธ ์ง‘ํšŒ ํ˜„์žฅ์„ ๋ณต์›ํ•œ๋‹ค. ๋„ค ๋ฒˆ์งธ๋กœ ์ง‘ํšŒ ํ˜„์žฅ์—์„œ ์ด๋ฃจ์–ด์กŒ์ง€๋งŒ ๊ฐ„๊ณผ๋˜์—ˆ๋˜ ์‹ค์ฒœ ์ค‘ ์ •์น˜์  ์ฃผ์ฒดํ™”๋กœ ์ •์˜๋  ์ˆ˜ ์žˆ๋Š” ์‹ค์ฒœ๋“ค์˜ ๊ณ ์œ ์„ฑ์— ์ฃผ๋ชฉํ•œ๋‹ค. ํŠนํžˆ ๋‹น์‹œ์˜ ํŽ˜๋ฏธ์กด ์‚ฌ๋ก€๊ฐ€ ์˜ˆ์ฆํ•˜๋Š” ๊ฒƒ์ฒ˜๋Ÿผ, ๊ธฐ์กด ์„ธ๊ณ„์˜ ์ง€๋ฐฐ์ ์ด๋ฉฐ ์ฐจ๋ณ„์ ์ธ ์ธ์‹์ด ๋ถ€๋‹นํ•จ์„ ์ž…์ฆํ•˜๊ณ  ์ด๋ฅผ ์žฌํŽธํ•˜๋ ค๋Š” ์ •์น˜์  ์ฃผ์ฒดํ™”์˜ ๊ณผ์ •๊ณผ ์ด์— ์ˆ˜๋ฐ˜๋˜๋Š” ์ˆ˜ํ–‰์  ์‹ค์ฒœ ๋˜ํ•œ ๋ฏผ์ฃผ์ฃผ์˜์˜ ์ด๋ฆ„์„ ํ†ตํ•ด ํ˜ธ๋ช…๋  ์ˆ˜ ์žˆ์Œ์„ ์ œ์‹œํ•œ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ ์ด›๋ถˆ์ง‘ํšŒ์™€ ๋ฏผ์ฃผ์ฃผ์˜์— ๊ด€ํ•œ ๊ธฐ์กด ์„œ์‚ฌ๋ฅผ ์ •์น˜์  ์ฃผ์ฒดํ™”๋ฅผ ์ค‘์‹ฌ์œผ๋กœ ์žฌํ˜•์ƒํ™”ํ•˜๋Š” ์ž‘์—…์„ ์˜ˆ๋น„์ ์œผ๋กœ ์ง„ํ–‰ํ•˜๋ฉฐ, ์šฐ๋ฆฌ ์Šค์Šค๋กœ์˜ ํ–‰์œ„์ž์„ฑ์„ ์ œ์•ฝํ•ด์˜ค๋˜ ์ •์น˜์  ์ƒ์ƒ์„ ์žฌํŽธํ•˜๋Š” ๊ฒƒ์„ ํ†ตํ•ด ์ •์น˜์  ์ฃผ์ฒดํ™”์˜ ์ „๋ง์„ ๋ณด์žฅํ•  ๊ฒƒ์„ ์ œ์•ˆํ•œ๋‹ค.์ œ 1 ์žฅ ์„œ๋ก : ์ด›๋ถˆ์ง‘ํšŒ์™€ ๋ฏผ์ฃผ์ฃผ์˜ 1 ์ œ 1 ์ ˆ ๋ฌธ์ œ์ œ๊ธฐ 1 ์ œ 2 ์ ˆ ์ˆœํ™˜์  ๋ฏผ์ฃผ์ฃผ์˜๊ด€๊ณผ ์ˆœํ™˜์˜ ํ˜•์ƒ 5 ์ œ 3 ์ ˆ ๊ธฐ์กด ๋ฌธํ—Œ์˜ ๋ฏผ์ฃผ์ฃผ์˜๊ด€ ์žฌ๊ตฌ์„ฑ 11 ์ œ 4 ์ ˆ ์ด›๋ถˆ์ง‘ํšŒ๋ผ๋Š” ๋ช…์นญ 13 ์ œ 2 ์žฅ ์ฒซ ๋ฒˆ์งธ ํ˜•์ƒ: ๋งค๊ฐœ๋œ ์ธ๋ฏผ์˜ ์ ˆ์ฐจ์  ์ˆœํ™˜ 17 ์ œ 1 ์ ˆ ๋ฏผ์ฃผ์  ์ ˆ์ฐจ์™€ ์ด›๋ถˆ์ง‘ํšŒ์™€์˜ ๊ด€๊ณ„ 17 ์ œ 2 ์ ˆ ์ ˆ์ฐจ์  ์ˆœํ™˜์˜ ํ˜•์ƒ ์žฌ๊ตฌ์„ฑ 20 ์ œ 3 ์ ˆ ์ ˆ์ฐจ์  ํ•ด์„์— ๋Œ€ํ•œ ๋น„ํŒ 24 ์ œ 3 ์žฅ ๋‘ ๋ฒˆ์งธ ํ˜•์ƒ: ๋น„๋งค๊ฐœ์  ์ธ๋ฏผ์˜ ์ง์ ‘์  ์ˆœํ™˜ 30 ์ œ 1 ์ ˆ ์ด›๋ถˆ์ง‘ํšŒ์—์„œ ์ƒˆ๋กญ๊ฒŒ ๋“ฑ์žฅํ•œ ์ฃผ์ฒด 30 ์ œ 2 ์ ˆ ๋‹ค์ค‘์˜ ์ˆ˜ํ‰์  ์ˆœํ™˜์˜ ํ˜•์ƒ 37 ์ œ 3 ์ ˆ ๋‹ค์ค‘ ํ•ด์„์— ๋Œ€ํ•œ ๋น„ํŒ 40 ์ œ 4 ์ ˆ '์ธ๋ฏผ'์˜ ๋Œ€ํ‘œ์  ์ˆœํ™˜์˜ ํ˜•์ƒ๊ณผ ์ขŒํŒŒ ํฌํ“ฐ๋ฆฌ์ฆ˜ 45 ์ œ 5 ์ ˆ '์ธ๋ฏผ' ํ•ด์„์— ๋Œ€ํ•œ ๋น„ํŒ 50 ์ œ 4 ์žฅ ์ˆœํ™˜์˜ ํ˜•์ƒ์— ๋Œ€ํ•œ ๋น„ํŒ๊ณผ ์ง‘ํšŒ์˜ ๋‹ค๋ฉด์„ฑ 54 ์ œ 1 ์ ˆ ์ˆœํ™˜์˜ ํ˜•์ƒ์˜ ์„ธ ๊ฐ€์ง€ ๋ฌธ์ œ์  54 ์ œ 2 ์ ˆ ์ง‘ํšŒ ๋‚ด๋ถ€์˜ ์„ธ ๊ฐ€์ง€ ์ฃผ์ฒด์„ฑ๊ณผ ๊ณผ์ž‰ยท๊ณผ์†Œ๊ฒฐ์ • 58 ์ œ 3 ์ ˆ ์ง‘ํšŒ ํ˜„์žฅ์—์„œ์˜ ์ฐจ๋ณ„๊ณผ ๋ฐฐ์ œ์˜ ๋™ํ•™ 64 ์ œ 5 ์žฅ ์„ธ ๋ฒˆ์งธ ํ˜•์ƒ: ๋ถˆํ™”์˜ ํ˜„์‹œ์™€ ์ •์น˜์  ์ฃผ์ฒดํ™” 68 ์ œ 1 ์ ˆ ์„ธ๊ณ„๊ตฌ์ถ•์  ์‹ค์ฒœ์œผ๋กœ์„œ์˜ ํŽ˜๋ฏธ์กด 69 ์ œ 2 ์ ˆ ๋‘ ์„ธ๊ณ„ ์‚ฌ์ด์˜ ๋ถˆํ™”์™€ ์ •์น˜์  ์ฃผ์ฒดํ™”๋กœ์„œ์˜ ๋ฏผ์ฃผ์ฃผ์˜ 74 ์ œ 3 ์ ˆ ์ •์น˜์  ์ฃผ์ฒดํ™”์˜ ์‹ค์ฒœ ์–‘์ƒ: "๋งˆ์น˜ ~์ฒ˜๋Ÿผ"์˜ ์ˆ˜ํ–‰์„ฑ 80 ์ œ 4 ์ ˆ ํŽ˜๋ฏธ์กด์—์„œ ์ •์น˜์  ์ฃผ์ฒดํ™”์˜ ์ˆ˜ํ–‰์  ์‹ค์ฒœ 90 ์ œ 6 ์žฅ ์ด›๋ถˆ์ง‘ํšŒ์— ๋Œ€ํ•œ ์„œ์‚ฌ์™€ ๋ฏผ์ฃผ์ฃผ์˜์˜ ์žฌํ˜•์ƒํ™” 97 ์ œ 1 ์ ˆ ์ด›๋ถˆ์ง‘ํšŒ์™€ ๋ฏผ์ฃผ์ฃผ์˜์˜ ์„œ์‚ฌ 98 ์ œ 2 ์ ˆ ๋ฏผ์ฃผ์ฃผ์˜ ๋‚ด ๊ตฌ์„ฑ์›๋“ค์˜ ์ •์น˜์  ์ฃผ์ฒด์„ฑ 101 ์ œ 3 ์ ˆ ์ •์น˜์  ์ฃผ์ฒดํ™”๋กœ ๋ฏผ์ฃผ์ฃผ์˜๋ฅผ ์žฌํ˜•์ƒํ™”ํ•˜๊ธฐ 104 ์ œ 7 ์žฅ ๊ฒฐ๋ก : ์ด›๋ถˆ์ง‘ํšŒ๋ฅผ ์žฌํ˜•์ƒํ™”ํ•˜๊ธฐ 110 ์ฐธ๊ณ ๋ฌธํ—Œ 114 Abstract 127Maste

    Unveiling Intrinsic Properties of Dusty Red AGNs

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ž์—ฐ๊ณผํ•™๋Œ€ํ•™ ๋ฌผ๋ฆฌยท์ฒœ๋ฌธํ•™๋ถ€, 2018. 2. ์ž„๋ช…์‹ .Theoretical models suggest that dust-obscured active galactic nuclei (AGNs) appear for a certain period when merger-driven star forming galaxies evolve to galaxies harboring unobscured type 1 AGNs. These dust-obscured AGNs would look red due to the dust extinction, but observational properties of such an AGN population have not been studied extensively so far, leaving a hole in the understanding of the AGN evolution scheme. The most important expected property of the intermediate-stage, dusty AGNs is that they have higher accretion rates than unobscured type 1 AGNs, and this needs to be tested observationally. Red AGNs have been sampled in di๏ฌ€er ent ways in the hope of identifying the intermediate-stage dusty AGNs, but it is not yet clear if they really correspond to the dusty AGNs as suggested in the models. In this thesis, we study the near-infrared (NIR) and mid-infrared (MIR) spectra of unobscured type 1 AGNs and red AGNs that are selected in various ways. There are three main themes: (i) derivation of black hole (BH) mass estimators and line diagnostics that can be used for red AGN study(ii) investigation of red AGN selection methods to test its usefulness to identify dusty AGNsand (iii) investigation of the accretion rates of red, dusty AGNs to see if they have properties consistent with the intermediate-stage, dusty AGNs as predicted in the models. First, we derive methods to measure the BH masses of red AGNs using NIR and MIR hydrogen lines that are not strongly a๏ฌ€ected by dust extinction. It is necessary to ๏ฌnd such a method, since the dust-obscuration in red AGNs will make it challenging to use the BH estimators that are based on the optical/UV lines. This is done by investigating the AKARI MIR spectra of unobscured type 1 AGNs. We derive Brฮฒ- and Brฮฑ-based BH estimators and ๏ฌnd that BH masses can be estimated with an accuracy of 0.20โ€“0.36 dex using these estimators. We also investigate the Balmer/Paschen/Brackett line luminosity ratios of unobscured type 1 AGNs and find that these line ratios are consistent with the theoretically expected line ratios from CLOUDY code. Together with Paschen line-based MBH estimators and these line diagnostics provide tools to understand properties of red AGNs. Moreover, we examine how the hot and warm dust components of the type 1 AGNs behave by adding AKARI and WISE MIR data points to the analysis. The measured temperatures of the hot and warm dust components are โˆผ1100K and โˆผ220K, respectively, and the hot dust temperatures are somewhat cooler than the value quoted in previous studies (โˆผ1500K). Second, we test how e๏ฌ€ective the NIR or optical-NIR color selections of red AGNs are in identifying dusty AGNs. In order to test it, their rest-frame optical to NIR spectroscopic properties are examined to see if a reliable estimation of the dust extinction is possible. More speci๏ฌcally, we tested two red AGN selection methods, one by using NIR color (J โˆ’K > 2mag) and another using optical-NIR color (r0โˆ’K > 4mag and J โˆ’K > 1.3mag) with FIRST radio detection criteria. For the red AGNs selected from the NIR color, we measure the E(B โˆ’V ) values in two ways by using line luminosity ratios and continuum slopes, ๏ฌnding that all of the g0 โˆ’K . 4 NIR-selected red AGNs (โˆผ40% of the NIR-selected red AGNs) have no signi๏ฌcant dust extinction (E(B โˆ’V ) โˆผ 0). In contrast, for the red AGNs selected from the optical-NIR colors, their E(Bโˆ’V ) values are โˆผ0.804 (from 0.275 to 3.050), and the line luminosity ratios, from Hฮฒ to Pฮฑ line, are di๏ฌƒcult to explain without dust obscuration. Third, armed with the knowledges gained through the ๏ฌrst and second themes, we apply several hydrogen NIR-based BH mass estimators to derive the BH masses and the bolometric luminosities of red AGNs. This is done by using red AGNs z โˆผ 0.3 and z โˆผ 0.7 selected from the optical-NIR color selection. We ๏ฌnd that the measured Eddington ratios of red AGNs (โˆผ0.69) are higher than those of unobscured type 1 AGNs by a factor of โˆผ4, consistent with the expectation from some merger driven galaxy evolution models. We derived the NIR-line based MBH estimators and the line ratio diagnostics to study dust-obscuration and BH masses in red AGNs. With these tools, we ๏ฌnd that radio and optical-NIR colors can e๏ฌ€ectively select dust-obscured AGNs. Finally, we show that the red AGNs selected this way have high accretion rates, and we suggest that they are the intermediate-stage, dusty AGNs in the merger-driven galaxy evolution models.1 Introduction 1 1.1 Active galactic nuclei 1 1.2 Type 1 & 2 AGNs and uni๏ฌcation model 2 1.3 Intermediate-stage dusty AGNs 5 1.4 Dusty red AGNs 7 1.5 NIR and MIR spectroscopy as a tool to study red AGNs 10 1.6 Thesis outline 12 2 The AKARI 2.5โ€“5.0Micron Spectral Atlas of Type-1 Active Galactic Nuclei: Black Hole Mass Estimator, Line Ratio, and Hot Dust Temperature 19 2.1 Introduction 19 2.2 The sample and observation 23 2.2.1 The sample 23 2.2.2 The observation 30 2.2.3 Data reduction 33 2.2.4 Construction of composite spectrum 35 2.3 AKARI NIR spectra 37 2.4 Brackett lines 56 2.4.1 Brackett line luminosity and width 58 2.4.2 Correlation between Balmer and Brackett lines 65 2.4.3 BH mass estimators with Brackett lines 68 2.4.4 Line luminosity ratios 73 2.5 Dust component 78 2.6 Summary 89 3 A High S/N and Medium Resolution Optical and Near-Infrared Spectral Atlas of 16 2MASS-selected Red Active Galactic Nuclei at z โˆผ 0.3 97 3.1 Introduction 97 3.2 The sample and observation 100 3.2.1 Sample 100 3.2.2 NIR observation 103 3.2.3 Optical observation 106 3.3 High S/N and Medium resolution spectra 106 3.3.1 Spectral fitting of hydrogen lines 123 3.4 Reddening 140 3.4.1 Reddening derived from line luminosity ratios 140 3.4.2 Reddening derived from continuum slope 144 3.4.3 Discussion for the two types of reddening 148 3.4.4 Color selection for red, dusty AGNs 154 3.5 Accretion rates 156 3.5.1 BH masses 157 3.5.2 Bolometric luminosities 161 3.5.3 Eddington ratios of red AGNs 162 3.6 MBHโ€“ฯƒโˆ— relation 166 3.7 Summary 169 4 What Makes Red Quasars Red?: Observational Evidence for Dust Extinction from Line Ratio Analysis 179 4.1 Introduction 179 4.2 Sample and data 182 4.3 Analysis 185 4.4 Results 198 4.5 Discussion 206 4.5.1 Physical condition as a cause for high line luminosity ratio 206 4.5.2 High hot dust covering factor as a cause for redness 209 4.5.3 Viewing angle as a cause for redness 213 4.6 Conclusion 223 5 Accretion Rates of Red Quasars from the Hydrogen Pฮฒ Line 233 5.1 Introduction 233 5.2 Sample and observation 237 5.2.1 The sample 237 5.2.2 Observations 241 5.3 Analysis 242 5.4 BH masses and bolometric luminosities 245 5.4.1 BH masses 245 5.4.2 Bolometric luminosities 246 5.4.3 Comparison of the Lbol and the MBH from di๏ฌ€erent estimators 248 5.5 Discussion 252 5.5.1 Accretion rates of red quasars 252 5.5.2 Duration of red quasar phase 258 5.6 Summary 261 6 Conclusion 269Docto

    Effect of Needle Tip Position on Contrast Media Dispersion Pattern in Transforaminal Epidural Injection Using Kambin's Triangle Approach

    Get PDF
    Purpose: Dispersion of contrast media into the anterior epidural space is correlated with better outcomes after transforaminal epidural injection (TFEI). Needle tip position is an important factor affecting the pattern of contrast media dispersion. It is difficult to advance the needle medially to the interpedicle line with a conventional approach, especially in a severe spinal stenosis. But, with Kambin's triangle approach, the needle can be advanced more medially even in the severe stenosis. We aimed to compare contrast media dispersion patterns according to the needle tip position in TFEI with Kambin's triangle approach. Patients and methods: This single-center retrospective study analyzed fluoroscopic data of patients who underwent TFEI from March 2019 to July 2019. Data on the history of lumbar spinal fusion surgery and MRI findings were collected. The needle tip position was evaluated in three positions on fluoroscopic images (final anteroposterior [AP] view): extraforaminal (EF), lateral foramen (LF), and medial foramen (MF). Contrast media dispersion into the epidural space (epidural pattern) in the AP view was evaluated as a dependent variable. The relationship between the contrast media dispersion pattern and needle tip position was analyzed, and other factors affecting the contrast media dispersion pattern were identified. Results: Ninety-eight TFEI cases were analyzed (51 LF, 35 MF, and 12 EF). An epidural pattern of dispersion was observed more frequently in the LF and MF groups than in the EF group. The LF and MF groups showed no significant difference in epidural pattern frequency. On logistic regression analysis, needle tip position emerged as a major factor influencing epidural pattern, while other factors including spine conditions had no significant effect. Conclusion: Positioning the needle tip medial to the pedicle helps in the spread of the contrast media into the epidural space during TFEI with Kambin's approach. Factors other than the needle tip position did not significantly affect the contrast media dispersion pattern.ope

    Effects of positive end-expiratory pressure on intraocular pressure and optic nerve sheath diameter in robot-assisted laparoscopic radical prostatectomy: A randomized, clinical trial

    Get PDF
    BACKGROUND: There has been no study of the effect of post end-expiratory pressure (PEEP) on intraocular or intracranial pressure during pneumoperitoneum with steep Trendelenburg positioning. We investigated the effects of 5โ€ŠcmH2O of PEEP on intraocular pressure and optic nerve sheath diameter as a surrogate for intracranial pressure in robot-assisted laparoscopic radical prostatectomy. METHODS: Fifty patients scheduled for robot-assisted laparoscopic radical prostatectomy were divided into a zero-PEEP (ZEEP) group and a 5โ€ŠcmH2O of PEEP (PEEP) group. Intraocular pressure, optic nerve sheath diameter, and respiratory and hemodynamic parameters were measured before induction (T0), 10โ€Šminutes after induction of general anesthesia in the supine position before CO2 insufflation (T1), 5โ€Šminutes (T2), and 30โ€Šminutes (T3) after steep Trendelenburg positioning with pneumoperitoneum, after desufflation of pneumoperitoneum in the supine position (T4), and after 30โ€Šminutes in the recovery room postoperatively (T5). RESULTS: There was no significant difference in intraocular pressure or optic nerve sheath diameter between the groups during the study. The partial pressure of arterial oxygen and dynamic lung compliance at T1, T2, T3, and T4 were significantly higher in the PEEP than in the ZEEP group. There was no difference in mean arterial pressure or heart rate between groups at any time. CONCLUSION: Applying 5โ€ŠcmH2O of PEEP did not increase intraocular pressure or optic nerve sheath diameter during pneumoperitoneum with steep Trendelenburg positioning in robot-assisted laparoscopic radical prostatectomy. These results suggest that low PEEP can be safely applied during surgery with pneumoperitoneum and steep Trendelenburg positioning in patients without preexisting eye disease and brain pathology.ope

    Effect of Previous Caudal Block to Predict Successful Outcome after Adhesiolysis using a Steerable Catheter in Lumbar Failed Back Surgery Syndrome: A Retrospective Study

    Get PDF
    Adhesiolysis is minimally invasive and commonly used for pain associated with adhesion after lumbar spine surgery. Caudal epidural block may be used for radiating pain due to failed back surgery syndrome. We evaluated the predictive value of response to caudal block performed prior to adhesiolysis in failed back surgery syndrome. Between January 1, 2013 and June 30, 2020, 150 patients with failed back surgery syndrome were treated with adhesiolysis using a steerable catheter at the pain clinic of a tertiary hospital after failed conservative treatment (including caudal block). Patient demographics, pain duration, and lumbar magnetic resonance imaging findings were examined. Response to previous caudal block was determined as a binary result (yes or no). Patients were followed up 3 months after adhesiolysis. Successful outcome was defined as a โ‰ฅ2-point reduction in the numeric rating scale scores for radicular pain 3 months after adhesiolysis, evident in 81/150 (46%) patients. Multivariable logistic regression analysis revealed that caudal block response was an independent predictor of successful adhesiolysis (odds ratio = 4.403; p = 0.015). Response to prior caudal block is a positive predictor of successful adhesiolysis.ope

    Chronic Mandibular Osteomyelitis with Normal Value of C-reactive Protein

    Get PDF
    A 58-year-old male was referred to our pain clinic with right lower facial pain of visual analogue scale 8/10 cm. One week ago, his right lower 3rd molar was extracted for vesicles at the buccal mucosal membrane and right lower facial hypoesthesia. Immunoserologic tests revealed negative varicella-zoster virus immunoglobulin-M, positive immunoglobulin-G and normal value of C-reactive protein. Buccal mucosa biopsy revealed squamous epithelial hyperplasia. Medications for pain control was pregabalin 150 mg PO bid, amitriptyline 10 mg PO hs, fentanyl patch 12.5 ีŒg/h, carbamazepine 200 mg PO hs. C-arm guided block and pulsed radiofrequency lesionning was performed at mandibular branch of the right trigeminal nerve. And then VAS score was reduced to 4/10 cm. On facial bone CT, facial MRI and 3-phase bone scan, chronic osteomyelitis was suspected on the right mandible. Herpes zoster by atypical clinical manifestations was excluded. After additional biopsy and culture on lesion, antibiotics were used to treat the osteomyelitis and surgical follow-up was planned for surgical removal of necrotic tissue.ope

    Popliteal Fossa Pain in 24 Year-old Female

    Get PDF
    The pain around the posterior knee, called 'popliteal fossa', has been known to be caused by a variety of disease entities. Venous malformation is a very rare cause of popliteal area pain, and its diagnosis is frequently delayed, missed, or given incorrectly. Here, we report a case of a patient with popliteal fossa pain for 2 years and was diagnosed as intramuscular venous malformation using ultrasound.ope
    • โ€ฆ
    corecore