41 research outputs found

    ์„ ๋ฌผ์˜ ๊ธˆ์ „์  ๊ฐ€์น˜๊ฐ€ ์„ ๋ฌผ์˜ ๋งŒ์กฑ๋„์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ - ๊ด€๊ณ„์˜ ์นœ๋ฐ€๋„๋ฅผ ์ค‘์‹ฌ์œผ๋กœ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ฒฝ์˜ํ•™๊ณผ ๊ฒฝ์˜ํ•™์ „๊ณต, 2016. 8. ์ด์œ ์žฌ.์‚ฌ๋žŒ๋“ค์€ ์‚ฌํšŒ์  ์œ ๋Œ€๊ฐ์„ ๊ฐ•ํ™”ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์„œ๋กœ ์„ ๋ฌผ์„ ์ฃผ๊ณ  ๋ฐ›๋Š”๋‹ค. ๋”ฐ๋ผ์„œ ์„ ๋ฌผ์„ ์ฃผ๋Š” ์‚ฌ๋žŒ์€ ์ด๋Ÿฌํ•œ ๋ชฉ์ ์„ ๋‹ฌ์„ฑํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์„ ๋ฌผ์„ ๋ฐ›๋Š” ์‚ฌ๋žŒ์ด ์ข‹์•„ํ• ๋งŒํ•œ ์„ ๋ฌผ์„ ์ฐพ๊ธฐ ์œ„ํ•ด ์ƒ๋‹นํ•œ ๋…ธ๋ ฅ๊ณผ ๋น„์šฉ์„ ๋“ค์ธ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ข…์ข… ์ด๋Ÿฌํ•œ ์˜ˆ์ƒ์ด ๋น—๊ฒจ๋‚˜๊ฐ€๋Š” ๊ฒƒ์„ ๋ณผ ์ˆ˜ ์žˆ๋‹ค. ๋•Œ๋•Œ๋กœ ๊ณผ์ž 1๊ฐœ๊ฐ€ ๊ฐ’๋น„์‹ผ ๋‹ค๋ฅธ ์„ ๋ฌผ์„ ๋Šฅ๊ฐ€ํ•˜๋Š” ๋งŒ์กฑ๋„๋ฅผ ๊ฐ€์ ธ๋‹ค์คŒ์„ ๋ชฉ๋„ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ํ˜„์ƒ์ด ์ƒ๊ธฐ๋Š” ์ด์œ ์— ๋Œ€ํ•ด ๋ณธ ์—ฐ๊ตฌ์—์„œ ๋ถ„์„ํ•œ ๋ฐ”, ์„ ๋ฌผ์˜ ๊ธˆ์ „์  ๊ฐ€์น˜๊ฐ€ ๋†’์Œ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ์˜คํžˆ๋ ค ์„ ๋ฌผ์˜ ๋งŒ์กฑ๋„๊ฐ€ ๋‚ฎ์•„์ง€๋Š” ๊ฒฝ์šฐ ์ค‘ ํ•˜๋‚˜๋Š” ์„ ๋ฌผ ํ–‰์œ„ ๋‚ด ๋‹น์‚ฌ์ž ๊ฐ„ ๊ด€๊ณ„๊ฐ€ ๊ทธ๋ฆฌ ์นœ๋ฐ€ํ•˜์ง€ ์•Š์„ ๊ฒฝ์šฐ๋กœ ๋ฐํ˜€์กŒ๋‹ค. ๋˜ํ•œ ์ด๋Ÿฌํ•œ ์‹ฌ๋ฆฌ์˜ ๊ธฐ์ €์—๋Š” ์„ค๋“ ์ง€์‹์˜ ํ™œ์šฉ ์ˆ˜์ค€์ด ์žˆ์Œ๋„ ๋ฐํ˜”๋‹ค. ์ฆ‰, ์„ ๋ฌผ์„ ์ฃผ๋Š” ์‚ฌ๋žŒ๊ณผ ์„ ๋ฌผ์„ ๋ฐ›๋Š” ์‚ฌ๋žŒ์ด ๊ทธ๋ฆฌ ์นœ๋ฐ€ํ•˜์ง€ ์•Š์Œ์—๋„ ๋ถˆ๊ตฌ, ๊ฐ’๋น„์‹ผ ์„ ๋ฌผ์„ ์ฃผ์—ˆ๋‹ค๋Š” ๊ฒƒ์€ ์„ ๋ฌผ์„ ๋ฐ›๋Š” ์‚ฌ๋žŒ ์ž…์žฅ์—์„œ ์„ ๋ฌผ์— ๋Œ€ํ•œ ์˜๋„๊ฐ€ ์ˆœ์ˆ˜ํ•˜์ง€ ์•Š๊ฑฐ๋‚˜ ๋ฏฟ์„ ์ˆ˜ ์—†๋‹ค๋Š” ์„ค๋“ ์ง€์‹์ด ํ™œ์„ฑํ™”๋˜๊ฒŒ ๋งŒ๋“ค์—ˆ๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค.โ… . ์„œ ๋ก  1 โ…ก. ์ด๋ก ์  ๋ฐฐ๊ฒฝ ๋ฐ ์—ฐ๊ตฌ ๊ฐ€์„ค 5 2.1 ์„ ๋ฌผ ํ–‰์œ„ ๋‚ด ๋‹น์‚ฌ์ž ๊ฐ„ ์„ ๋ฌผ ํ‰๊ฐ€ ๊ธฐ์ค€์˜ ์ฐจ์ด 5 2.2 ์„ ๋ฌผ์˜ ๊ธˆ์ „์  ๊ฐ€์น˜์™€ ์„ ๋ฌผ์— ๋Œ€ํ•œ ๋งŒ์กฑ๋„ ๊ด€๊ณ„ 7 2.3 ์„ ๋ฌผ ํ–‰์œ„ ๋‚ด ๊ด€๊ณ„์˜ ์นœ๋ฐ€๋„ ๊ด€๋ จ ๋ถ„๋ฅ˜ ๊ธฐ์ค€ 9 2.4 ์„ค๋“ ์ง€์‹ ํ™œ์šฉ ์ˆ˜์ค€ 11 โ…ข. ์‹ค์ฆ ๋ถ„์„ 15 3.1 ์‚ฌ์ „์กฐ์‚ฌ 15 3.2 ๋ณธ ์‹คํ—˜: ์„ ๋ฌผ์˜ ๊ธˆ์ „์  ๊ฐ€์น˜ ๋ฐ ๊ด€๊ณ„์˜ ์นœ๋ฐ€๋„์— ๋”ฐ๋ฅธ ์„ ๋ฌผ์˜ ๋งŒ์กฑ๋„ ๋ณ€ํ™” 17 3.3 ๋ณธ ์‹คํ—˜: ๊ด€๊ณ„์˜ ์นœ๋ฐ€๋„์— ๋”ฐ๋ฅธ ์„ค๋“ ์ง€์‹ ํ™œ์šฉ ์ˆ˜์ค€์˜ ๋งค๊ฐœ๋œ ์กฐ์ ˆ ํšจ๊ณผ 26 โ…ฃ. ๊ฒฐ ๋ก  36 ์ฐธ๊ณ  ๋ฌธํ—Œ 41 ๋ถ€๋ก 45 Abstract 52Maste

    Association between sleep parameters and metabolic syndrome among healthy middle-aged Koreans

    Get PDF
    ๋ณด๊ฑด๋Œ€ํ•™์›/์„์‚ฌBACKGROUND Sleep has been recognized as one of the important factors related to various health problems. Several studies have reported that sleep status affects the morbidity of metabolic syndrome; however, there are limited studies, particularly in Korea. Thus, the current study evaluates the association of sleep parameters including sleep duration, difficulty in sleep initiation, and obstructive sleep apnea (OSA) risk with metabolic syndrome in healthy middle-aged Koreans. METHODS This study used data from 1,659 participants (588 of male and 1,071 of female) aged 30 to 64 years enrolled in the Cardiovascular and Metabolic diseases Etiology Research Center (CMERC) study conducted between 2013 and 2014. Multiple logistic regression models were used to examine the associations between sleep parameters and metabolic syndrome. RESULTS Male participants with short sleep duration exhibited 3.41 times higher odds (95% confidence interval (CI) 1.40-8.28) of having metabolic syndrome after adjusting for age, body mass index, smoking status, drinking status, physical activity, depression, and risk of OSA. On the other hand, female participants with difficulty in sleep initiation for 1-4 days/week were at higher risk for metabolic syndrome (adjusted odds ratio (OR) 1.75; 95% CI 1.06-2.89) than those without difficulty in sleep initiation. People with short sleep duration and difficulty in sleep initiation had a higher risk of metabolic syndrome (adjusted OR 4.94; 95% CI 1.05-23.21 in males, 2.23; 95% CI 1.01-4.94 in females) than those with intermediate sleep duration and no difficulty in sleep initiation. Corresponding OR for people with short sleep duration and no difficulty in sleep initiation was 3.34 (95% CI 1.15-9.67) in males, 1.36 (95% CI 0.50-3.72) in females. The high risk of OSA group exhibited an increased risk of abdominal obesity with an adjusted OR of 3.61 (95% CI 2.76-4.71) and high blood pressure with an OR of 2.39 (95% CI 1.82-3.14) compared to the low risk of OSA group. CONCLUSION Our study suggested that short sleep duration and difficulty in sleep initiation are associated with metabolic syndrome among healthy middle-aged Koreans. The results of our study also imply that it is important to assess the quantitative and qualitative aspects of sleep. In addition, the high risk of OSA group was associated with components of abdominal obesity and high blood pressure. However, considering the indicators for determining the risk of OSA, including body mass index and diagnosed hypertension, caution is needed in interpretation.ope

    Effect of Korean Red Ginseng Supplementation on Ocular Blood Flow in Patients with Glaucoma

    Get PDF
    The purpose of this study was to evaluate the effect of Korean red ginseng (KRG) on ocular blood flow in patients with glaucoma. In a prospective, randomized, placebo-controlled, double-masked crossover trial, 36 patients with open-angle glaucoma were consecutively recruited. Subjects were randomly assigned into two groups. Group A received 1.5 g KRG, administered orally three times daily for 12 weeks, followed by a wash-out period of 8 weeks and 12 weeks of placebo treatment (identical capsules filled with 1.5 g corn starch). Group B underwent the same regimen, but took the placebo first and then KRG. Blood pressure, heart rate, and intraocular pressure were measured at baseline and at the end of each phase of the study. Visual field examination and ocular blood flow measurements by the Heidelberg Retina Flowmeter were performed at baseline and at the end of each phase of the study. Changes in blood pressure, heart rate, intraocular pressure, visual field indices, and retinal peripapillary blood flow were evaluated. Blood pressure, heart rate, intraocular pressure, and visual field indices did not change after placebo or KRG treatment. After KRG treatment, retinal peripapillary blood flow in the temporal peripapillary region significantly improved (p = 0.005). No significant changes were found in retinal peripapillary blood flow in either the rim region or the nasal peripapillary region (p = 0.051 and 0.278, respectively). KRG ingestion appears to improve retinal peripapillary blood flow in patients with open-angle glaucoma. These results imply that KRG ingestion might be helpful for glaucoma management.ope

    Structure-function relationship and diagnostic value of macular ganglion cell complex measurement using Fourier-domain OCT in glaucoma.

    Get PDF
    PURPOSE: To assess the relationship between visual function and macular ganglion cell complex (GCC) thickness measured by Fourier-domain optical coherence tomography (OCT) and to evaluate the diagnostic value of GCC thickness for detecting early, moderate, and severe glaucoma. METHODS: Participants underwent reliable standard automated perimetry testing and OCT imaging with optic nerve head (ONH) mode and GCC mode within a single day. The relationship between structure and function was evaluated by comparing GCC thickness with mean deviation (MD) and visual field index (VFI), by regression analysis. The results were compared with those obtained for retinal nerve fiber layer (RNFL) thickness. The area under the receiver operating characteristic curve (AUC) was used to determine the relationship between disease severity and glaucomatous changes in RNFL and GCC parameters. RESULTS: One hundred three normal control subjects and 138 patients with glaucoma were included in the present study. Compared with linear models, second-order polynomial models better described the relationships between GCC thickness and MD (P<0.001), and between GCC thickness and VFI (P<0.001). A GCC pattern parameter, global loss volume (GLV), had the highest AUC for detecting early glaucoma. The AUC of mean GCC thickness for early glaucoma was higher than that of mean RNFL; however, the difference was not significant (P=0.330). CONCLUSIONS: A curvilinear function best described the relationship between VF sensitivity and GCC thickness. Macular GCC thickness and RNFL thickness showed similar diagnostic performance for detecting early, moderate, and severe glaucoma.ope

    Determinants of perimacular inner retinal layer thickness in normal eyes measured by Fourier-domain optical coherence tomography.

    Get PDF
    PURPOSE: To determine the effects of age, sex, spherical equivalent, axial length, anterior chamber depth, optic disc area, and central corneal thickness on perimacular inner retinal layer thickness in the normal human eye as measured by Fourier-domain optical coherence tomography (FD-OCT). METHODS: In this cross-sectional observational study, 182 Korean healthy subjects aged from 22 to 84 years were included. To obtain the inner retinal layer thickness, perimacular ganglion cell complex thickness, which extends from the internal limiting membrane to the inner nuclear layer, was measured by FD-OCT on one randomly selected eye of each subject. Linear regression analyses of the effects of demographic and clinical variables, including age, sex, spherical equivalent, axial length, anterior chamber depth, optic disc area, and central corneal thickness, on perimacular inner retinal layer thickness were performed. RESULTS: The mean inner retinal layer thickness for the entire population was 93.87 ฮผm. Thinner inner retinal layer measurements were associated with older age (P = 0.010) and greater axial length (P = 0.021). Mean inner retinal layer thickness decreased by approximately 1.59 ฮผm for every decade of age and by approximately 1.56 ฮผm for every 1-mm greater axial length. There was no relationship between inner retinal layer thickness and sex, anterior chamber depth, optic disc area, or central corneal thickness. CONCLUSIONS: Inner retinal layer thickness, as measured by FD-OCT, varies significantly with age and axial length. The effect is small but clinically relevant in the interpretation of inner retinal layer thickness measurements.ope

    ์šฉ์•ก ๊ณต์ •์œผ๋กœ ํ˜•์„ฑํ•œ ํˆฌ๋ช… ์ „๋„์„ฑ ์‚ฐํ™”๋ฌผ๊ณผ ๊ธˆ์† ๋ฐ•๋ง‰์˜ ์—ด์ฒ˜๋ฆฌ ๊ณต์ •์— ๋”ฐ๋ฅธ ์ „๊ธฐ์  ํŠน์„ฑ ํ–ฅ์ƒ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์žฌ๋ฃŒ๊ณตํ•™๋ถ€, 2014. 8. ์ฃผ์˜์ฐฝ.์šฉ์•ก ๊ณต์ •์€ ์ง„๊ณต ์ฆ์ฐฉ ๊ณต์ •์— ๋น„ํ•ด ์ €๊ฐ€, ์ƒ์˜จ/์ƒ์•• ๊ณต์ •, ํ™˜๊ฒฝ ์นœํ™”์  ๊ณต์ •, ์œ ์—ฐ์„ฑ ์†Œ์ž์˜ ์‘์šฉ ๊ฐ€๋Šฅ์„ฑ ๋“ฑ์˜ ๋งŽ์€ ์žฅ์ ์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. ํ•˜์ง€๋งŒ, ์šฉ์•ก ๊ณต์ •์œผ๋กœ ์ œ์ž‘๋œ ๋ฐ•๋ง‰์ด ์‹ค์ œ ์†Œ์ž์— ์ ์šฉ๋˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๊ทธ ํŠน์„ฑ๊ณผ ์„ฑ๋Šฅ์ด ํ–ฅ์ƒ๋˜์–ด์•ผํ•œ๋‹ค๋Š” ๋ฌธ์ œ๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. ์šฉ์•ก ๊ณต์ • ์ดํ›„์—๋Š” ๊ณ ์ƒํ™” ๋ฐ ๋‚ด๋ถ€์˜ ๊ฒฐํ•จ์„ ์ œ๊ฑฐํ•˜๊ณ  ํŠน์„ฑ์„ ์ œ์–ดํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ๋ฐ˜๋“œ์‹œ ํ›„์† ์ฒ˜๋ฆฌ๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ์ „์ž ์†Œ์ž์—์„œ ๊ฐ€์žฅ ๊ธฐ๋ณธ์ ์ด๊ณ  ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜๋Š” ์ „๋„์„ฑ ๋ฌผ์งˆ์„ ์„ ํƒํ•˜์—ฌ, ์šฉ์•ก ๊ณต์ •์œผ๋กœ ์ œ์ž‘ํ•˜๊ณ  ํ›„์† ์—ด์ฒ˜๋ฆฌ๋ฅผ ํ†ตํ•ด ํŠน์„ฑ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ณ  ํ‰๊ฐ€ํ•˜๋Š” ์—ฐ๊ตฌ๋ฅผ ์ง„ํ–‰ํ•˜์˜€๋‹ค. ์ „๋„์„ฑ ๋ฌผ์งˆ ์ค‘, ์ „๋„์„ฑ์ด ๊ฐ€์žฅ ์šฐ์ˆ˜ํ•œ ๊ธˆ์†๊ณผ ํˆฌ๋ช…์„ฑ๊นŒ์ง€ ๊ฐ–์ถ˜ ํˆฌ๋ช… ์ „๋„์„ฑ ์‚ฐํ™”๋ฌผ์„ ์ฃผ์ œ๋กœ ์‚ผ์•˜๋‹ค. ๊ธˆ์† ๋‚˜๋…ธ์ž…์ž์˜ ๊ฒฝ์šฐ, ์ž…์ž๋ฅผ ์‹ธ๊ณ  ์žˆ๋Š” ์œ ๊ธฐ ๋ฆฌ๊ฐ„๋“œ๋ฅผ ์ œ๊ฑฐํ•˜๊ณ  ๊ธฐ๊ณต์ด ์—†๋Š” ์กฐ๋ฐ€ํ•œ ๋ฏธ์„ธ๊ตฌ์กฐ๋ฅผ ํ˜•์„ฑํ•˜์—ฌ ์ „๋„๋„๋ฅผ ํ–ฅ์ƒ์‹œํ‚ฌ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ํ›„์† ์—ด์ฒ˜๋ฆฌ์˜ ๋น ๋ฅธ ์Šน์˜จ ์†๋„๋ฅผ ํ†ตํ•ด ์ด์™€ ๊ฐ™์€ ๊ฒฐ๊ณผ๋ฅผ ๋‹ฌ์„ฑํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ํˆฌ๋ช… ์ „๋„์„ฑ ์‚ฐํ™”๋ฌผ์˜ ๋Œ€ํ‘œ์ ์ธ ์‚ฐํ™”์ธ๋“-์ฃผ์„ (ITO) ๋‚˜๋…ธ์ž…์ž ์—ฐ๊ตฌ์—์„œ๋Š”, ์‚ฐํ™”๋ฌผ ๋‚ด๋ถ€์˜ ์‚ฐ์†Œ ๊ณต๊ณต ๋†๋„๋ฅผ ํ–ฅ์ƒ์‹œํ‚ค๊ณ , ์ž…์ž๋ฅผ ์‹ธ๊ณ  ์žˆ๋Š” ์œ ๊ธฐ ๋ฆฌ๊ฐ„๋“œ๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ์ œ๊ฑฐํ•  ์ˆ˜ ์žˆ๋Š” ์ตœ์ ์˜ ์‚ฐ์†Œ ๋ถ„์••์„ ์—ด์ฒ˜๋ฆฌ ๊ณผ์ •์—์„œ ์œ ์ง€ํ•˜์—ฌ ๊ธฐ์กด์˜ ITO ๋‚˜๋…ธ์ž…์ž ๋ฐ•๋ง‰๋ณด๋‹ค ๋›ฐ์–ด๋‚œ ์ „๋„๋„์™€ ํˆฌ๊ณผ๋„๋ฅผ ๊ฐ™๋Š” ํˆฌ๋ช…์ „๊ทน๋ฐ•๋ง‰์„ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ITO ์˜ ๋†’์€ ์ „์ž ๋†๋„ ๋•Œ๋ฌธ์— ๊ทผ์ ์™ธ์„  ํˆฌ๊ณผ๋„๊ฐ€ ์ €ํ•˜๋˜๋Š” ํ˜„์ƒ์€ ์ฃผ์„ ๋Œ€์‹  ๋ชฐ๋ฆฌ๋ธŒ๋ด์„ ๋„ํ•‘ํ•จ์œผ๋กœ์จ ํ•ด๊ฒฐํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋˜ํ•œ ์ฆ์ฐฉ ๋ฐฉ๋ฒ•์„ ๋‚˜๋…ธ์ž…์ž ์šฉ์•ก ๋•Œ์‹  ์ „๊ตฌ์ฒด ์šฉ์•ก์„ ์‚ฌ์šฉํ•˜๋Š” ์Šคํ”„๋ ˆ์ด ์ฝ”ํŒ…์œผ๋กœ ์ „ํ™˜ํ•จ์œผ๋กœ์จ ์ „์ž ๋†๋„๋Š” ๋‚ฎ์ถ”๊ณ  ์ด๋™๋„๋ฅผ ํ–ฅ์ƒ์‹œ์ผœ ์ „๋„์„ฑ ๋ฐ ํˆฌ๊ณผ๋„๋ฅผ ํ–ฅ์ƒ์‹œ์ผฐ๋‹ค. ๋˜ํ•œ ํ……์Šคํ…, ์ง€๋ฅด์ฝ”๋Š„๋„ ์ƒˆ๋กœ์šด ๋„ํ•‘ ์›์†Œ๋กœ ์ด์šฉํ•˜์˜€์œผ๋ฉฐ, ๋†’์€ ์ „๋„๋„ ๋ฐ ํˆฌ๊ณผ๋„๋ฅผ ํ™•๋ณดํ•˜์˜€๋‹ค.Solution processing has many advantages over vacuum-assisted deposition, such as the development of printing or coating techniques that are low cost, environmentally friendly, and capable of being performed at atmospheric pressurehowever, film quality and performance must be improved. After solution processing, post-treatment processes (post-annealing) are essential to solidify the films, remove the internal defects, and control the properties. Electrical conductors were chosen for study because conducting materials are fundamental and essential materials in electronic devices. Among various potential materials, research on metals and metal oxides (Transparent conducting oxides, TCOs) was conducted in this research. The conductivity of metal nanoparticle films was improved by the elimination of organic ligands capping the nanoparticles and by the formation of a dense microstructure with few pores. This result is due to the high heating rate during annealing. In tin-doped indium oxide (ITO) nanoparticle research, the representative material for TCOs, the optimization of oxygen partial pressure was appropriate for increasing the electron concentration by oxygen vacancy generation and organic ligand removal. ITO nanoparticle films showed improved conductivity and transmittance compared to conventional ITO nanoparticle films after annealing under optimized oxygen partial pressure. However, a high electron concentration in ITO degrades the transmittance in the NIR region. Doping with Mo instead of Sn was the solution to this problem. Spray coating using metal-organic decomposition solution also increased the conductivity and transmittance. W and Zr were used as new doping elements for In2O3, and high conductivity and transmittance were obtained.Chapter 1. Introduction 1.1. Evolution of electronic devices โ€ฆ............................................... 18 1.2. Solution processing โ€ฆโ€ฆโ€ฆ......................................................... 19 1.3. Solution-processed conductors .................................................. 21 1.3.1. Printable conducting materials ............................................ 21 1.3.2. Issues of solution-processed conductors .............................. 27 1.4. Annealing process for solution-processed conductors ............... 28 1.5. Objective of the thesis .................................................................. 30 1.6. Organization of the thesis ............................................................ 31 Chapter 2. Theoretical Background 2.1. Electrical properties of solution-processed conductors .............. 32 2.1.1. Metal .................................................................................... 33 2.1.2. Metal oxide ........................................................................... 33 2.2. Changes in solution-processed conducting films during thermal processing ........................ 34 2.2.1. Nanoparticle films .............................................................. 34 2.2.2.1. Microstructure evolution ............................................ 35 2.2.2. Metal-organic decomposition films ................................... 38 2.3. Solution-processed transparent conducting oxide ...................... 40 2.3.1. Electrical properties of transparent conducting oxide ......... 41 2.3.1.1. Carrier concentration .................................................... 41 2.3.1.2. Mobility ........................................................................ 42 2.3.2. Optical properties of transparent conducting oxide ............. 43 2.4. High-mobility transparent conducting oxide .............................. 47 2.4.1. Previous research on high-mobility TCOs ........................... 47 2.4.2. Mechanisms of high mobility ............................................. 48 2.4.3. High-mobility molybdenum-doped indium oxide .............. 49 2.4.4. Various doping elements for indium oxide films ................. 51 Chapter 3. Experiments 3.1. Materials ..................................................................................... 53 3.1.1. Metal films ........................................................................... 53 3.1.2. Transparent conducting oxide films ..................................... 54 3.1.2.1. Nanoparticle films ......................................................... 54 3.1.2.2. Metal-organic decomposition films .............................. 54 3.2. Solution-based deposition ........................................................... 55 3.2.1. Inkjet printing ...................................................................... 55 3.2.2. Spin coating ........................................................................... 57 3.2.3. Spray coating ........................................................................ 57 3.3. Annealing ..................................................................................... 58 3.3.1. Furnace annealing ................................................................. 58 3.3.2. Moving rapid thermal annealing .......................................... 59 3.4. Characterization ........................................................................... 61 3.4.1. Electrical properties .............................................................. 61 3.4.2. Optical properties ................................................................. 62 3.4.3. Structural properties ............................................................ 63 Chapter 4. Highly Conductive Ag Nanoparticle Films after Moving Rapid Thermal Annealing 4.1. Introduction ............................................................................. 64 4.2. Experimental procedures ............................................................ 67 4.3. Thermal characteristics of the rapid heating system ................... 69 4.4. Electrical resistivity and microstructure of the films ................. 71 4.5 Comparison between furnace and rapid annealing ................... 74 4.6 Film thickness dependence ......................................................... 80 4.7 Summary ..................................................................................... 82 Chapter 5. Highly Conductive ITO Nanoparticle Films after Oxygen Partial Pressure-Controlled Annealing 5.1. Introduction ................................................................................. 83 5.2. Experimental procedures ............................................................ 86 5.3. Electrical properties after annealing ............................................ 88 5.3.1.N-ยต diagram ........................................................................ 92 5.3.2. Impurity analysis .................................................................. 95 5.3.3. Microstructure ...................................................................... 99 5.4. Optical transmittance ................................................................... 104 5.5. Summary .................................................................................. 108 Chapter 6. High-Mobility Spray-Coated In2O3-based Films 6.1. Introduction ................................................................................. 109 6.2. Experimental procedures ........................................................... 112 6.3. Effect of spray coating parameters ............................................... 114 6.3.1. Solvent and precursor concentration .................................. 114 6.3.2. Substrate temperature ......................................................... 118 6.3.3. Solution volume ................................................................... 123 6.4. Effect of dopant concentration and annealing atmosphere ........ 126 6.4.1. Electrical properties ............................................................. 126 6.4.2. Optical properties ................................................................. 129 6.5. Comparison to other ITO and IMO films .................................. 131 6.5.1. Electrical properties .............................................................. 131 6.5.2. Optical properties ................................................................ 134 6.6. Electron concentration and mobility .......................................... 136 6.7. Other dopants .............................................................................. 141 6.8. Summary ..................................................................................... 149 Chapter 7. Conclusions 7.1. Conclusions ............................................................................... 150 References ......................................................................................... 155 Abstract (In Korean) ..................................................................... 165Docto

    ์˜คํ”„๋ผ์ธ๊ณผ ์˜จ๋ผ์ธ์ƒ์˜ ๊ฐ€๊ฒฉ์ฐจ์ด ์ธ์ง€์™€ ํ›„ํšŒ๊ฐ€ ์ดํ›„ ๊ตฌ๋งค ๊ฒฐ์ •์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ฒฝ์˜ํ•™๊ณผ(๊ฒฝ์˜ํ•™์ „๊ณต), 2013. 8. ์ด์œ ์žฌ.์œ ํ†ต๋ง๊ณผ ํ†ต์‹  ๊ธฐ์ˆ ์˜ ๋ฐœ๋‹ฌ๋กœ ์˜จ๋ผ์ธ์„ ํ†ตํ•œ ์ œํ’ˆ์˜ ๊ฐ€๊ฒฉ ๊ฒ€์ƒ‰๊ณผ ๊ตฌ๋งค๊ฐ€ ๊ฐˆ์ˆ˜๋ก ์‰ฌ์›Œ์กŒ๋‹ค. ๋‚˜์•„๊ฐ€ ๋งŽ์€ ๋ฐฑํ™”์ ๊ณผ ๋Œ€ํ˜• ํ• ์ธ์ ์—์„œ ์ง์ ‘ ๊ด€๋ฆฌ, ์šด์˜ํ•˜๋Š” ์˜จ๋ผ์ธ ๋งค์žฅ์ด ์ฆ๊ฐ€ํ•˜๋ฉด์„œ ์˜คํ”„๋ผ์ธ ๋งค์žฅ๊ณผ ์˜จ๋ผ์ธ ๋งค์žฅ ๊ฐ„์— ๋™์ผํ•œ ํ’ˆ์งˆ์˜ ๋™์ผํ•œ ์ œํ’ˆ์— ๋Œ€ํ•œ ๊ฐ€๊ฒฉ ๋น„๊ต์™€ ๊ตฌ์ž…์ด ์šฉ์ดํ•ด์ง€๊ณ  ์žˆ๋‹ค. ์ด์— ์†Œ๋น„์ž๋Š” ์ œํ’ˆ์˜ ํ’ˆ์งˆ์ด๋‚˜ ์‚ฌ์ด์ฆˆ ๋“ฑ์„ ์˜คํ”„๋ผ์ธ ๋งค์žฅ์—์„œ ์ง์ ‘ ๋ˆˆ์œผ๋กœ ํ™•์ธํ•ด๋ณด๊ณ  ์˜จ๋ผ์ธ ๋งค์žฅ์„ ํ†ตํ•ด ์ข€ ๋” ๋‚ฎ์€ ๊ฐ€๊ฒฉ์œผ๋กœ ๊ตฌ๋งค๊ฐ€ ๊ฐ€๋Šฅํ•ด์กŒ๋‹ค. ์ด ๋•Œ๋ฌธ์— ์˜คํ”„๋ผ์ธ ๋งค์žฅ์—์„œ ๊ตฌ๋งค๋ฅผ ํ•œ ์งํ›„์— ์˜จ๋ผ์ธ ๋งค์žฅ์—์„œ ๋” ์ €๋ ดํ•œ ๊ฐ€๊ฒฉ์˜ ๊ฐ™์€ ์ œํ’ˆ์„ ๋ฐœ๊ฒฌํ•œ ์†Œ๋น„์ž๋Š” ์ด๋Ÿฌํ•œ ๊ฐ€๊ฒฉ ์ฐจ์ด๋ฅผ ์ž์‹ ์ด ํ”ผํ•  ์ˆ˜ ์žˆ์—ˆ๋˜ ์†์‹ค๋กœ ๊ฐ„์ฃผํ•ด ์˜คํ”„๋ผ์ธ ๊ตฌ๋งค๋ฅผ ํ›„ํšŒํ•  ์ˆ˜ ์žˆ๋‹ค(Zeelenberg, 1996). ๊ทธ๋ฆฌ๊ณ  ์ดํ›„ ์œ ์‚ฌํ•œ ์ œํ’ˆ์ด๋‚˜ ์œ ์‚ฌํ•œ ๊ตฌ๋งค ์ƒํ™ฉ์—์„œ ๊ณผ๊ฑฐ์˜ ํ›„ํšŒ ๊ฒฝํ—˜์„ ์ƒ๊ธฐํ•˜๊ณ  ๊ฐ€๊ฒฉ์— ๋Œ€ํ•œ ์ •๋ณด ํƒ์ƒ‰์„ ์œ„ํ•ด ์˜คํ”„๋ผ์ธ ๊ตฌ๋งค๋ฅผ ์ง€์—ฐํ•˜๊ฑฐ๋‚˜ ์•„์˜ˆ ์˜จ๋ผ์ธ ๊ตฌ๋งค๋ฅผ ์„ ํƒํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ์˜คํ”„๋ผ์ธ๊ณผ ์˜จ๋ผ์ธ์ƒ์˜ ๊ฐ€๊ฒฉ ์ฐจ์ด์— ๋”ฐ๋ฅธ ํ›„ํšŒ ๊ฒฝํ—˜๊ณผ ๊ทธ ๊ฒฝํ—˜์˜ ์ถ•์  ๋ฐ ๊ฐ€๊ฒฉ ์ฐจ์ด์˜ ํฌ๊ธฐ๊ฐ€ ์ดํ›„ ์œ ์‚ฌํ•œ ๊ตฌ๋งค ์ƒํ™ฉ์—์„œ์˜ ์†Œ๋น„์ž์˜ ์˜์‚ฌ ๊ฒฐ์ •์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์— ๋Œ€ํ•ด ํ›„ํšŒ์™€ ๊ด€๋ จํ•˜์—ฌ ์•Œ์•„๋ณด์•˜๋‹ค. ์ฆ‰, ๊ฐ€๊ฒฉ ์ฐจ์ด์˜ ํฌ๊ธฐ์™€ ์ฐจ์ด ์ธ์ง€ ๋นˆ๋„์— ๋”ฐ๋ฅธ ํ›„ํšŒ์˜ ์ •๋„์™€ ๊ทธ ํ›„ํšŒ์˜ ํฌ๊ธฐ๊ฐ€ ์ดํ›„ ์˜ˆ์ƒ๋˜๋Š” ์œ ์‚ฌ ๊ตฌ๋งค ์ƒํ™ฉ์—์„œ ์ •๋ณด ํƒ์ƒ‰ ๋ฐ ๊ตฌ๋งค ์˜์‚ฌ ๊ฒฐ์ •์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ์•Œ์•„๋ณด๊ณ , ์˜คํ”„๋ผ์ธ ๊ตฌ๋งค ์œ ๋„ ๋ฐฉ์•ˆ์œผ๋กœ์„œ ๊ฐ€๊ฒฉ๋ณด์žฅ ์ œ์‹œ์˜ ์ ํ•ฉ์„ฑ์„ ์‚ดํŽด๋ณด์•˜๋‹ค. ๋ฐฉ๋ฒ•์€ ๋Œ€ํ•™์ƒ๋“ค์—๊ฒŒ ๊ตฌ๋งค ์ƒํ™ฉ์— ๋Œ€ํ•œ ์‹œ๋‚˜๋ฆฌ์˜ค๋ฅผ ์‚ฌ์šฉํ•ด ์„ค๋ฌธ์„ ์ˆ˜์ง‘ํ•˜๊ณ  ์ด์— ๋Œ€ํ•ด SPSS v. 18.0์„ ์ด์šฉํ•˜์—ฌ ์š”์ธ๋ถ„์„, ํšŒ๊ท€๋ถ„์„ ๋“ฑ์„ ์‹ค์‹œํ•˜์˜€๋‹ค. ์„ค๋ฌธ์€ ์˜คํ”„๋ผ์ธ๊ณผ ์˜จ๋ผ์ธ์ƒ์˜ ๊ฐ€๊ฒฉ ์ฐจ์ด์˜ ํฌ๊ธฐ์™€ ๋นˆ๋„, ๊ทธ๋ฆฌ๊ณ  ๊ฐ€๊ฒฉ๋ณด์žฅ์ œ์˜ ์œ ๋ฌด ์—ฌ๋ถ€๊ฐ€ ๋‹ค๋ฅธ ์—ฌ๋Ÿฌ ๊ตฌ๋งค ํ™˜๊ฒฝ์„ ์ƒ๊ธฐ์‹œํ‚ค๋Š” ๋‹ค์–‘ํ•œ ์‹œ๋‚˜๋ฆฌ์˜ค๋ฅผ ์ œ์‹œํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์˜ ๊ฒฐ๊ณผ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. ์ฒซ์งธ, ์˜คํ”„๋ผ์ธ ๊ตฌ๋งค ํ›„ ์˜จ๋ผ์ธ๊ณผ์˜ ๊ฐ€๊ฒฉ ์ฐจ์ด ์ธ์ง€ ์‹œ, ๊ฐ€๊ฒฉ ์ฐจ์ด๋Š” ํ›„ํšŒ์— ์ •(+)์˜ ์˜ํ–ฅ์„ ๋ฏธ์ณ ๊ฐ€๊ฒฉ ์ฐจ์ด๊ฐ€ ํด์ˆ˜๋ก ์˜คํ”„๋ผ์ธ ๊ตฌ๋งค์— ๋Œ€ํ•œ ํ›„ํšŒ๊ฐ€ ์ปค์ง€๋ฉฐ, ๊ฐ€๊ฒฉ ์ฐจ์ด๋ฅผ ์ธ์ง€ํ•œ ๋นˆ๋„๋Š” ํ›„ํšŒ์˜ ํฌ๊ธฐ์— ์ •(+)์˜ ์˜ํ–ฅ์„ ๋ฏธ์น˜์ง€ ์•Š์Œ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋‘˜์งธ, ๊ฐ€๊ฒฉ ์ฐจ์ด์— ๋”ฐ๋ฅธ ์˜คํ”„๋ผ์ธ ๊ตฌ๋งค์— ๋Œ€ํ•œ ํ›„ํšŒ๋Š” ๊ทธ ํฌ๊ธฐ๊ฐ€ ํด์ˆ˜๋ก ์ดํ›„ ์œ ์‚ฌ ๊ตฌ๋งค ์ƒํ™ฉ์—์„œ ์˜คํ”„๋ผ์ธ ๊ตฌ๋งค๋ฅผ ์—ฐ๊ธฐํ•˜๊ณ  ์ •๋ณด ํƒ์ƒ‰ ๋…ธ๋ ฅ ์ˆ˜์ค€์„ ์ฆ๊ฐ€์‹œํ‚ค๋ฉฐ, ์ •๋ณด ํƒ์ƒ‰ ๋…ธ๋ ฅ์ด ํด์ˆ˜๋ก ์˜คํ”„๋ผ์ธ์„ ๊ตฌ๋งค๋ฅผ ๊ฐ์†Œ์‹œํ‚ค๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. ์…‹์งธ, ๊ธฐ์กด ์—ฐ๊ตฌ์˜ ๊ฒฐ๊ณผ์™€๋Š” ๋‹ฌ๋ฆฌ ๊ฐ€๊ฒฉ๋ณด์žฅ์ œ์˜ ์กด์žฌํ•  ๋•Œ ํ›„ํšŒ์˜ ํฌ๊ธฐ๊ฐ€ ํด์ˆ˜๋ก ์ •๋ณด ํƒ์ƒ‰ ๋…ธ๋ ฅ์„ ์ฆ๊ฐ€์‹œํ‚ค๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. ์ด๋Š” ๊ธฐ์กด ์—ฐ๊ตฌ๊ฐ€ ํ–‰ํ•ด์กŒ๋˜ ๋•Œ์— ๋น„ํ•ด ์ธํ„ฐ๋„ท์˜ ๋น ๋ฅธ ๋ฐœ๋‹ฌ๋กœ ์ •๋ณด ํƒ์ƒ‰์ด ๋งค์šฐ ์šฉ์ดํ•œ ์˜จ๋ผ์ธ ๋งค์žฅ์„ ํฌํ•จํ•˜๊ณ  ์ธํ„ฐ๋„ท ์ƒ๊ฑฐ๋ž˜๊ฐ€ ๋ณดํŽธํ™”๋œ ํ•œ๊ตญ์ด๋ผ๋Š” ์ง€์—ญ์  ๋ฐฐ๊ฒฝ์ด ์˜ํ–ฅ์„ ๋ฏธ์นœ ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒ๋œ๋‹ค. ์ด๋Ÿฌํ•œ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋ฅผ ํ†ตํ•ด ๋ณธ ์—ฐ๊ตฌ๊ฐ€ ์ฃผ๋Š” ์‹œ์‚ฌ์ ์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. ์ฒซ์งธ, ์˜คํ”„๋ผ์ธ ๋งค์žฅ์˜ ํŒ๋งค ์ฆ์ง„์„ ์œ„ํ•ด ์˜จ๋ผ์ธ ๋งค์žฅ๊ณผ์˜ ๊ฐ€๊ฒฉ ์ฐจ์ด๋ฅผ ์กฐ๊ธˆ์ด๋ผ๋„ ์ค„์ด๊ณ , ์†Œ๋น„์ž๊ฐ€ ์ง์ ‘ ์ œํ’ˆ์˜ ํ’ˆ์งˆ ํ™•์ธ์„ ๋ณด๋‹ค ํ™•์‹คํžˆ ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•ด, ์˜คํ”„๋ผ์ธ ๊ตฌ๋งค ์งํ›„ ๊ฐ€๊ฒฉ ์ฐจ์ด๋ฅผ ์ธ์ง€ํ•˜๋”๋ผ๋„ ํ›„ํšŒ์˜ ํฌ๊ธฐ๊ฐ€ ํฌ์ง€ ์•Š์•„ ์ดํ›„ ๊ตฌ๋งค ์ƒํ™ฉ์—์„œ ์˜คํ”„๋ผ์ธ ๊ตฌ๋งค๋ฅผ ์ง€์—ฐํ•˜๋Š” ๊ฒฝ์šฐ๋ฅผ ์ค„์ผ ์ˆ˜ ์žˆ์–ด์•ผ ํ•œ๋‹ค. ๋‘˜์งธ, ์˜จ๋ผ์ธ ๊ตฌ๋งค๊ฐ€ ๋ณดํŽธํ™”๋˜๊ณ  ์ •๋ณด ์ด์šฉ์ด ํŽธํ•œ ํ•œ๊ตญ์—์„œ๋Š” ๊ฐ€๊ฒฉ ๊ฒฝ์Ÿ๋ ฅ์ด ์žˆ๋Š” ๋งค์žฅ์ด๋ผ๋ฉด ๊ฐ€๊ฒฉ ๋ณด์žฅ์ œ๋ฅผ ์ด์šฉํ•ด ์˜จ๋ผ์ธ ๋งค์žฅ์˜ ํŒ๋งค ์ฆ์ง„์— ๊ธฐ์—ฌํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๋‹ค. ์…‹์งธ, ์˜คํ”„๋ผ์ธ ๋งค์žฅ๊ณผ ์˜จ๋ผ์ธ ๋งค์žฅ์„ ๋™์‹œ์— ์šด์˜ํ•˜๋Š” ์—…์ฒด๊ฐ€ ๋งŽ์•„์ง€๋Š” ๋งŒํผ ์˜คํ”„๋ผ์ธ๊ณผ ์˜จ๋ผ์ธ ๋งค์žฅ์˜ ์ด์ ์„ ์‚ด๋ ค ์˜คํ”„๋ผ์ธ ๋งค์žฅ์—์„œ ๋ฐ”๋กœ ์ž์‚ฌ ์˜จ๋ผ์ธ ๋งค์žฅ์œผ๋กœ ์ฃผ๋ฌธํ•  ์ˆ˜ ์žˆ๋Š” ์‹œ์Šคํ…œ์„ ๋งŒ๋“ค๋ฉด ๋‘ ๋งค์žฅ๊ฐ„์˜ ์‹œ๋„ˆ์ง€ ํšจ๊ณผ๋ฅผ ๋ณผ ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๋‹ค.With advances in the distribution system and communication network, its getting easier to search and purchase product through On-line store. It is also easy to compare the prices of same products with same quality between off-line and on-line stores due to the increase in on-line stores owned by department or discount stores, so consumers become able to check on the quality or size of product at off-line and purchase the product with lower price at on-line. Because of this circumstance, consumers, who find out the product with the lower price at on-line right after they bought same product with the higher price at off-line, would regret their off-line purchase considering it could be avoidable loss(Zeelenberg, 1996). Then, consumers would remind their experience with regret in the similar purchasing situation and could postpone off-line purchasing or choose on-line purchasing. This study investigates the effect of regret caused by price difference between off-line and on-line and the effect of the accumulation of this experience on purchasing decision in the similar situation after the regret. In other words, it studied the impacts of regret degree effected by the price differences and the frequency of recognition of these differences on efforts to search information and purchasing decision in the expected similar purchasing situation. Furthermore, the study also examined the suitability of price guarantee as the way to induce off-line purchase. The survey used the purchasing situation scenario was conducted with university students and was analysed by SPSS v. 18.0. The scenario shows various situations with the existence of price guarantee and the scale and frequency of price differences between off-line and on-line stores. The summary of the findings of the study is followed. First, when recognizing the price differences between off-line and on-line after off-line purchase, the bigger price difference would cause the more regret. However, the frequency of experiencing price differences does not have an impact on regret. Second, the regret caused by price differences makes postponing off-line purchase and has a positive impact on the degree of the effort to search information. And the degree of effort to search information lowers the off-line purchase. Third, when the price guarantee is exists, the degree of regret increases the effort to search information, and this result is different from former studies. The implications of the study are following. To enhance the off-line sales, it is necessary to reduce the price differences and help consumers to get more information to lower the regret when consumers find out the price difference and make them not to postpone off-line purchase. For the on-line store with a competitive price, a price guarantee would be helpful to increase the sales, especially in the Korean market where on-line purchase is common. Moreover, there would be a synergy if off-line stores with on-line stores make a system that consumers can check products in person and give an order to the stores on-line shop at off-line store.์ œ 1์žฅ ์„œ ๋ก  ์ œ 1์ ˆ ์—ฐ๊ตฌ์˜ ๋ฐฐ๊ฒฝ ๋ฐ ๋ชฉ์  1. ์—ฐ๊ตฌ์˜ ๋ฐฐ๊ฒฝ 2. ์—ฐ๊ตฌ์˜ ๋ชฉ์  ์ œ 2์žฅ ๊ธฐ์กด ์—ฐ๊ตฌ์˜ ๊ฒ€ํ†  ์ œ 1์ ˆ ํ›„ํšŒ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ์˜ ๊ฒ€ํ†  1. ํ›„ํšŒ์— ๋Œ€ํ•œ ์ •์˜์™€ ์—ฐ๊ตฌ 2. ์˜ˆ์ƒํ›„ํšŒ์— ๋Œ€ํ•œ ์ •์˜์™€ ์—ฐ๊ตฌ ์ œ 2์ ˆ ๊ตฌ๋งค ์—ฐ๊ธฐ์™€ ์ •๋ณด ํƒ์ƒ‰ 1. ๊ตฌ๋งค ์—ฐ๊ธฐ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ 2. ์ •๋ณด ํƒ์ƒ‰์— ๋Œ€ํ•œ ์—ฐ๊ตฌ ์ œ 3์ ˆ ๊ฐ€๊ฒฉ๋ณด์žฅ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ 1. ๊ฐ€๊ฒฉ๋ณด์žฅ์˜ ์ •์˜ 2. ๊ฐ€๊ฒฉ๋ณด์žฅ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ ์ œ 3์žฅ ์‹ค์ฆ ์—ฐ๊ตฌ ์ œ 1์ ˆ ์—ฐ๊ตฌ ๊ฐ€์„ค์˜ ์„ค์ • 1. ๊ฐ€๊ฒฉ ์ฐจ์ด์™€ ํ›„ํšŒ 2. ํ›„ํšŒ์— ๋”ฐ๋ฅธ ์ •๋ณด ํƒ์ƒ‰ ๋…ธ๋ ฅ 3. ๊ฐ€๊ฒฉ ๋ณด์žฅ๊ณผ ๊ตฌ๋งค ๊ฒฐ์ • 4. ์‹ค์ฆ ์—ฐ๊ตฌ ๋ชจํ˜• ์ œ 2์ ˆ ์—ฐ๊ตฌ ๋ฐฉ๋ฒ• 1. ๊ฐ€๊ฒฉ ์ฐจ์ด ์ธ์ง€์™€ ํ›„ํšŒ 2. ํ›„ํšŒ์™€ ์ •๋ณด ํƒ์ƒ‰ 3. ๊ฐ€๊ฒฉ๋ณด์žฅ๊ณผ ๊ตฌ๋งค ์ œ 3์ ˆ ์ž๋ฃŒ์˜ ์ˆ˜์ง‘ 1. ์กฐ์‚ฌ๋Œ€์ƒ 2. ์ž๋ฃŒ ์ˆ˜์ง‘ ๋ฐฉ๋ฒ• 3. ํ‘œ๋ณธ์˜ ๊ตฌ์„ฑ ์ œ 4 ์ ˆ ์ธก์ •ํ•ญ๋ชฉ์˜ ํ‰๊ฐ€ 1. ์‹ ๋ขฐ์„ฑ ๋ถ„์„ 2. ํƒ€๋‹น์„ฑ ๋ถ„์„ ์ œ 5 ์ ˆ ๊ฐ€์„ค์˜ ๊ฒ€์ฆ 1. ์˜คํ”„๋ผ์ธ๊ณผ ์˜จ๋ผ์ธ ๋งค์žฅ ๊ฐ„์˜ ๊ฐ€๊ฒฉ ์ฐจ์ด ์ธ์ง€์™€ ํ›„ํšŒ 2. ํ›„ํšŒ์™€ ์ •๋ณด ํƒ์ƒ‰ ๋…ธ๋ ฅ 3. ๊ฐ€๊ฒฉ๋ณด์žฅ์ œ๊ฐ€ ํ›„ํšŒ์™€ ์ •๋ณด ํƒ์ƒ‰ ๋…ธ๋ ฅ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ 4. ์—ฐ๊ตฌ ๋ชจํ˜•์˜ ๊ฒ€์ฆ ์ œ 4 ์žฅ ๊ฒฐ ๋ก  ์ œ 1 ์ ˆ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ์˜ ์š”์•ฝ ์ œ 2 ์ ˆ ์—ฐ๊ตฌ์˜ ์‹œ์‚ฌ์  ์ œ 3 ์ ˆ ์—ฐ๊ตฌ์˜ ํ•œ๊ณ„ ๋ฐ ํ–ฅํ›„ ์—ฐ๊ตฌ๊ณผ์ œ 1. ์—ฐ๊ตฌ์˜ ํ•œ๊ณ„์  2. ํ–ฅํ›„ ์—ฐ๊ตฌ๊ณผ์ œ ์ฐธ๊ณ ๋ฌธํ—ŒMaste

    ็พไปฃไธญๅœ‹่ชž์˜ ๅŒๆ™‚์™€ ็ซ่กŒ์˜ ๆจฃ็›ธ ็ก็ฉถ : ใ€ŒV1็€ V2 ๆง‹ๆ–‡ใ€๊ณผ ใ€Œไธ€่พนV1,ไธ€่พนV2 ๆง‹ๆ–‡ใ€์„ ไธญๅฟƒ์œผ๋กœ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) --์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์ค‘์–ด์ค‘๋ฌธํ•™๊ณผ ์–ดํ•™์ „๊ณต,2006.Maste

    Effect of annealing parameters on microstructure and electrical properties of solution-processed metallic nanoparticulate films

    No full text
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์žฌ๋ฃŒ๊ณตํ•™๋ถ€, 2011.8. ์ฃผ์˜์ฐฝ.Maste

    Effect of early childhood Korean traditional music educaion program on visual and auditory pattern recognition ability

    No full text
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ํ˜‘๋™๊ณผ์ • ์œ ์•„๊ต์œก์ „๊ณต, 2011.2. ์ด์ˆœํ˜•.Maste
    corecore