149 research outputs found

    ์ฒ ์›๊ตฐ ์œ ๊ณก๋ฆฌ ๋ฏผ๋ถ๋งˆ์„์„ ์ค‘์‹ฌ์œผ๋กœ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ํ™˜๊ฒฝ๋Œ€ํ•™์› ํ™˜๊ฒฝ์กฐ๊ฒฝํ•™๊ณผ, 2021.8. ์กฐ๊ฒฝ์ง„.์ฒ ์›์€ ํ•œ๊ตญ ์ „์Ÿ์˜ ์ฃผ์š” ์ ‘์ „์ง€์—ญ์ด์ž ํœด์ „ ์ดํ›„ ๊ตฐ์‚ฌ๋ถ„๊ณ„์„ ๊ณผ ์ธ์ ‘ํ•œ ์ ‘๊ฒฝ์ง€์—ญ ๋„์‹œ๋กœ, ํƒ€ ์ง€์—ญ๊ณผ ์ฐจ๋ณ„ํ™”๋˜๋Š” ํ™˜๊ฒฝ์ , ๋ฌธํ™”์  ํŠน์ง•์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. ๊ทธ ์ค‘์—์„œ๋„ ๊ตญ๊ฐ€์— ์˜ํ•ด ๊ฑด์„ค๋œโ€˜๋ฏผ๋ถ๋งˆ์„โ€™์€ ์ ‘๊ฒฝ์ง€์—ญ์ธ ์ฒ ์›์˜ ํŠน์ˆ˜์„ฑ์„ ์ž˜ ๋ณด์—ฌ์ฃผ๋Š” ๋Œ€ํ‘œ์ ์ธ ์žฅ์†Œ๋ผ ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ ์‚ดํŽด๋ณด๊ณ ์ž ํ•˜๋Š” ์ฒ ์›๊ตฐ ๊ทผ๋ถ๋ฉด์— ์œ„์น˜ํ•œ ์œ ๊ณก๋ฆฌ ๋งˆ์„์€ ์ฒ ์›์˜ ๋ฏผ๋ถ๋งˆ์„ ๊ฐ€์šด๋ฐ ํ•˜๋‚˜๋กœ ๋Œ€ํ‘œ์ ์ธ ์„ ์ „๋งˆ์„์ด๋‹ค. ๋ฏผ๋ถ๋งˆ์„์€ ๊ตญ๊ฐ€์ „๋žต์— ์˜ํ•ด ๊ฑด์„ค๋œ ํŠน์ˆ˜ํ•œ ๊ณต๊ฐ„์œผ๋กœ, ์ผ๋ฐ˜ ๋†์ดŒ ๋งˆ์„๊ณผ๋Š” ๊ตฌ๋ณ„๋˜๋Š” ํŠน์ˆ˜ํ•œ ๊ณต๊ฐ„์œผ๋กœ ๋ฐ”๋ผ๋ณด์•„์•ผ ํ•œ๋‹ค. DMZ์˜ ์ฃผ์š” ์ž ์žฌ ์ž์›์ด๋ผ๊ณ  ํ•  ์ˆ˜ ์žˆ์ง€๋งŒ ์†Œ์™ธ๋˜์–ด ์™”๊ณ , ๊ฒŒ๋‹ค๊ฐ€ ์ผ๋ฐ˜ ๋†์ดŒ๋งˆ์„๊ณผ ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ ๊ณ ๋ นํ™” ๋ฐ ์ธ๊ตฌ ๊ณต๋™ํ™” ํ˜„์ƒ์œผ๋กœ ๋งˆ์„์†Œ๋ฉธ์ด ์˜ˆ๊ฒฌ๋˜๋Š” ์ƒํ™ฉ์ด๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” DMZ์˜ ์ฃผ์š” ์ž์›์ด์ง€๋งŒ ์†Œ์™ธ๋˜์–ด ์žˆ๋Š” ๋ฏผ๋ถ๋งˆ์„์— ์ดˆ์ ์„ ๋‘์—ˆ๋‹ค. ํŠนํžˆ, ์ ‘๊ทผ์„ฑ์˜ ๋ถ€์žฌ์™€ ๊ณ ๋ นํ™”๋กœ ์†Œ๋ฉธ์œ„๊ธฐ์— ์ฒ˜ํ•œ ์ฒ ์› ๊ทผ๋ถ๋ฉด์— ์œ„์น˜ํ•œ ์œ ๊ณก๋ฆฌ ํ†ต์ผ์ดŒ ๋งˆ์„์„ ๋Œ€์ƒ์ง€๋กœ ์‚ผ์•˜๋‹ค. ๋ฏผ๋ถ๋งˆ์„์€ ๊ตญ๊ฐ€ ์ฃผ๋„ํ•˜์— ์ง€์–ด์ง„ ์„ ์ „ ๋งˆ์„์ด๊ธฐ ๋•Œ๋ฌธ์— ํƒ€ ์ง€์—ญ๊ณผ๋Š” ์ฐจ๋ณ„๋˜๋Š” ์žฅ์†Œ์„ฑ์ด ๋‚˜์˜ฌ ๊ฒƒ์ด๋ผ ํŒ๋‹จํ•˜์˜€๋‹ค. ์ด์— ๋ณธ ์—ฐ๊ตฌ๋Š” ์œ ๊ณก๋ฆฌ ๋งˆ์„์˜ ๊ณต๊ฐ„์˜ ์‚ฌํšŒยท๊ณต๊ฐ„์  ํŠน์ง•์„ ์‚ดํŽด๋ณด๊ณ , ์ง€์—ญ ์ž์› ๋ฐ ์ฃผ๋ฏผ๋“ค์˜ ๊ธฐ์–ต์„ ์ˆ˜์ง‘ ๋ฐ ๋ถ„๋ฅ˜ํ•˜์—ฌ, ํ˜„์žฌ ์œ ๊ณก๋ฆฌ ๋งˆ์„์˜ ์žฅ์†Œ์„ฑ์„ ํ•ด์„ํ•˜๋Š”๋ฐ ๋ชฉ์ ์ด ์žˆ๋‹ค. ์žฅ์†Œ๊ธฐ์–ต ๊ฐœ๋…์„ ์ ์šฉํ•œ ๋Œ€์ƒ์ง€์˜ ๋งˆ์„ ์ž์› ์š”์†Œ๋ฅผ ์ถ”์ถœํ•˜๊ณ , ์ž์›์š”์†Œ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์ฃผ๋ฏผ ์‹ฌ์ธต ์ธํ„ฐ๋ทฐ๋ฅผ ํ†ตํ•œ ์œ ๊ณก๋ฆฌ ๋ฏผ๋ถ๋งˆ์„์˜ ์žฅ์†Œ์„ฑ์„ ํ•ด์„ํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ ์žฅ์†Œ๊ธฐ์–ต์€ ์ผ์ƒ ์ƒํ™œ ๊ธฐ์–ต์œผ๋กœ ํ™•๋Œ€ํ•˜์˜€๊ณ , ์žฅ์†Œ๋ฅผ ์ค‘์‹ฌ์œผ๋กœ ๋‚จ๊ฒจ์ง„ ์ผ์ƒ ๊ธฐ์–ต์œผ๋กœ ๋ณด์•˜๋‹ค. ์ด์— ๋จผ์ € ์žฅ์†Œ๊ธฐ์–ต์˜ ํšจ์šฉ์„ฑ์„ ์ฆ๋Œ€์‹œํ‚ค๊ธฐ ์œ„ํ•ด ๋ฌธํ—Œ ๋ฐ ํ˜„์žฅ์กฐ์‚ฌ๋ฅผ ํ†ตํ•ด ๋งˆ์„ ๋‚ด ํŠน์ง•์ ์ธ ์žฅ์†Œ๋ฅผ ๋‚˜์—ดํ•˜์˜€๊ณ , ์ด ์žฅ์†Œ๋ฅผ ์ค‘์‹ฌ์œผ๋กœ ์ธํ„ฐ๋ทฐ๋ฅผ ํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ๋งˆ์„ ๋‚ด ์žฅ์†Œ๋Š” ์ด 9๊ณณ์œผ๋กœ ๋ถ„๋ฅ˜ํ•˜์˜€๊ณ , ์ด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ 1:1 ๋˜๋Š” 1:2 ์‹ฌ์ธต ์ธํ„ฐ๋ทฐ๋ฅผ ์ง„ํ–‰ํ•˜์˜€๋‹ค. ์ˆ˜์ง‘๋œ ๊ธฐ์–ต์„ ํ†ตํ•œ ์œ ๊ณก๋ฆฌ ๋งˆ์„์˜ ์žฅ์†Œ์„ฑ์€ ํฌ๊ฒŒ 3๊ฐ€์ง€๋กœ ํ•ด์„ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ฒซ์งธ, ๋ฌผ๋ฆฌ์  ํ˜•ํƒœ๋กœ๋งŒ ์ง€์–ด์ง„ ๊ณต๊ฐ„์œผ๋กœ ์ฒ˜์Œ๋ถ€ํ„ฐ ์‹คํŒจํ•œ ๋งˆ์„์ด์ž ๋งˆ์„์ด๋ผ๊ณ  ํ•  ์ˆ˜ ์—†์—ˆ๋˜ ๋งˆ์„์ด๋‹ค. ์ „์‹œ์  ์„ฑ๊ฒฉ์ด ๊ฐ•ํ–ˆ๋˜ ์ง‘์ด์—ˆ๊ธฐ์— ๋ฌผ๋ฆฌ์  ๊ณต๊ฐ„๋งŒ ๋ฉ๊ทธ๋Ÿฌ๋‹ˆ ์ฃผ์–ด์กŒ๊ณ , ์ฃผ๋ณ€์— ๊ฒจ์šฐ ์ดˆ๋“ฑํ•™๊ต๋งŒ์ด ์žˆ์—ˆ๋‹ค. ๊ฒŒ๋‹ค๊ฐ€ ๊ฒฝ๋น„๊ฐ€ ์‚ผ์—„ํ•ด ๋ฐ”๊นฅ์ถœ์ž…์กฐ์ฐจ ์ž์œ ๋กญ์ง€ ๋ชปํ–ˆ๋‹ค. ์—„์ฒญ๋‚œ ๊ฒฝ์Ÿ๋ฅ ์„ ๋šซ๊ณ  ๋“ค์–ด์™”์ง€๋งŒ ์‹ค์ƒ์€ ๋‹ฌ๋ž๋‹ค. ์ฃผ๋ฏผ๋“ค์€ 40์—ฌ๋…„์˜ ์‹œ๊ฐ„์ด ์ง€๋‚ฌ์ง€๋งŒ ์•„์ง๋„ ๊ณ ํ†ต์Šค๋Ÿฝ๊ณ , ํ›„ํšŒ์Šค๋Ÿฌ์šด ์žฅ์†Œ์ด๋‹ค. ๋‘˜์งธ, ๊ตฐ์‚ฌ์  ๋ชฉ์ ์œผ๋กœ ์ง€์–ด์กŒ์ง€๋งŒ ์‹œ๊ฐ„์ด ํ๋ฆ„์— ๋”ฐ๋ผ ๊ตฐ์‚ฌ์  ๋ชฉ์ ์€ ์‚ฌ๋ผ์ง€๊ณ , ์ ์ฐจ ์ผ์ƒ์  ์žฅ์†Œ๋กœ ๋ณ€ํ™”ํ•˜๊ณ  ์žˆ์—ˆ๋‹ค. ์œ ๊ณก๋ฆฌ ๋งˆ์„์€ ๊ตญ๊ฐ€์— ์˜ํ•ด ์ง€์–ด์ง„ ๊ตฐ์‚ฌ์  ๋ชฉ์ ์ด ๋šœ๋ ทํ•œ ํ†ต์ผ์ดŒ์ด๋‹ค. ์ด๋Ÿฌํ•œ ์ด๋ฐ์˜ฌ๋กœ๊ธฐ์™€ ๋น„์ผ์ƒ์„ฑ ์†์—์„œ ์ง‘์ด๋ผ๋Š” ์ผ์ƒ์  ๊ฐœ๋…์ด ์ƒ์ถฉ๋˜๋ฉด์„œ ์œ ๊ณก๋ฆฌ ๋งˆ์„์€ ๊ณ„์† ๋ณ€ํ™”ํ•ด์™”๋‹ค. ์…‹์งธ, ์‹œ๊ฐ„์ด ํ˜๋Ÿฌ๊ฐ์— ๋”ฐ๋ผ ๋ฌผ๋ฆฌ์  ๊ตฌ์กฐ๋„ ์‡ ํ‡ดํ•˜๊ณ  ์ฃผ๋ฏผ๋“ค๋„ ํ•จ๊ป˜ ๋Š™์–ด๊ฐ€๊ณ  ์žˆ์—ˆ๋‹ค. ๋ฏผ๋ถ๋งˆ์„์€ ์ ‘๊ฒฝ์ง€์—ญ์˜ ์œ ์‚ฐ์œผ๋กœ์„œ ๋ณด์ „ ๊ฐ€์น˜๋ฅผ ์ธ์ •๋ฐ›๊ณ  ์žˆ๋‹ค. ๋ฏผ๋ถ๋งˆ์„์ด ๋‹ด๊ณ  ์žˆ๋Š” ์—ญ์‚ฌ์™€ ์ž˜ ์•Œ๋ ค์ง€์ง€ ์•Š์€ ์ฃผ๋ฏผ๋“ค์˜ ๊ธฐ์–ต์„ ํ†ตํ•ด ๋ชจ์ƒ‰๋ฐฉํ–ฅ์„ ์ฐพ๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•˜๋‹ค. ๋‚จ๊ฒจ์ง„ ๋ฏผ๋ถ๋งˆ์„์„ ๋Œ€์ƒ์œผ๋กœ ์ถ”ํ›„ ์—ฐ๊ตฌ๊ฐ€ ๊ณ„์†์ ์œผ๋กœ ์ˆ˜ํ–‰๋˜์–ด ๊ฐ„๋‹ค๋ฉด, ์•ž์œผ๋กœ ๋ฏธ๋ž˜ ์„ธ๋Œ€์— ๋Œ€๋น„ํ•œ ๋งˆ์„ ๊ณ„ํš์˜ ๋ฐฉํ–ฅ์„ ์„ค์ •ํ•˜๋Š”๋ฐ ๋„์›€์ด ๋  ๊ฒƒ์ด๋‹ค. ํ•˜์ง€๋งŒ ์ƒํ™œ์‚ฌ์™€ ๊ฐ™์€ ๊ฐœ์ธ์˜ ๊ฒฝํ—˜๊ณผ ์˜๋ฏธ์— ์ค‘์‹ฌ์„ ๋‘” ์‹ฌ์ธต์ธํ„ฐ๋ทฐ๊ฐ€ ์—ญ์‚ฌ์  ๊ณ ์ฆ์„ ํ•˜๊ธฐ ์–ด๋ ต๋‹ค๋Š” ๋ถ€๋ถ„์—์„œ ์—ฐ๊ตฌ์— ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค. ๋˜ํ•œ ์œ ๊ณก๋ฆฌ ๋งˆ์„์˜ ๊ธฐ๋ณธ์ ์ธ ์ธํ”„๋ผ๊ฐ€ ๊ตฌ์„ฑ๋˜์ง€ ๋ชปํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๋นˆ์ง‘์ด ๋งŽ์•„ ์ง‘๋‹จ ์ธํ„ฐ๋ทฐ์ด๊ฐ€ ์ ์–ด ๋‹ค์–‘ํ•œ ์ด์•ผ๊ธฐ๋ฅผ ์ˆ˜์ง‘ํ•˜๋Š”๋ฐ ํ•œ๊ณ„์ ์ด ์žˆ๋‹ค.Cheorwon is a major battleground in the Korean War and a border town adjacent to the Military Demarcation Line after the armistice. It has environmental and cultural characteristics that differentiate it from other regions. Among them, โ€˜Minbuk Villageโ€™ built by the state can be said to be a representative place that shows the peculiarities of Cheorwon, the border region. Yugok-ri Village, located in Geunbuk-myeon, Cheorwon-gun, which this study intends to examine, is one of the Minbuk villages in Cheorwon and is a representative propaganda village. Minbuk Village is a special space constructed according to the national strategy and should be viewed as a special space that is distinct from the general rural village. Although it can be said to be the main potential resource of the DMZ, it has been neglected and, like general rural villages, the village is expected to disappear due to aging and population hollowing. This study focused on Minbuk Village, which is the main resource of the DMZ but is marginalized. In particular, the village of Tongilchon in Yugok-ri, located in Geunbuk-myeon, Cheorwon, which is in danger of extinction due to the lack of accessibility and aging, was selected as the target. Since Minbuk Village is a propaganda village built under the leadership of the state, it was judged that it would be distinguished from other regions by a sense of place. The purpose of this study is to examine the social and spatial characteristics of the space of Yugok-ri village, collect and classify local resources and the memories of residents, and interpret the spatiality of the current Yugok-ri village. The purpose of this study was to extract the village resource elements of the target site to which the concept of place memory was applied, and to interpret the spatiality of Minbuk Village in Yugok-ri through in-depth interviews with residents based on the resource elements. In this study, place memory was expanded to memory of everyday life, and it was viewed as the memory of everyday life left centered on place. First, in order to increase the effectiveness of place memory, the characteristic places in the village were listed through literature and field research, and interviews were conducted centered on these places. A total of 9 places in the village were classified, and based on this, 1:1 or 1:2 in-depth interviews were conducted. The spatiality of Yugok-ri village through the collected memories can be largely interpreted in three ways. First, as a space built only in physical form, it is a village that failed from the beginning and could not be called a village. Because it was a house with a strong exhibition character, only physical space was given, and there was only an elementary school nearby. Besides, the security was so tight that even going outside was not free. They broke through the great competition, but the reality was different. Moreover, Yugok-ri village has been thoroughly neglected after the death of President Park Chung-hee. Although 40 years have passed, it is still a painful and regrettable place for the residents. Second, it was built for military purposes, but as time went on, the military purpose disappeared, and it was gradually changing into an ordinary place. Yugok-ri Village is a village of unification with a clear military purpose built by the state. In the midst of this ideology and non-routine, the everyday concept of a house conflicted, and the village of Yugok-ri continued to change. Third, with the passage of time, the physical structure deteriorated, and the inhabitants were aging together. Minbuk Village is recognized for its conservation value as a heritage of the border region. However, Minbuk Village has been completely ignored by the state since its construction. Although it is true that villages belonging to the northern region of the Civil Control Line are subject to many regulations in terms of development and land use planning as a military border region, it is important to find directions through the history contained in the village and the memories of lesser-known residents. If further research is continued on the remaining Minbuk villages, it will be helpful in setting the direction of village planning for the coming unification era. However, there are limitations to the research in that it is difficult to verify the history of an in-depth interview centered on personal experiences and meanings such as life history. In addition, since the basic infrastructure of Yugok-ri village is not formed, there are many vacant houses and there are few group interviews, so there is a limitation in collecting various stories.์ œ1์žฅ ์„œ๋ก  1 1์ ˆ ์—ฐ๊ตฌ์˜ ๋ฐฐ๊ฒฝ ๋ฐ ๋ชฉ์  1 1. ์—ฐ๊ตฌ์˜ ๋ฐฐ๊ฒฝ ๋ฐ ๋ชฉ์  1 2์ ˆ ์—ฐ๊ตฌ์˜ ๋ฒ”์œ„ ๋ฐ ๋ฐฉ๋ฒ• 4 1. ์—ฐ๊ตฌ์˜ ๋ฒ”์œ„ 4 2. ์—ฐ๊ตฌ์˜ ๋ฐฉ๋ฒ• 4 3์ ˆ ์—ฐ๊ตฌ์˜ ์ง„ํ–‰๊ณผ์ • 6 ์ œ2์žฅ ์ด๋ก ์  ๊ณ ์ฐฐ 7 1์ ˆ. ๋ฏผ๊ฐ„์ธํ†ต์ œ์„ ๊ณผ ๋ฏผ๋ถ๋งˆ์„์˜ ์ดํ•ด 7 1. ๋ฏผ๊ฐ„์ธํ†ต์ œ์„ ์˜ ์ดํ•ด 7 2. ๋ฏผ๋ถ๋งˆ์„์˜ ์ดํ•ด 10 2์ ˆ. ๋ฏผ๋ถ๋งˆ์„์˜ ๊ฐ€์น˜์š”์†Œ์™€ ์ž์›์œ ํ˜• 17 1. ๋ฏผ๋ถ๋งˆ์„์˜ ๊ฐ€์น˜์š”์†Œ์™€ ๋ฏธ๋ž˜ ์ž ์žฌ์„ฑ 17 2. ๋ฏผ๋ถ๋งˆ์„์˜ ํŠน์ง• ๋ฐ ์ž์› 19 3์ ˆ. ์žฅ์†Œ์„ฑ๊ณผ ์žฅ์†Œ๊ธฐ์–ต 21 1. ์žฅ์†Œ์™€ ์žฅ์†Œ์„ฑ 21 2. ์žฅ์†Œ๊ธฐ์–ต์˜ ๊ฐœ๋…๊ณผ ํŠน์„ฑ 24 ์ œ3์žฅ ๋Œ€์ƒ์ง€ ์ดํ•ด ๋ฐ ์ง€์—ญ์ž์› ๋ถ„์„ 27 1์ ˆ. ๋Œ€์ƒ์ง€์˜ ์ดํ•ด 27 1. ์œ ๊ณก๋ฆฌ ๋ฏผ๋ถ๋งˆ์„์˜ ๊ฐœ์š” 27 2. ์œ ๊ณก๋ฆฌ ๋ฏผ๋ถ๋งˆ์„์˜ ํ˜•์„ฑ๊ณผ์ • 28 3. ๋งˆ์„๊ตฌ์กฐ 30 2์ ˆ. ๋Œ€์ƒ์ง€ ํ˜„ํ™ฉ ๋ฐ ๋ถ„์„ 32 1. ๋Œ€์ƒ์ง€ ํ˜„ํ™ฉ ๋ฐ ๋ถ„์„ 32 ์ œ4์žฅ ์ผ์ƒ ์ƒํ™œ ๊ธฐ์–ต์„ ํ†ตํ•œ ์žฅ์†Œ์„ฑ ํ•ด์„ 35 1์ ˆ. ์žฅ์†Œ๊ธฐ์–ต ๊ฐœ๋…์„ ํ†ตํ•œ ์ฃผ๋ฏผ ์ผ์ƒ ์ƒํ™œ ๊ธฐ์–ต ์ˆ˜์ง‘ 35 1. ๋งˆ์„ ๋‚ด ์ฃผ์š” ์žฅ์†Œ ์ถ”์ถœ 35 2์ ˆ. ์ผ์ƒ ์ƒํ™œ ๊ธฐ์–ต์„ ํ†ตํ•œ ์žฅ์†Œ์„ฑ ํ•ด์„ ๋ฐฉ๋ฒ• 37 1. ๋งˆ์„ ๋‚ด ์ฃผ์š” ์žฅ์†Œ๋ฅผ ํ†ตํ•œ ์ผ์ƒ ์ƒํ™œ ๊ธฐ์–ต ์‹ฌ์ธต ์ธํ„ฐ๋ทฐ 37 2. ์ธํ„ฐ๋ทฐ ์ˆ˜์ง‘ ๋ฐ ๋ถ„๋ฅ˜ 39 3. ์ผ์ƒ ์ƒํ™œ ๊ธฐ์–ต์„ ํ†ตํ•œ ์žฅ์†Œ์„ฑ ํ•ด์„ 47 ์ œ5์žฅ ๊ฒฐ๋ก  49 ์ฐธ ๊ณ  ๋ฌธ ํ—Œ 51์„

    ํŒŒํ‚จ์Šจ๋ณ‘ ์ดˆํŒŒ๋ฆฌ๋ชจ๋ธ์—์„œ Glutathione S-Transferase Omega์˜ ๊ธฐ๋Šฅ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ƒ๋ช…๊ณผํ•™๋ถ€, 2012. 8. ์ž„์ •๋นˆ.ํŒŒํ‚จ์Šจ๋ณ‘์€ ์ง„ํ–‰์„ฑ ์‹ ๊ฒฝํ‡ดํ–‰ ์งˆํ™˜์ด๋‹ค. ์ƒ์—ผ์ƒ‰์ฒด ์—ด์„ฑ ์œ ์ „๋˜๋Š” ์œ ์ „์ž, parkin, PINK1, DJ-1 ์œ ์ „์ž์˜ ๋Œ์—ฐ๋ณ€์ด๋Š” ์ด๋ฅธ ์‹œ๊ธฐ์— ํŒŒํ‚จ์Šจ๋ณ‘์„ ์œ ๋ฐœํ•œ๋‹ค. ํŒŒํ‚จ์Šจ๋ณ‘์˜ ์ฃผ์š” ์ฆ์ƒ๋“ค์€ ์ค‘๋‡Œ ํ‘์ƒ‰์งˆ์˜ ๋„ํŒŒ๋ฏผ ๋ถ„๋น„ ์‹ ๊ฒฝ์„ธํฌ์˜ ์„ ํƒ์ ์ด๊ณ  ํญ๋„“์€ ์‚ฌ๋ฉธ๋กœ ์ธํ•œ ๊ฒฐ๊ณผ๋กœ ๋‚˜ํƒ€๋‚œ๋‹ค. ์ตœ๊ทผ ์—ฐ๊ตฌ๋“ค์ด parkin๊ณผ PINK1์ด ๋ฏธํ† ์ฝ˜๋“œ๋ฆฌ์•„์˜ ๊ธฐ๋Šฅ๊ณผ ๋™์—ญํ•™์„ ์กฐ์ ˆํ•˜๋Š”๋ฐ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜๋Š” ๊ฒƒ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ๋˜ํ•œ parkin ๋˜๋Š” PINK1 ์œ ์ „์ž ๊ฒฐ์‹ค ๋Œ์—ฐ๋ณ€์ด๋Š” ์˜ˆ์ •๋œ ์„ธํฌ์‚ฌ๋ฉธ์˜ ์ฆ๊ฐ€, ์‚ฐํ™”์ŠคํŠธ๋ ˆ์Šค์˜ ์ฆ๊ฐ€ ๊ทธ๋ฆฌ๊ณ  ๋น„์ •์ƒ ๋‹จ๋ฐฑ์งˆ์˜ ์ถ•์  ๋“ฑ์„ ํฌํ•จํ•˜๋Š” ์—ฌ๋Ÿฌ ๊ฒฐํ•จ์ด ์žˆ๋Š” ํ‘œํ˜„ํ˜•์„ ๋ณด์—ฌ์ค€๋‹ค. ํ˜„์žฌ๊นŒ์ง€ ๋งŽ์€ ์ง‘์•ฝ์ ์ธ ์—ฐ๊ตฌ๋“ค์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ๊ทธ ์ •ํ™•ํ•œ ๋ถ„์ž ๊ธฐ์ž‘์€ ์—ฌ์ „ํžˆ ๊ฑฐ์˜ ์•Œ๋ ค์ง„ ๋ฐ” ์—†๋‹ค. ๋‹ค๊ธฐ๋Šฅ ์œ ์ „์ž์กฑ ์ค‘์˜ ํ•˜๋‚˜์ธ ๊ธ€๋ฃจํƒ€์น˜์˜จ-S-์ „์ดํšจ์†Œ๋Š” ์„ธํฌ ๋‚ด๋ถ€๋…์„ฑ๋ฌผ์งˆ๊ณผ ์„ธํฌ ์™ธ๋ถ€๋…์„ฑ๋ฌผ์งˆ์— ๋Œ€ํ•œ ํ•ด๋…์— ๊ด€์—ฌํ•œ๋‹ค. ๊ธ€๋ฃจํƒ€์น˜์˜จ-S-์ „์ดํšจ์†Œ์˜ ์ƒˆ๋กœ์šด ์ข…๋ฅ˜์ธ ๊ธ€๋ฃจํƒ€์น˜์˜จ-S-์ „์ดํšจ์†Œ ์˜ค๋ฉ”๊ฐ€๋Š” thioredoxin๊ณผ glutaredoxin ํšจ์†Œ๋ฅผ ์—ฐ์ƒํ•˜๋Š” ๊ธ€๋ฃจํƒ€์น˜์˜จ-์˜์กด์„ฑ ํ‹ฐ์˜ฌ ์ „์ดํšจ์†Œ์™€ ๊ธ€๋ฃจํƒ€์น˜์˜จ-์˜์กด์„ฑ ๋””ํ•˜์ด๋“œ๋กœ ์•„์Šค์ฝ”๋ธŒ์‚ฐ ํ™˜์›ํšจ์†Œ ํ™œ์„ฑ์„ ๊ฐ–๋Š”๋‹ค. ์ตœ๊ทผ ์—ฐ๊ตฌ์—์„œ ์ธ๊ฐ„์˜ GSTO ์œ ์ „์ž๊ฐ€ ํŒŒํ‚จ์Šจ๋ณ‘์˜ ์—ฐ๋ น๋ณ„ ๋ฐœ๋ณ‘์— ๊ด€๋ จ๋œ๋‹ค๋Š” ๊ฒƒ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ๊ฒŒ๋‹ค๊ฐ€ GSTO๋Š” ์‹ ๊ฒฝ ํ‡ดํ–‰์„ฑ์งˆํ™˜ ๋ฐœ๋ณ‘ ์›์ธ์— ์—ฐ๊ด€๋œ ์‚ฐํ™”์ŠคํŠธ๋ ˆ์Šค์— ๋Œ€ํ•ญํ•˜์—ฌ ์„ธํฌ๋ฅผ ๋ณดํ˜ธํ•œ๋‹ค. ๋น„๋ก ์‹ ๊ฒฝ ํ‡ดํ–‰์„ฑ์งˆํ™˜์— ๋Œ€ํ•œ GSTO์˜ ๊ธฐ๋Šฅ ์—ฐ๊ตฌ๋“ค์ด ๋‹ค์ˆ˜ ์žˆ์—ˆ์ง€๋งŒ ํŒŒํ‚จ์Šจ๋ณ‘ ์ง„ํ–‰์— GSTO์˜ ์—ญํ• ์— ๋Œ€ํ•ด ์•Œ๋ ค์ง„ ๋ฐ”๊ฐ€ ๊ฑฐ์˜ ์—†๋‹ค. ์ด ๋…ผ๋ฌธ์—์„œ ์šฐ๋ฆฌ๋Š” ์ดˆํŒŒ๋ฆฌ parkin ๋Œ์—ฐ๋ณ€์ด์—์„œ ๋ฐœํ˜„์ด ๊ฐ์†Œ๋œ ์ดˆํŒŒ๋ฆฌ GSTO1์˜ ๋ฐœํ˜„ํšŒ๋ณต์œผ๋กœ parkin ๋Œ์—ฐ๋ณ€์ด์˜ ํ‘œํ˜„ํ˜•์ด ์™„ํ™”๋จ์„ ๋ณด์˜€์œผ๋ฉฐ ์ดˆํŒŒ๋ฆฌ GSTO1์˜ ๊ฒฐํ•์ด parkin ๋Œ์—ฐ๋ณ€์ด ํ‘œํ˜„ํ˜•์„ ๊ฐ•ํ™”ํ•จ์„ ๋ณด์˜€๋‹ค. ์šฐ๋ฆฌ๋Š” ์ถ”๊ฐ€๋กœ ๋ฏธํ† ์ฝ˜๋“œ๋ฆฌ์•„ F1F0-ATP ํ•ฉ์„ฑํšจ์†Œ (Complex V)์˜ ํ•ต์‹ฌ์š”์†Œ์ธ ATP ์ค‘ํ•ฉํšจ์†Œ ฮฒ ์†Œ๋‹จ์œ„์ฒด๊ฐ€ ์ดˆํŒŒ๋ฆฌ GSTO1์˜ ์ƒ์ฒด ๋‚ด ์ƒˆ๋กœ์šด ํ‘œ์ ๋‹จ๋ฐฑ์งˆ์ž„์„ ๊ทœ๋ช…ํ–ˆ๋‹ค. ๋˜ํ•œ ์šฐ๋ฆฌ๋Š” ATP ์ค‘ํ•ฉํšจ์†Œ ฮฒ ์†Œ๋‹จ์œ„์ฒด์˜ glutathionylation์ด ์ดˆํŒŒ๋ฆฌ GSTO1์— ์˜ํ•ด ํšŒ๋ณต๋˜๊ณ  parkin ๋Œ์—ฐ๋ณ€์ด์—์„œ ์ดˆํŒŒ๋ฆฌ GSTO1์˜ ๋ฐœํ˜„ ์ฆ๊ฐ€๋กœ ๋ฏธํ† ์ฝ˜๋“œ๋ฆฌ์•„ F1F0-ATP ํ•ฉ์„ฑํšจ์†Œ์˜ ํ™œ์„ฑ๊ณผ ์กฐ๋ฆฝ์ด ๋ถ€๋ถ„์ ์œผ๋กœ ํšŒ๋ณต๋จ์„ ๋ฐํ˜”๋‹ค. ์ถ”๊ฐ€์ ์œผ๋กœ ์šฐ๋ฆฌ๋Š” ํŒŒํ‚จ์Šจ๋ณ‘ ์›์ธ์œ ์ „์ž ์ค‘ ํ•˜๋‚˜์ธ PINK1 ์œ ์ „์ž์˜ ๋Œ์—ฐ๋ณ€์ด์—์„œ๋„ ATP ์ค‘ํ•ฉํšจ์†Œ ฮฒ ์†Œ๋‹จ์œ„์ฒด์˜ glutathionylation์ด ๊ฐ์†Œ๋˜์–ด ์žˆ์œผ๋ฉฐ, ๋˜ํ•œ ์ดˆํŒŒ๋ฆฌ GSTO1 ๋ฐœํ˜„ ์ฆ๊ฐ€๋กœ PINK1 ๋Œ์—ฐ๋ณ€์ด์˜ ๊ฒฐํ•จ ํ‘œํ˜„ํ˜•์ด ํšŒ๋ณต๋จ์„ ๋ณด์˜€๋‹ค. ์ด๋“ค ๊ฒฐ๊ณผ๋“ค์€ ์ดˆํŒŒ๋ฆฌ GSTO1์ด ์ดˆํŒŒ๋ฆฌ๋ชจ๋ธ์—์„œ PINK1/Parkin ๊ฒฝ๋กœ์™€ ์ƒํ˜ธ์ž‘์šฉํ•จ์„ ์˜๋ฏธํ•œ๋‹ค. ๊ฒฐ๋ก ์ ์œผ๋กœ ๋ณธ ์—ฐ๊ตฌ์˜ ๊ฒฐ๊ณผ๋Š” parkin ๋Œ์—ฐ๋ณ€์ด์—์„œ ATP ํ•ฉ์„ฑํšจ์†Œ ํ™œ์„ฑ ์กฐ์ ˆํ•จ์œผ๋กœ์จ ๋ณดํ˜ธ ์—ญํ• ์„ ํ•˜๋Š” ์ดˆํŒŒ๋ฆฌ GSTO1์˜ ์ƒˆ๋กœ์šด ๊ธฐ์ž‘์„ ์ œ์‹œํ•˜์˜€๊ณ  ํŒŒํ‚จ์Šจ๋ณ‘์— ๋Œ€ํ•œ ์ž ์žฌ์ ์ธ ์น˜๋ฃŒ๋ฒ• ๊ฐœ๋ฐœ์— ๊ด€ํ•œ ํ†ต์ฐฐ๋ ฅ์„ ์ œ์‹œํ•˜์˜€๋‹ค.Parkinson disease (PD) is the most common progressive neurodegenerative movement disorder. Mutations in autosomal recessively inherited genes, parkin, PINK1, DJ-1, lead to early onset parkinsonism. The main symptoms of PD result from the selectively and extensively loss of dopaminergic neurons in the substantia nigra of the midbrain. Recent researches have shown that parkin and PINK1 play important roles in the regulation of mitochondrial functions and dynamics. A loss-of-function mutation in the gene parkin or PINK1 displays several defective phenotypes, including increased apoptotic cell death, oxidative stress and aggregation of abnormal proteins. Despite several intensive studies, the exact molecular pathogenesis of PD remains unknown. Glutathione S-transfearses (GSTs), one of the largest gene families of multi-functional enzyme, involved in the detoxification of endogenous and exogenous substrates. A new class of GST, GST Omega (GSTO) has a glutathione-dependent thiol transferase and glutathione-dependent dehydroascorbate reductase activity, reminiscent of thioredoxins and glutaredoxins. GSTO gene has been shown to be associated with the age-at-onset of PD. Moreover, GSTO protects cells against oxidative stress that have been implicated in the pathology of neurodegenerative disease. Although there have been studies regarding the function of GSTOs in neurodegenerative disease, little is known about the role of GSTO in the progression of PD. Here, we report that restoration of Drosophila GSTO1 (DmGSTO1), which is down-regulated in parkin mutants, alleviates some of the parkin pathogenic phenotypes and that the loss of DmGSTO1 function enhances parkin mutant phenotypes. We further identified the ATP synthase ฮฒ subunit, which is a core component of the mitochondrial F1F0-ATP synthase (Complex V), as a novel in vivo target of DmGSTO1. We found that glutathionylation of the ATP synthase ฮฒ subunit is rescued by DmGSTO1 and that the expression of DmGSTO1 partially restores the activity and assembly of the mitochondrial F1F0-ATP synthase in parkin mutants. Additionally, we show that glutathionylation of ATP synthase ฮฒ subunit is decreased in PINK1B9 mutants and that up-regulation of DmGSTO1 rescues the defective phenotypes in PINK1B9 mutants. These results suggest that DmGSTO1 interacts with the PINK1/Parkin pathway in Drosophila. Our results suggest a novel mechanism for the protective role of DmGSTO1in parkin mutants, through the regulation of ATP synthase activity, and provide insight into potential therapies for PD neurodegeneration.ABSTRACT CONTENTS LIST OF FIGURES AND TABLES ABBREVIATIONS I. Introduction 1. Parkinson disease 2. Glutathione S-Transferase Omega 3. Glutathionylation 4. Mitochondrial F1F0-ATP synthase 5. Purpose of this study II. Materials and Methods 1. Drosophila stocks 2. Generation of DmGSTO1null mutant by Imprecise excision 3. Preparation of Genomic DNA 4. Inverse PCR 5. Exposure to Paraquat 6. Ascorbic acid and Dehydroascorbic acid Content 7. Immunoblot Analysis 8. Muscle Histology 9. Immunohistochemistry and TUNEL Assay 10. Quantitative RT-PCR and Real-time Quantitative RT-PCR 11. Site-directed Mutagenesis and Expression of Mutant Proteins 12. in vitro Glutathionylation Assay 13. Immunoprecipitation and Glutathionylation Assay 14. Mitochondrial ATP synthase Activity Assay 15. ATP Assay 16. Blue Native Electrophoresis III. Results 1. DmGSTO1 mutants are sensitive to oxidative stress. 2. DmGSTO1 partially rescues park1 mutant phenotype. 3. phospho-JNK signal and apoptosis are suppressed by DmGSTO1 in park1 mutants. 4. DmGSTO1 suppresses dopaminergic neuronal degeneration in park1 mutants. 5. DmGSTO1 restores accumulation of tubulin in IFMs in park1 mutants. 6. DmGSTO1 suppresses activation of unfolded protein response (UPR) in park1 mutant muscles. 7. DmGSTO1 restores mitochondrial ATP synthase activity in park1 mutants. 8. Decreased ATP synthase subunit in Drosophila muscle leads to park1 mutant-like phenotype. 9. DmGSTO1 rescues mitochondrial ATP synthase assembly in park1 mutants. 10. The endogenous levels of the glutathionylated form of the ATP synthase ฮฒ subunit in the thorax extracts were decreased in PINK1B9 mutants. IV. Discussion V. References ABSTRACT IN KOREANDocto

    (The) effect of the foreign patients' expectation and experience on satisfaction of medical service

    Get PDF
    ๋ณด๊ฑดํ–‰์ •ํ•™๊ณผ/์„์‚ฌ๋ณธ ์—ฐ๊ตฌ๋Š” ์˜๋ฃŒ๊ด€๊ด‘์„ ๋ชฉ์ ์œผ๋กœ ํ•œ๊ตญ์„ ๋ฐฉ๋ฌธํ•œ ์™ธ๊ตญ์ธ ํ™˜์ž์˜ ์˜๋ฃŒ์„œ๋น„์Šค์— ๋Œ€ํ•œ ๊ธฐ๋Œ€์ˆ˜์ค€๊ณผ ๊ฒฝํ—˜์ˆ˜์ค€์„ ํŒŒ์•…ํ•˜๊ณ , ๊ธฐ๋Œ€์ˆ˜์ค€๊ณผ ๊ฒฝํ—˜์ˆ˜์ค€์ด ์˜๋ฃŒ์„œ๋น„์Šค ๋งŒ์กฑ๋„์— ์–ด๋– ํ•œ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ์•Œ์•„๋ณด๊ธฐ ์œ„ํ•ด ์‹ค์‹œํ•˜์˜€๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ํ•œ๊ตญ๋ณด๊ฑด์‚ฐ์—…์ง„ํฅ์›์— ์™ธ๊ตญ์ธ ํ™˜์ž ์œ ์น˜์‚ฌ์—… ๋“ฑ๋ก๊ธฐ๊ด€์œผ๋กœ ๋“ฑ๋กํ•œ ์˜๋ฃŒ๊ธฐ๊ด€ ์ค‘, ์„œ์šธ์— ์œ„์น˜ํ•˜๊ณ  ์žˆ๋Š” 4๊ฐœ ๋ณ‘์›์— ์ž…์›์ค‘์ธ ์™ธ๊ตญ์ธ ํ™˜์ž๋ฅผ ๋Œ€์ƒ์œผ๋กœ ์„ค๋ฌธ์กฐ์‚ฌ๋ฅผ ํ•˜์˜€๋‹ค. ์„ค๋ฌธ๋‚ด์šฉ์€ ํฌ๊ฒŒ ์™ธ๊ตญ์ธ ํ™˜์ž์˜ ์‚ฌํšŒ์ธ๊ตฌํ•™์  ํŠน์„ฑ, ๋ฐฉ๋ฌธ ๊ฒฝ์œ„, ์˜๋ฃŒ์„œ๋น„์Šค์— ๋Œ€ํ•œ ๊ธฐ๋Œ€์ˆ˜์ค€๊ณผ ๊ฒฝํ—˜์ˆ˜์ค€, ์˜๋ฃŒ์„œ๋น„์Šค์— ๋Œ€ํ•œ ๋งŒ์กฑ๋„๋กœ ๋‚˜๋‰˜๋‹ค. ์˜๋ฃŒ์„œ๋น„์Šค์— ๋Œ€ํ•œ ๊ธฐ๋Œ€์ˆ˜์ค€๊ณผ ๊ฒฝํ—˜์ˆ˜์ค€์„ ์ธก์ •ํ•˜๊ธฐ ์œ„ํ•ด SERVQUAL ์ฒ™๋„๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ, 5๊ฐ€์ง€ ์„ธ๋ถ€์š”์ธ(์‹ ๋ขฐ์„ฑ, ๋ฐ˜์‘์„ฑ, ๋ณด์žฅ์„ฑ, ๊ณต๊ฐ์„ฑ, ์œ ํ˜•๋ฌผ)์œผ๋กœ ๋‚˜๋ˆ„์–ด ์กฐ์‚ฌํ•˜์˜€๋‹ค. ์™ธ๊ตญ์ธ ํ™˜์ž์˜ ์˜๋ฃŒ์„œ๋น„์Šค ๊ธฐ๋Œ€์ˆ˜์ค€์€ ์„œ๋น„์Šค ํ’ˆ์งˆ ์„ธ๋ถ€ ์š”์ธ ์ค‘, ์‹ ๋ขฐ์„ฑ, ๋ณด์žฅ์„ฑ, ๊ณต๊ฐ์„ฑ์—์„œ ๋†’๊ฒŒ ๋‚˜ํƒ€๋‚ฌ์œผ๋ฉฐ, ์ƒ๋Œ€์ ์œผ๋กœ ๋ฐ˜์‘์„ฑ, ์œ ํ˜•๋ฌผ์—์„œ ๋‚ฎ์•˜๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์ž…์†Œ๋ฌธ ๋…ธ์ถœ๊ตฐ๊ณผ ๋น„๋…ธ์ถœ๊ตฐ์—์„œ ์„œ๋น„์Šค ํ’ˆ์งˆ ์„ธ๋ถ€์š”์ธ ์ค‘, ๋ณด์žฅ์„ฑ, ๊ณต๊ฐ์„ฑ, ์œ ํ˜•๋ฌผ์—์„œ ๊ธฐ๋Œ€์ˆ˜์ค€์˜ ์ฐจ์ด๊ฐ€ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ๊ฒฝํ—˜์ˆ˜์ค€์€ ๋ชจ๋“  ํ•ญ๋ชฉ์—์„œ ๊ณ ๋ฃจ ๋†’๊ฒŒ ๋‚˜ํƒ€๋‚ฌ์œผ๋ฉฐ, ์ž…์†Œ๋ฌธ ๋…ธ์ถœ๊ตฐ๊ณผ ๋น„๋…ธ์ถœ๊ตฐ์—์„œ ์ฐจ์ด๊ฐ€ ๋‚˜ํƒ€๋‚˜์ง€ ์•Š์•˜๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์™ธ๊ตญ์ธ ํ™˜์ž์˜ ๊ธฐ๋Œ€์ˆ˜์ค€๊ณผ ๊ฒฝํ—˜์ˆ˜์ค€์˜ ์ฐจ์ด ๋ถ„์„์—์„œ ์„œ๋น„์Šค ํ’ˆ์งˆ ์„ธ๋ถ€์š”์ธ ๋ชจ๋‘ ๋งŒ์กฑํ•˜์˜€๋‹ค๋Š” ๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์™ธ๊ตญ์ธ ํ™˜์ž์˜ ์˜๋ฃŒ์„œ๋น„์Šค ์ „๋ฐ˜์  ๋งŒ์กฑ์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ์š”์ธ์œผ๋กœ๋Š” ๊ธฐ๋Œ€์ˆ˜์ค€์—์„œ๋Š” ์‹ ๋ขฐ์„ฑ, ๊ฒฝํ—˜์ˆ˜์ค€์—์„œ๋Š” ์‹ ๋ขฐ์„ฑ, ์œ ํ˜•๋ฌผ, ์ธ์ง€๋œ ์„œ๋น„์Šค ํ’ˆ์งˆ์—์„œ๋Š” ์‹ ๋ขฐ์„ฑ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ์œผ๋ฉฐ, ์˜๋ฃŒ์„œ๋น„์Šค ๊ฒฝํ—˜์ˆ˜์ค€์„ ํˆฌ์ž…ํ•˜์—ฌ ๋ถ„์„ํ•˜์˜€์„ ๋•Œ, ์˜๋ฃŒ์„œ๋น„์Šค ์ „๋ฐ˜์กฑ ๋งŒ์กฑ๋„์— ๋Œ€ํ•œ ์„ค๋ช…๋ ฅ์ด ๊ฐ€์žฅ ๋†’๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์˜๋ฃŒ๊ธฐ๊ด€์—์„œ๋Š” ์™ธ๊ตญ์ธ ํ™˜์ž์˜ ๋™๊ธฐ์œ ๋ฐœ์„ ์œ„ํ•ด ๊ธฐ๋Œ€์ˆ˜์ค€์„ ๋†’์ผ ํ•„์š”๊ฐ€ ์žˆ์œผ๋ฉฐ, ์˜๋ฃŒ์„œ๋น„์Šค์˜ ์ „๋ฐ˜์  ๋งŒ์กฑ๋„๋ฅผ ๋†’์ด๊ธฐ ์œ„ํ•ด์„œ๋Š” ์„œ๋น„์Šค ํ’ˆ์งˆ ์„ธ๋ถ€ ์š”์ธ ์ค‘, ์‹ ๋ขฐ์„ฑ์— ๊ด€ํ•œ ๋งˆ์ผ€ํŒ… ์ „๋žต๊ณผ ์˜๋ฃŒ์„œ๋น„์Šค์— ๋Œ€ํ•œ ๊ฒฝํ—˜์ˆ˜์ค€์„ ๋†’์ผ ์ˆ˜ ๋งˆ์ผ€ํŒ… ์ „๋žต์ด ํ•„์š”ํ•˜๋‹ค๊ณ  ํŒ๋‹จ๋œ๋‹ค. ๋˜ํ•œ ๊ธฐ๋Œ€์ˆ˜์ค€์ด ์ž…์†Œ๋ฌธ ๋…ธ์ถœ๊ตฐ๊ณผ ๋น„๋…ธ์ถœ๊ตฐ์— ์ฐจ์ด๊ฐ€ ์žˆ๋Š” ๊ฒƒ์œผ๋กœ ๋ณด์•„ ์ž…์†Œ๋ฌธ ๋งˆ์ผ€ํŒ…๋„ ๋™์‹œ์— ํ•  ํ•„์š”๊ฐ€ ์žˆ๋‹ค๊ณ  ํ•˜๊ฒ ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ์˜๋ฃŒ๊ด€๊ด‘์„ ๋ชฉ์ ์œผ๋กœ ํ•œ๊ตญ์„ ๋ฐฉ๋ฌธํ•œ ์™ธ๊ตญ์ธ ํ™˜์ž์˜ ์˜๋ฃŒ์„œ๋น„์Šค์— ๋Œ€ํ•œ ๊ธฐ๋Œ€์ˆ˜์ค€๊ณผ ๊ฒฝํ—˜์ˆ˜์ค€์„ ํŒŒ์•…ํ•˜๊ณ , ๊ธฐ๋Œ€์ˆ˜์ค€๊ณผ ๊ฒฝํ—˜์ˆ˜์ค€์ด ์˜๋ฃŒ์„œ๋น„์Šค ๋งŒ์กฑ๋„์— ์–ด๋– ํ•œ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š”์ง€ ์•Œ์•„๋ณด์•„ ๋‹ค๋ฅธ ๋‚˜๋ผ๋“ค๊ณผ ์ฐจ๋ณ„ํ™”๋œ ๋งŒ์กฑ๋„ ์ „๋žต์„ ์‹ค์‹œํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜๋Š” ๋งˆ์ผ€ํŒ… ์ „๋žต์˜ ๊ธฐ์ดˆ์ž๋ฃŒ๋ฅผ ์ œ๊ณตํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์™ธ๊ตญ์ธ ํ™˜์ž์˜ ๊ตญ๊ฐ€๋ณ„ ์ƒํ™ฉ(๋ฌธํ™”์  ์š”์ธ, ์˜๋ฃŒ์ œ๋„ ๋“ฑ)์„ ๊ณ ๋ คํ•˜์ง€ ๋ชปํ•˜์˜€๊ธฐ ๋•Œ๋ฌธ์— ๊ตญ๊ฐ€๋ณ„ ๋ถ„์„์ด ์ด๋ฃจ์–ด์ง€์ง€ ๋ชปํ•˜์˜€๊ณ , ์กฐ์‚ฌ ๋Œ€์ƒ์ด ํ•œ ๋„์‹œ์— ์ง‘์ค‘๋˜์—ˆ๊ธฐ ๋•Œ๋ฌธ์— ๋ชจ๋“  ์™ธ๊ตญ์ธ ํ™˜์ž์— ๋Œ€ํ•ด์„œ ์ผ๋ฐ˜ํ™” ํ•˜๊ธฐ์—๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค. ํ–ฅํ›„ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ฐ ๊ตญ๊ฐ€๋ณ„ ์ƒํ™ฉ(๋ฌธํ™”์  ์š”์ธ, ์˜๋ฃŒ์ œ๋„ ๋“ฑ)์„ ๊ณ ๋ คํ•œ ์—ฐ๊ตฌ๋ฐฉ๋ฒ•์ด ํ•„์š”ํ•˜๋ฉฐ, ์ผ๋ฐ˜ํ™” ํ•  ์ˆ˜ ์žˆ๋Š” ํ‘œ๋ณธ์ถ”์ถœ์ด ํ•„์š”ํ•˜๊ฒ ๋‹ค.ope

    ๋ผ์ง€ ๋‹จ์œ„๋ฐœ์ƒ๋ž€ 2์„ธํฌ๊ธฐ ํ• ๊ตฌ ๋‚ด ์ง€๋ฐฉ๊ณผ๋ฆฝ ์–‘์ด ๋ฐฐ๋ฐ˜ํฌ ์ถ• ํ˜•์„ฑ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์น˜์˜๊ณผํ•™๊ณผ, 2011.2. ๋…ธ์ƒํ˜ธ.Maste

    ๋…์ ๊ทœ์ œ๋ฒ•์ƒ ๋ถ€๋‹น์ง€์›ํ–‰์œ„ ๊ทœ์ œ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๋ฒ•ํ•™๊ณผ ๊ฒฝ์ œ๋ฒ•์ „๊ณต,2001.Maste

    ๋””์ž์ธ ์ƒํ™ฉ์ธ์‹ ๊ณ ์† ์บ๋ฆฌ ์Šคํ‚ต ๊ฐ€์‚ฐ๊ธฐ ํ•ฉ์„ฑ ์•Œ๊ณ ๋ฆฌ์ฆ˜

    No full text
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2012. 2. ๊น€ํƒœํ™˜.๋…ผ๋ฆฌ ํšŒ๋กœ์—์„œ ๊ฐ€์žฅ timing criticalํ•œ ๋ถ€๋ถ„์€ ๋งŽ์€ ๊ฒฝ์šฐ ํ•˜๋‚˜ ์ด์ƒ์˜ ์‚ฐ์ˆ  ์—ฐ์‚ฐ์„ ํฌํ•จํ•˜๊ณ , ์ด ์‚ฐ์ˆ  ์—ฐ์‚ฐ์—๋Š” ๋ง์…ˆ์ด ์ฃผ๋กœ ์—ฐ๊ด€๋œ๋‹ค. ์บ๋ฆฌ ์Šคํ‚ต ๊ฐ€์‚ฐ๊ธฐ (carry-skip adder)๋Š” ์บ๋ฆฌ๋ฅผ ๊ทธ๋ฃน (group)์— ๋Œ€ํ•ด ๊ฑด๋„ˆ ๋›ฐ๊ฒŒ (skip) ํ•จ์œผ๋กœ์จ ์บ๋ฆฌ ์ „ํŒŒ ์‹œ๊ฐ„์„ ์ค„์ด๋Š” ๊ฐ€์‚ฐ๊ธฐ์ด๋‹ค. ์บ๋ฆฌ ์Šคํ‚ต ๊ฐ€์‚ฐ๊ธฐ๋Š” ์บ๋ฆฌ ๋ฃฉ์–ดํ—ค๋“œ ๊ฐ€์‚ฐ๊ธฐ (carry look-ahead adder)์™€ ๋น„๊ตํ•  ๋งŒํผ ์†๋„๊ฐ€ ๋น ๋ฅด๋ฉด์„œ๋„ ๋ฉด์ ๊ณผ ์ „๋ ฅ ์†Œ๋ชจ๋Š” ๋น„๊ต์  ์ž‘๋‹ค๋Š” ์žฅ์  ์ด ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๊ฐ€์‚ฐ๊ธฐ๋ฅผ ํฌํ•จํ•œ ์ „์ฒด ๋””์ง€์ธ ์ƒํ™ฉ์—์„œ ์ตœ์†Œ ์ง€์—ฐ ์‹œ๊ฐ„ ์บ๋ฆฌ ์Šคํ‚ต ๊ฐ€์‚ฐ๊ธฐ๋ฅผ ํ•ฉ์„ฑํ•˜๋Š” ๋ฌธ์ œ๋ฅผ ๋‹ค๋ฃฌ๋‹ค. ๊ฐ€์‚ฐ๊ธฐ์˜ ์ž…๋ ฅ ๋„์ฐฉ ์‹œ๊ฐ„ (arrival time)์ด ๊ท ๋“ฑ (uniform)ํ•œ ํŒจํ„ด์ด๊ฑฐ๋‚˜ ์ •ํ•ด์ง„ ํŒจํ„ด์ธ ๊ฒƒ์œผ๋กœ ๊ฐ€์ •ํ•œ ๊ธฐ์กด ์—ฐ๊ตฌ [1, 2]๋Š” ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋ฅผ ๊ณ ๋ฆฝ๋œ ๋‹จ ํ•˜๋‚˜์˜ ๊ฐ€์‚ฐ๊ธฐ ๋˜๋Š” ๋ณ‘๋ ฌ ๊ณฑ์…ˆ๊ธฐ (parallel multiplier)์˜ ์ตœ์ข… ๊ฐ€ ์‚ฐ๊ธฐ (final adder)์—๋งŒ ์ ์šฉ ๊ฐ€๋Šฅํ•˜๋‹ค๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ์—ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋ณธ ๋…ผ๋ฌธ์ด ์ œ์•ˆํ•˜๋Š” ํ•ฉ์„ฑ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์ฃผ์–ด์ง„ ์ž„์˜์˜ ๋น„ํŠธ ์ˆ˜์ค€ (bit-level) ๋„์ฐฉ ์‹œ๊ฐ„์— ๋Œ€ํ•ด ํƒ€์ด๋ฐ์„ ์ตœ์†Œํ™”ํ•˜๋Š” ์บ๋ฆฌ ์Šคํ‚ต ๊ฐ€์‚ฐ๊ธฐ ๊ตฌ์กฐ๋ฅผ ์ƒ์„ฑํ•œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ์บ๋ฆฌ ์Šคํ‚ต ๊ฐ€์‚ฐ๊ธฐ์˜ ๊ทธ๋ฃน ํŒŒํ‹ฐ์…˜ ๋ฌธ์ œ๋ฅผ ๋‹ค์ด๋‚˜๋ฏน ํ”„๋กœ๊ทธ๋ž˜๋ฐ ๋ฌธ์ œ๋กœ ๊ณต์‹ํ™”ํ•˜๊ณ  ํšจ์œจ์ ์œผ๋กœ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜ ์˜€๋‹ค.The most timing critical part of logic design usually contains one or more arithmetic operations, in which addition is commonly involved. The carry-skip adder, which is designed to reduce the time needed to propagate the carry by skipping over groups of consecutive adder stages, is known to be comparable in speed to the carry lookahead technique while it uses less logic area and less power. In this paper, we address the problem of automatic and systematic synthesis of (true) timing minimal carryskip adder in the context of the whole design containing the adder. Precisely, unlike the previous works which invariably assume a uniform or a fixed pattern of input arrival times, thus limiting their application to the optimization of an isolated single addition or additions in specific design structures, e.g., final addition in a parallel multiplier, our synthesis algorithm allows to accept any arbitrary, but known in advance, bit-level arrival times of the addends and generates a structure of carryskip adder that leads to minimize the timing of the whole design. We formulate the carry group (or block) partitioning problem for minimal timing into a dynamic programming problem and solved it effectively.Maste

    ๊ตฐ์‚ฌ์šฉ ๋ชจ๋ฐ”์ผ ์ง€๋„์˜ ์‚ฌ์šฉ์ž ์ค‘์‹ฌ ๋””์ž์ธ : ๊ณต๊ตฐ ์ƒํ™˜์šฉ ์ง€๋„๋ฅผ ์‚ฌ๋ก€๋กœ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) --์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์ง€๋ฆฌํ•™๊ณผ,2008.2Maste

    ์ˆ˜์ง๊ณผ ์ˆ˜ํ‰ ์›ํ˜•๊ด€ ๋‚ด ๋ฌผ ์œคํ™œ์ž‘์šฉ์„ ๊ฐ€์ง€๋Š” ๊ณ ์ ์„ฑ ๊ธฐ๋ฆ„์œผ๋กœ ์ด๋ฃจ์–ด์ง„ ๋‚œ๋ฅ˜ ์ค‘์‹ฌ-ํ™˜ํ˜• ์œ ๋™์˜ ์ง์ ‘์ˆ˜์น˜๋ชจ์‚ฌ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€(๋ฉ€ํ‹ฐ์Šค์ผ€์ผ ๊ธฐ๊ณ„์„ค๊ณ„์ „๊ณต), 2018. 8. ์ตœํ•ด์ฒœ.The water-lubricated transport has received attention as the drag reduction technology to deliver high viscosity oil. Previous stability analyses have shown that the flow arrangement is stable when the low viscous water is located near the wall encapsulating the high viscosity oil in the core. However, irregular wavy shapes of the phase interface appear due to the large viscosity difference and turbulence in the annulus. Therefore, in the present study, the characteristics of a turbulent core-annular flow with water-lubricated high viscosity oil in vertical and horizontal pipes are investigated using direct numerical simulation, in conjunction with a level-set method to track the phase interface between oil and water. The pressure drop as well as the instantaneous shape of the phase interface of the present study agree well with those from the experiment in the literature at the same flow condition. For a vertical pipe, five different oil volume fractions are examined for a fixed mean wall friction (Re_ฯ„ = 720, where u_ฯ„ is the friction velocity, R is the pipe radius and ฮฝ_w is the kinematic viscosity of water). The total volume flow rate of a core-annular flow is similar to that of a turbulent single-phase pipe flow of water, indicating that water lubrication is an effective tool to transport high viscosity oil in a pipe. The high viscosity oil flow in the core region is almost a plug flow due to its high viscosity, and the water flow in the annular region is turbulent except for the case of large oil volume fraction (e.g., 0.91 in the present study). With decreasing oil volume fraction, the mean velocity profile in the annulus becomes more like that of turbulent pipe flow, but the streamwise evolution of vortical structures is obstructed by the phase interface wave. In a reference frame moving with the core velocity, water is observed to be trapped inside the wave valley in the annulus, and only a small amount of water runs through the wave crest. The phase interface of the core-annular flow consists of different streamwise and azimuthal wavenumber components for different oil holdups. The azimuthal wavenumber spectra of the phase interface amplitude have the largest power at the smallest wavenumber whose corresponding wavelength is the pipe circumference, while the streamwise wavenumber having the largest power decreases with decreasing oil volume fraction. The overall convection velocity of the phase interface is slightly lower than the core velocity. Finally, we suggest a predictive oil holdup model by defining the displacement thickness in the annulus and considering the boundary layer characteristics of water flow. This model predicts the variation of the oil holdup with the superficial velocity ratio very well. For a horizontal pipe, six different superficial velocity ratio's (j_w/j_o = 0.057 ~ 0.41) are examined by changing the water superficial velocity (j_w=q_w/ฯ€R^2) for the fixed oil superficial velocity (j_o=q_o/ฯ€R^2), where q_w and q_o are volume flow rates of water and oil, respectively. The pressure drop as well as the shape of the phase interface agree well with those from the experiment in the literature at the same flow rates of oil and water. The core flow is almost a plug flow and rises due to the buoyancy, and thus the gap between the phase interface and wall is narrow and wide near the upper and lower surfaces of the pipe, respectively. By defining the clearance Reynolds number (Re_c) based on the core velocity and the local gap size, the annular flow is characterized into three different regimes: laminar Couette flow driven by the core for Re_c = 2000. The transition from laminar to turbulent flows is observed with the azimuthal direction because the local gap size varies, which is shown with fluctuations of the local wall shear stress. For laminar and turbulent flow regions, the local wall shear stress at an azimuthal location is proportional to Re_c^(-1) and Re_c^(-1/4), respectively. The local minimum of the local wall shear stress is in the transitional region, and the minimum pressure drop occurs at j_w/j_o = 0.11, where most of Re_c with an azimuthal direction are located in the transitional regime. The dynamics of the phase interface are examined by calculating the pressure and viscous shear contributions on instantaneous stress and mean lift and drag coefficients on the core. For the lift coefficient, the pressure force almost balances the buoyancy, and the contribution from the viscous shear stress is very small. For the drag coefficient (normalized with the wall friction), the contribution of the viscous shear is large for low j_w/j_o but decreases with increasing j_w/j_o, while that of the pressure is not much changed. With increasing j_w/j_o, the drag force of the core becomes less than the wall friction, where the wall friction of the core-annular flow is comparable to that of the water only flow and much smaller than that of the oil only flow.1 Introduction 1 2 Numerical methods 8 2.1 Interface tracking method: Level-set method . . . . . . . . . . . 8 2.2 Navier-Stokes equation . . . . . . . . . . . . . . . . . . . . . . . 10 2.3 Iterative solver for variable-coefficient Poisson equation . . . . . 12 3 Core-annular flow in a vertical pipe 14 3.1 Numerical details and flow conditions . . . . . . . . . . . . . . . 14 3.2 Characteristics of core and annular flows . . . . . . . . . . . . . 18 3.2.1 Volume flow rate measurement . . . . . . . . . . . . . . 18 3.2.2 Dynamics of the annular flow . . . . . . . . . . . . . . . 19 3.2.3 Mean statistics . . . . . . . . . . . . . . . . . . . . . . . 22 3.3 Wave characteristics of the phase interface . . . . . . . . . . . . 25 3.4 Boundary layer characteristics of the annular flow . . . . . . . . 29 3.4.1 Displacement thickness . . . . . . . . . . . . . . . . . . . 29 3.4.2 Oil holdup model . . . . . . . . . . . . . . . . . . . . . . 31 3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4 Core-annular flow in a horizontal pipe 55 4.1 Numerical details and flow conditions . . . . . . . . . . . . . . . 55 4.2 Characteristics of core and annular flows . . . . . . . . . . . . . 57 4.2.1 Pressure drop measurement . . . . . . . . . . . . . . . . 57 4.2.2 Characteristics of the annular flow . . . . . . . . . . . . 58 4.2.3 Characteristics of the core flow . . . . . . . . . . . . . . 61 4.3 Phase interface and near-wall dynamics . . . . . . . . . . . . . . 62 4.3.1 Wave characteristics of the phase interface . . . . . . . . 62 4.3.2 Dynamics of the phase interface . . . . . . . . . . . . . . 65 4.3.3 Flow transition and near-wall dynamics . . . . . . . . . . 67 4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 5 Concluding remarks 87 References . 89 Appendix A Constant mass flow rate simulation 97Docto
    • โ€ฆ
    corecore