30 research outputs found

    A Methodology for Hierarchical Reliability Analysis of Combat Systems Using FTA and BBN

    Get PDF
    μ „νˆ¬ μ‹œμŠ€ν…œμ˜ 취약점을 λΆ„μ„ν•˜μ—¬ 신뒰성을 높이기 μœ„ν•œ λ§Žμ€ 연ꡬ가 μžˆλ‹€. μ „νˆ¬ μ‹œμŠ€ν…œμ˜ 신뒰성을 λΆ„μ„ν•˜κΈ° μœ„ν•΄μ„œλŠ” μ „νˆ¬ μ‹œμŠ€ν…œμ— λŒ€ν•œ λ‹€μ–‘ν•œ μœ„ν˜‘ μš”μΈμ„ κ³ λ €ν•˜μ—¬μ•Ό ν•œλ‹€. λŒ€λΆ€λΆ„μ˜ μ „νˆ¬ μ‹œμŠ€ν…œ μ‹ λ’°μ„± 뢄석은 μΆ©λŒμ— κ΄€λ ¨λœ μœ„ν˜‘μ„ ν† λŒ€λ‘œ 신뒰성을 λΆ„μ„ν•˜μ˜€λ‹€. ν•˜μ§€λ§Œ 좩돌과 λ”λΆˆμ–΄ μ—λ„ˆμ§€, 좩격, 진동 λ“±μ˜ λ‹€μ–‘ν•œ μœ„ν˜‘μ΄ μ‘΄μž¬ν•œλ‹€. 졜근 μ—λ„ˆμ§€, 좩격, 진동 λ“±μ˜ 각각의 μœ„ν˜‘μ— λŒ€ν•œ 연ꡬ와 λ”λΆˆμ–΄ μ΄λŸ¬ν•œ μœ„ν˜‘λ“€μ„ λ™μ‹œμ— κ³ λ €ν•΄μ•Όν•  ν•„μš”μ„±μ΄ λŒ€λ‘λ˜μ—ˆλ‹€. ν•˜μ§€λ§Œ λ‹€μ–‘ν•œ μœ„ν˜‘μ„ λ™μ‹œμ— κ³ λ €ν•˜λŠ” 것에 λŒ€ν•œ 직접적인 방법은 μ—°κ΅¬λ˜μ§€ μ•Šμ•˜λ‹€. 이에 μ „νˆ¬μ‹œμŠ€ν…œμ˜ μ‹ λ’°μ„± 뢄석을 μœ„ν•˜μ—¬ 좩돌뿐만 μ•„λ‹ˆλΌ μ—λ„ˆμ§€, 좩격, 진동 λ“± λ‹€μ–‘ν•œ μœ„ν˜‘μ„ λ™μ‹œμ— κ³ λ €ν•˜λŠ” 방법이 ν•„μš”ν•˜λ‹€. λ˜ν•œ, ꡬ성 μš”μ†Œκ°„μ˜ 의쑴적인 관계λ₯Ό λͺ¨λ‘ ν‘œν˜„ν•  수 μžˆλŠ” 뢄석 기법을 μ΄μš©ν•˜μ—¬ μ „νˆ¬ μ‹œμŠ€ν…œμ˜ 신뒰성을 λΆ„μ„ν•˜μ—¬μ•Ό ν•œλ‹€. λ³Έ λ…Όλ¬Έμ—μ„œλŠ” 각 μš”μ†Œμ˜ νŠΉμ§•λ“€μ— 따라 FTA 기법과 BBN을 μ‚¬μš©ν•˜μ—¬ κ³„μΈ΅μ μœΌλ‘œ 신뒰성을 λΆ„μ„ν•˜λŠ” 방법을 μ œμ•ˆν•œλ‹€. μ œμ•ˆν•˜λŠ” 방법은 2개의 κ³„μΈ΅μœΌλ‘œ κ΅¬μ„±λ˜μ–΄ μžˆλ‹€. ν•˜μœ„ κ³„μΈ΅μ—μ„œλŠ” FTA 기법을 μ΄μš©ν•˜μ—¬ μ „νˆ¬ μ‹œμŠ€ν…œμ˜ 각 ꡬ성 μš”μ†Œμ˜ κ³ μž₯ ν™•λ₯ μ„ λ„μΆœν•œλ‹€. ꡬ성 μš”μ†Œμ˜ κ³ μž₯ ν™•λ₯ μ€ ꡬ성 μš”μ†Œκ°€ κ°€μ§ˆ 수 μžˆλŠ” λ‹€μ–‘ν•œ μœ„ν˜‘μ„ λ™μ‹œμ— κ³ λ €ν•˜μ—¬ λΆ„μ„λœλ‹€. μƒμœ„ κ³„μΈ΅μ—μ„œλŠ” ν•˜μœ„ κ³„μΈ΅μ—μ„œ λ„μΆœλœ ꡬ성 μš”μ†Œμ˜ κ³ μž₯ ν™•λ₯ μ„ 기반으둜 κΈ°λŠ₯ μˆ˜μ€€(function-level)의 상싀 ν™•λ₯ μ„ λΆ„μ„ν•˜μ—¬ μ „νˆ¬ μ‹œμŠ€ν…œμ˜ 신뒰성을 λΆ„μ„ν•œλ‹€. μ΄λ•Œ ꡬ성 μš”μ†Œλ“€μ˜ κ³ μž₯에 λŒ€ν•œ 쒅속적 관계λ₯Ό κ³ λ €ν•˜κΈ° μœ„ν•˜μ—¬ BBN을 μ΄μš©ν•œλ‹€. μ΄λŸ¬ν•œ λ°©λ²•μ˜ νš¨μš©μ„±μ„ κ²€μ¦ν•˜κΈ° μœ„ν•˜μ—¬ λŒ€μƒ μ‹œμŠ€ν…œμ„ μ •μ˜ν•˜κ³  μ œμ•ˆν•˜λŠ” 방법을 μ΄μš©ν•˜μ—¬ 사둀 연ꡬλ₯Ό μ§„ν–‰ν•œλ‹€. 사둀 μ—°κ΅¬μ—μ„œλŠ” μ œμ•ˆν•˜λŠ” 뢄석 방법에 λŒ€ν•œ 계산을 μžλ™ν™”ν•˜κΈ° μœ„ν•΄ κ°œλ°œν•œ ν”„λ‘œκ·Έλž¨μ„ μ΄μš©ν•œλ‹€. |There are many studies to analyze the vulnerability of combat system to improve reliability. To analyze the reliability of a combat system, various threats affecting the combat system should be considered. Most reliability analysis of the combat system analyzed reliability based on impact-related threats. However, there are various threats such as energy, shock, and vibration as well as impact. Recently, it is necessary to simultaneously consider the threats, in addition to studying various threats such as fire, shock, and energy. However, no method of integrating the threats has been studied. In order to analyze the reliability of the combat system, it is necessary to take an integrated approach to energy, shock, vibration, and impact. In addition, the reliability of the combat system should be analyzed using reliability techniques that can express all of the dependency relationships between components. In this paper, we propose a method to analyze reliability using FTA and BBN hierarchically according to the features of each element. This method consists of two layers: a lower layer and a upper layer. In the lower layer, the failure probability of each component of the combat system is analyzed using the FTA. The failure probability of a component is analyzed considering the possible threats of the component. In the upper layer, the loss probability of function-level is analyzed based on the failure probability of the components derived from the lower layer. And the reliability of combat system is analyzed using loss probability of function. BBN is used to consider the dependence of the failure of components. To verify utility of the proposed method, we defines the target system and analyzes reliability of the system through the case study. we uses a program developed to automate the calculation of the proposed analysis method.제 1 μž₯ μ„œ λ‘  1 제 2 μž₯ κ΄€λ ¨ 연ꡬ 4 2.1 FTA 기법 4 2.2 BBN 8 2.3 FTA 기법과 BBN의 비ꡐ 11 제 3 μž₯ FTA와 BBN을 μ΄μš©ν•œ μ „νˆ¬ μ‹œμŠ€ν…œμ˜ 계측적 μ‹ λ’°μ„± 뢄석 13 3.1 계측적 μ‹ λ’°μ„± 뢄석 방법 13 3.2 ν•˜μœ„ 계측 : ꡬ성 μš”μ†Œλ³„ κ³ μž₯ ν™•λ₯  뢄석 16 3.3 μƒμœ„ 계측 : κΈ°λŠ₯ μˆ˜μ€€μ˜ 상싀 ν™•λ₯  뢄석 18 제 4 μž₯ 사둀 연ꡬ 27 4.1 뢄석 λŒ€μƒ 27 4.2 μ‹ λ’°μ„± 뢄석 30 제 5 μž₯ κ²° λ‘  44 μ°Έκ³ λ¬Έν—Œ 45Maste

    κ°œμ—μ„œ μ†Œμž₯의 방사선 및 초음파 검사에 μœ μš©ν•œ λ‹€λͺ©μ  쑰영제의 개발

    No full text
    ν•™μœ„λ…Όλ¬Έ(석사)--μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› :μˆ˜μ˜κ³ΌλŒ€ν•™ μˆ˜μ˜ν•™κ³Ό,2020. 2. 졜민철.μ†Œμž₯을 ν‰κ°€ν•˜κΈ° μœ„ν•΄ 방사선과 μ΄ˆμŒνŒŒκ°€ κ°€μž₯ ν”ν•˜κ²Œ μ‚¬μš©λœλ‹€. κ·ΈλŸ¬λ‚˜ 일반적인 κ²€μ‚¬λŠ” μ†Œμž₯의 λ³΅μž‘ν•œ ꡬ쑰둜 인해 평가에 μ œν•œμ΄ μ‘΄μž¬ν•˜λ©° μ΄λŸ¬ν•œ 이유둜 μ‘°μ˜μ œκ°€ μ†Œμž₯의 μ˜μƒν™”λ₯Ό ν–₯μƒμ‹œν‚€κΈ° μœ„ν•΄ μ‚¬μš©λ˜λ©° 보닀 효율적인 μ†Œμž₯의 평가λ₯Ό μœ„ν•΄ 방사선과 μ΄ˆμŒνŒŒμ—μ„œ λ™μ‹œμ— μ‚¬μš©κ°€λŠ₯ν•œ 쑰영제의 ν•„μš”μ„±μ΄ κ³ λ €λ˜μ—ˆλ‹€. λ³Έ μ—°κ΅¬μ˜ λͺ©μ μ€ 방사선과 μ΄ˆμŒνŒŒμ—μ„œ λ™μ‹œμ— μ‚¬μš©κ°€λŠ₯ν•œ λ‹€λͺ©μ  쑰영제의 개발둜 0.5%의 μΉ΄λ³΅μ‹œλ©”ν‹Έμ…€λ£°λ‘œμ˜€μŠ€ (CMC)λ₯Ό μ„Έ 가지 λ‹€λ₯Έ 농도 (0.5, 1.0, 그리고 1.5 ml/kg)의 iohexol (300 mgI/ml)κ³Ό 각각 ν˜Όν•©ν•œ μ‘°μ˜μ œκ°€ ν‰κ°€λ˜μ—ˆλ‹€. 8마리의 κ±΄κ°•ν•œ 비글견을 λŒ€μƒμœΌλ‘œ ν•˜μ˜€μœΌλ©° 10 ml/kg의 λ³€ν˜•λœ μ‘°μ˜μ œκ°€ μœ„κ΄€ 튜브λ₯Ό 톡해 μ£Όμž…λ˜μ—ˆλ‹€. λ³€ν˜•λœ μ‘°μ˜μ œκ°€ κ·Όμœ„ κ²°μž₯에 도달할 λ•ŒκΉŒμ§€ 10λΆ„ κ°„κ²©μœΌλ‘œ 볡배상과 μš°μ™ΈμΈ‘μƒμ˜ 방사선 촬영이 μ΄λ£¨μ–΄μ‘ŒμœΌλ©° 초음파 κ²€μ‚¬μ˜ 경우 10λΆ„μ˜ 방사선 촬영 간격 사이에 μˆ˜ν–‰λ˜μ—ˆκ³  κ°œμ²΄λ³„λ‘œ μ„Έ 가지 농도 μ‹€ν—˜μ€ μΌμ£ΌμΌλ§ˆλ‹€ μˆ˜ν–‰λ˜μ—ˆμœΌλ©° μ‹€ν—˜ ν›„ μ–΄λ– ν•œ λΆ€μž‘μš©λ„ ν™•μΈλ˜μ§€ μ•Šμ•˜λ‹€. λ³€ν˜•λœ μ‘°μ˜μ œκ°€ μœ„ λ‚΄λ‘œ μ£Όμž…λ¨κ³Ό λ™μ‹œμ— λ‚΄μš©λ¬Όμ΄ λ„˜μ–΄κ°€κΈ° μ‹œμž‘ν•˜μ˜€μœΌλ©° μ†Œμž₯의 평균 톡과 μ‹œκ°„μ€ 86λΆ„μœΌλ‘œ λΉ λ₯΄κ²Œ ν™•μΈλ˜μ—ˆλ‹€. λ°©μ‚¬μ„ μ—μ„œ μ„Έ 가지 λ‹€λ₯Έ 농도사이에 μœ μ˜λ―Έν•œ 차이 (p<0.05)λ₯Ό λ‚˜νƒ€λƒˆμœΌλ©° 고농도 (1.5 ml/kg)의 iohexolμ—μ„œ κ°€μž₯ 쒋은 μ˜μƒ ν’ˆμ§ˆμ„ νšλ“ν•  수 μžˆμ—ˆλ‹€. κ·ΈλŸ¬λ‚˜ 쀑간농도 (1.0 ml/kg)μ—μ„œλ„ μ†Œμž₯이 평가 κ°€λŠ₯ν•œ μ •λ„μ˜ μ˜μƒ ν’ˆμ§ˆμ΄ ν™•μΈλ˜μ—ˆλ‹€. μ΄ˆμŒνŒŒμ—μ„œλŠ” λͺ¨λ“  λ†λ„μ—μ„œ κ°„μ„­ν˜„μƒ 없이 λ‚΄κ°•κ³Ό λ°˜λŒ€νŽΈ 벽을 확인 ν•  수 μžˆμ–΄ 쒋은 ν’ˆμ§ˆμ˜ μ˜μƒμ„ 얻을 수 μžˆμ—ˆλ‹€. 결둠적으둜 고농도 (1.5 ml/kg)의 iohexol을 μ΄μš©ν•œ λ³€ν˜•λœ 쑰영제의 경ꡬ νˆ¬μ—¬ μ‘°μ˜μˆ μ€ 방사선과 초음파 검사 λ™μ•ˆ μ•ˆμ „ν•˜κ³ , λΉ„μš©μ΄ μ €λ ΄ν•˜λ©°, μΆ©λΆ„ν•œ μ†Œμž₯ ν™•μž₯ 그리고 λΉ λ₯Έ κ²€μ‚¬μ‹œκ°„λΏλ§Œ μ•„λ‹ˆλΌ ν›Œλ₯­ν•œ μ˜μƒν’ˆμ§ˆμ„ 얻을 수 μžˆλŠ” κ²ƒμœΌλ‘œ ν™•μΈλ˜μ–΄ μˆ˜μ˜ν•™μ—μ„œ μ†Œμž₯ μ§ˆν™˜μ„ κ²€μ‚¬ν•˜λŠ”λ° μœ μš©ν•  κ²ƒμœΌλ‘œ μƒκ°λœλ‹€.Radiography and ultrasonography are common imaging modalities used to evaluate the small intestine. A contrast medium is commonly used to improve the visualization of the small intestine as it has a complex structure. Thus, this study aimed to develop a contrast medium that can be simultaneously used in radiography and ultrasonography to effectively evaluate the small intestine. Carboxymethylcellulose with 0.5% medium viscosity was mixed with iohexol (300 mg iodine/mL) at three different doses (0.5, 1.0, and 1.5 mL/kg). Eight healthy beagles were selected, and 10 mL/kg of modified contrast medium (MCM) was administered via an orogastric tube. Gastric emptying started immediately after the administration of MCM. The transit time (mean: 86 min) in the small intestine was rapid. The radiographic image with the best quality was obtained with high-dose MCM (1.5 mL/kg, p<0.05). However, the medium dose (1.0 mL/kg) also obtained favorable outcomes. At all MCM doses, ultrasonography obtained outstanding images of the intestinal segments, including the lumen and the other side of the wall, without any interferences. In conclusion, the oral administration of MCM with iohexol at a dose of 1.5 mL/kg obtained an image with an excellent quality, and it was safe to use and facilitated proper distension of the small intestine and rapid transit time during radiography and ultrasonography. The use of MCM in radiography and ultrasonography was effective in assessing the small intestine in the field of veterinary medicine.Introduction ……………………………………………………… 1 Materials and Methods …………………………………… 4 1. Animals ……………………………………………………… 4 2. Modified contrast medium ……………………………… 4 3. Radiographic examinations …………………………… 5 4. Ultrasonographic examinations ……………………… 5 5. Image analysis ……………………………………………… 6 6. Statistical analysis ………………………………………… 7 Results……………………………………………………………… 8 Discussion ……………………………………………………… 18 References ……………………………………………………… 23 ꡭ문초둝 …………………………………………………………… 28Maste

    동쀑ꡭ해 μΏ λ‘œμ‹œμ˜€ λŒ€λ₯™λΆ• μœ μž…μ˜ μž₯μ£ΌκΈ° 변동성

    No full text
    ν•™μœ„λ…Όλ¬Έ(석사)--μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› :μžμ—°κ³Όν•™λŒ€ν•™ μ§€κ΅¬ν™˜κ²½κ³Όν•™λΆ€,2020. 2. λ‚˜ν•œλ‚˜.A westward shift of the Kuroshio toward the continental shelf in the East China Sea (ECS) contributes an exchange of different water masses between the western boundary current and the shelf region, and plays a key role in the regional ecosystem and climate over the ECS. The Kuroshio shelf intrusion (KSI) is known to occur during winter associated with the weakening of the Kuroshio east of Taiwan. This study reveals that interannual to decadal variability of the KSI is as significant as the seasonal variability, and investigates the long-term KSI associated changes in the ECS by analyzing various datasets including 25-year-long satellite altimetry, high-resolution ocean reanalysis products, surface drifters, etc. A series of composite analysis confirms that the KSI is related to the strengthening of the northeasterly wind, increase of the upward heat flux and overall surface warming in the ECS. Subsurface temperature, however, decreases in the shallow shelf region during the KSI events, possibly due to the topographic effect. Sub-mesoscale eddy kinetic energy (EKE) exhibits increase in the shelf region during the KSI, whereas the mesoscale EKE does not show significant changes associated with the KSI.λ™μ€‘κ΅­ν•΄μ—μ„œ μΏ λ‘œμ‹œμ˜€ ν•΄λ₯˜κ°€ μ˜€ν‚€λ‚˜μ™€ 골 μ„œμͺ½ λŒ€λ₯™λΆ• λ°©ν–₯으둜 μΉ˜μš°μΉ˜λŠ” ν˜„μƒμ„ μΏ λ‘œμ‹œμ˜€ λŒ€λ₯™λΆ• μœ μž…(Kuroshio shelf intrusion; KSI) 이라고 ν•œλ‹€. μ΄λŠ” λŒ€λ₯™λΆ• ν•΄μ—­κ³Ό μ„œμ•ˆκ²½κ³„λ₯˜ ν•΄μ—­ μ‚¬μ΄μ˜ 수괴 κ΅ν™˜μ„ μΌμœΌν‚€κ³ , 동쀑ꡭ해 μ£Όλ³€ μƒνƒœκ³„μ™€ 기후에 큰 영ν–₯을 λ―ΈμΉœλ‹€. KSIλŠ” λŒ€λ§Œ 동μͺ½ μΏ λ‘œμ‹œμ˜€ ν•΄λ₯˜κ°€ μ•½ν•΄μ§ˆ λ•Œ λ‚˜νƒ€λ‚˜λ©°, 여름철에 λΉ„ν•΄ κ²¨μšΈμ² μ— λ”μš± λΉˆλ²ˆν•˜κ²Œ λ°œμƒν•œλ‹€κ³  μ•Œλ €μ Έ μžˆλ‹€. λ³Έ μ—°κ΅¬λŠ” KSI의 κ²½λ…„ 및 μ‹­λ…„ μ£ΌκΈ° 변동 νŠΉμ„±μ„ 밝히기 μœ„ν•΄ μΈκ³΅μœ„μ„± 고도계, 고해상도 μž¬λΆ„μ„μž₯ κ²°κ³Ό, ν‘œμΈ΅ λœ°κ°œμ™€ 같은 λ‹€μ–‘ν•œ 자료λ₯Ό μ΄μš©ν•˜μ—¬ λ™μ€‘κ΅­ν•΄μ—μ„œ μΌμ–΄λ‚˜λŠ” KSI와 κ΄€λ ¨λœ ν•΄μ–‘ λ³€ν™”λ₯Ό λΆ„μ„ν•˜μ˜€λ‹€. Composite 뢄석을 톡해 KSI ν˜„μƒμ΄ 동쀑ꡭ해 ν•΄μ—­μ˜ 뢁동풍 κ°•ν™”, ν•΄μ–‘μ—μ„œ λŒ€κΈ°λ‘œμ˜ μ—΄ 방좜 증가, ν‘œμΈ΅ 수온 증가와 κ΄€λ ¨λ˜μ–΄ μžˆμŒμ„ ν™•μΈν•˜μ˜€λ‹€. μΏ λ‘œμ‹œμ˜€ 주좕이 λŒ€λ₯™λΆ• μͺ½μœΌλ‘œ 이동함에 따라 μˆ˜μ‹¬μ΄ κΉŠμ€ μ˜€ν‚€λ‚˜μ™€ 골 λΆ€κ·Όμ—μ„œλŠ” μ•„ν‘œμΈ΅ 수온 μ—­μ‹œ μ¦κ°€ν•˜μ§€λ§Œ, μˆ˜μ‹¬μ΄ 얕은 λŒ€λ₯™λΆ• ν•΄μ—­ μ•„ν‘œμΈ΅μ—μ„œλŠ” μ§€ν˜• 효과둜 인해 수온이 였히렀 κ°μ†Œν•˜λŠ” κ²ƒμœΌλ‘œ λ‚˜νƒ€λ‚¬λ‹€. λ˜ν•œ KSI κ°€ 일어날 λ•Œ μ€‘κ·œλͺ¨ μ†Œμš©λŒμ΄μ˜ μš΄λ™μ—λ„ˆμ§€ 변화보닀 μ•„μ€‘κ·œλͺ¨ μ†Œμš©λŒμ΄μ˜ μš΄λ™μ—λ„ˆμ§€ λ³€ν™”κ°€ μΏ λ‘œμ‹œμ˜€ μ£ΌμΆ• λΆ€κ·Όκ³Ό λŒ€λ₯™λΆ• ν•΄μ—­μ—μ„œ 더 크게 λ‚˜νƒ€λ‚¬λ‹€. λ³Έ μ—°κ΅¬λŠ” λ™μ€‘κ΅­ν•΄μ˜ 기후와 μƒνƒœκ³„μ— 영ν–₯을 μ£ΌλŠ” KSI ν˜„μƒμ— κ΄€ν•œ κΈ°μ‘΄ 연ꡬλ₯Ό ν‘œμΈ΅μ—μ„œ μ•„ν‘œμΈ΅μœΌλ‘œ, μ€‘κ·œλͺ¨ λ³€λ™μ—μ„œ μ•„μ€‘κ·œλͺ¨ λ³€λ™μœΌλ‘œ ν™•μž₯ν•˜μ—¬ κ²½λ…„ 및 μ‹­λ…„ 주기의 KSI 변동 및 이와 κ΄€λ ¨λœ λ³€ν™”λ₯Ό μ΄ν•΄ν•˜λŠ”λ° κΈ°μ—¬ν•˜μ˜€λ‹€.1. Introduction 1 2. Data and Methods 6 2.1. Data 6 2.2. KSIS index 7 3. Results 10 3.1. Interannual to decadal variability of the KSI 10 3.2. Subsurface temperature variability 14 3.3. Sub-mesoscale variability 18 4. Discussion and Conclusion 22 References 30 Abstract in Korean 39Maste

    Normal distribution of lysozyme secreting cells in eustachian tube of mongolian gerbil

    No full text
    μ˜ν•™κ³Ό/석사[ν•œκΈ€] 쀑이와 μ΄κ΄€μ˜ 점막 ν‘œλ©΄μ€ λ‹€λ₯Έ 상기도 점막과 λ§ˆμ°¬κ°€μ§€λ‘œ 점막섬λͺ¨ μ •ν™”μž‘μš©(mucociliary clearance), λ©΄μ—­μž‘μš©, 및 νš¨μ†Œ λΆ„λΉ„ κΈ°λŠ₯ λ“±μ˜ λ‹€μ–‘ν•œ 점막 방어기전에 μ˜ν•΄ 보호되고 μžˆλ‹€. κ·Έ 쀑 νš¨μ†Œ λΆ„λΉ„ κΈ°λŠ₯은 점막 λ°©μ–΄ 기전에 μžˆμ–΄μ„œ μ€‘μš”ν•œ 역할을 λ‹΄λ‹Ήν•˜κ³  μžˆλ‹€. λΆ„λΉ„ νš¨μ†Œμ€‘μ— ν•˜λ‚˜μΈ λΌμ΄μ†Œμžμž„μ€ 인체의 μ—¬λŸ¬ 점막 쑰직과 κ·Έ 점막 μ‘°μ§μ—μ„œ λΆ„λΉ„λ˜λŠ” λΆ„λΉ„μ•‘- 눈물, 기관지, 비점막, μΉ¨μƒ˜, μœ„μ λ§‰, μ†Œμž₯ 점막, 자ꢁ κ²½λΆ€ 내막에 μ‘΄μž¬ν•¨μ΄ ν™•μΈλ˜μ—ˆλ‹€. λΌμ΄μ†Œμžμž„μ€ μ‚΄κ·  효과λ₯Ό κ°€μ§€λ―€λ‘œ μ λ§‰μ˜ κ΅­μ†Œκ°μ—Όμ— λŒ€ν•œ λ°©μ–΄μž‘μš©μ— κΈ°μ—¬ν•œλ‹€κ³  μ•Œλ €μ Έ μžˆλ‹€. μ§€κΈˆκΉŒμ§€μ˜ 이관 μ λ§‰μ˜ λΌμ΄μ†Œμžμž„ μ‘΄μž¬μ— κ΄€ν•œ μ—°κ΅¬λ‘œλŠ” 주둜 인간, chinchilla, guinea-pig 등을 μ‚¬μš©ν•΄ μ™”μœΌλ‚˜ mongolian gerbil에 λŒ€ν•œ 연ꡬ가 μ—†μ—ˆμœΌλ―€λ‘œ, 이에 μ €μžλ“€μ€ mongolian gerbil의 정상 이관 μ λ§‰μ—μ„œ λΌμ΄μ†Œμžμž„ λΆ„λΉ„μ„Έν¬μ˜ μ‘΄μž¬μ™€ 뢄포λ₯Ό 쑰직화학적 및 면역화학적 방법을 ν†΅ν•˜μ—¬ μ‘°μ‚¬ν•˜μ—¬ 정상이관 μ λ§‰μ—μ„œμ˜ λΆ„λΉ„ νš¨μ†Œμ— λŒ€ν•œ ν˜•νƒœν•™μ  ꡬ쑰λ₯Ό μ΄ν•΄ν•˜κ³ , μ•žμœΌλ‘œμ˜ μ€‘μ΄μ§ˆν™˜μ˜ 제반 μ‹€ν—˜μ— 쓰일 λ™λ¬Όλ‘œ μ—¬λŸ¬ μž₯점을 κ°–μΆ˜ mongolian gerbil을 λŒ€μƒμœΌλ‘œ ν•œ 동물 μ‹€ν—˜μ— ν˜•νƒœν•™μ  기초 자료λ₯Ό λ§ˆλ ¨ν•˜κ³ μž ν•˜μ˜€λ‹€. 쀑이 염증이 μ—†λŠ” κ±΄κ°•ν•œ 생후 90-120일의 mongolian gerbil 10마리λ₯Ό μ΄μš©ν•˜μ—¬ 이관 λΆ€μœ„ 쑰직을 H-E 염색, AB-PAS 염색 및 λΌμ΄μ†Œμžμž„ 항체(rabbit antihuman lysozyme antibody)λ₯Ό μ΄μš©ν•œ 면역쑰직화학 염색을 μ‹œν–‰ν•˜μ—¬ 정상 mongolian gerbil의 이관 점막을 κ΄€μ°°ν•˜μ—¬ ν•­ μ„Έκ·  λΆ„λΉ„ νš¨μ†ŒμΈ λΌμ΄μ†Œμžμž„μ˜ 뢄포양상을 μ•Œμ•„λ³΄κ³ μž ν•œ 연ꡬ κ²°κ³ΌλŠ” λ‹€μŒκ³Ό κ°™μ•˜λ‹€. 1. λΌμ΄μ†Œμžμž„μ€ mongolian gerbil의 정상 μ΄κ΄€μ λ§‰μ˜ μƒν”Όν•˜μ„ (subepithelial gland)의 μž₯μ•‘λΆ„λΉ„μ„Έν¬μ—μ„œ μƒμ„±λ˜μ—ˆλ‹€. 2. λΌμ΄μ†Œμžμž„μ€ mongolian gerbil의 정상 이관 μ λ§‰μ˜ 쀑이 κ°œκ΅¬λΆ€μœ„μ˜ 상피세포쀑 일뢀 λΆ„λΉ„μ„Έν¬μ—μ„œλ„ μƒμ„±λ˜μ—ˆλ‹€. 결둠적으둜 ν•­μ„Έκ·  νš¨μ†Œλ‘œμ„œμ˜ λΌμ΄μ†Œμžμž„μ€ mongolian gerbil의 정상 이관 점막내에 μ‘΄μž¬ν•˜λ©° μ΄λŠ” 이관 점막 λ°©μ–΄ κΈ°μ „ μ€‘μ˜ ν•˜λ‚˜λ‘œ μ€‘μš”ν•œ κΈ°λŠ₯을 ν•˜λŠ” κ²ƒμœΌλ‘œ μ‚¬λ£Œλ˜μ—ˆλ‹€. [영문] Mucosal surfaces are protected by several complex defense mechanisms, namely mucociliary clearnce, immunoglobulins, cellular components, and antibacterial secretory enzymes. The secretory enzyme, lysozyme has been found in various mucosal tissues, and it has been suggested that this enzyme contribute to the defense against local mucosal infections. The distribution of the antibacterial enzyme, lysozyme secreting cells in the tubotympanum of the normal mongolian gerbils was studied using an histochemical and immunohistochemical techniques. The results are as follows : 1. Lysozyme was produced by some secreting cells in the tympanic portion of epithelium of the eustachian tube of normal mongolian gerbil. 2 Lysozyme was produced by serous cells of subepithelial glands of the eustachian tube of normal mongolian gerbil. These results are consistent with the concept that secretion of antibacterial enzymes is an integral part of the normal mucosal defense system in the tubotympanum.restrictio

    Cognitive co-regulation of scientifically gifted students in small group activity

    No full text
    ν•™μœ„λ…Όλ¬Έ (석사)-- μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› : κ³Όν•™κ΅μœ‘κ³Ό, 2015. 2. μ΅œμŠΉμ–Έ.ꡭ문초둝 졜근 μ‚¬νšŒμ  κ΅¬μ„±μ£Όμ˜μ˜ κ΄€μ μœΌλ‘œλΆ€ν„° κ³΅λ™μ‘°μ ˆμ— λŒ€ν•œ μ€‘μš”μ„±μ΄ κ°•μ‘°λ˜κ³  있으며, μ‹€μ œ μˆ˜μ—…μ—μ„œμ˜ μ‘°μ ˆμ„ μ΄ν•΄ν•˜κΈ° μœ„ν•΄μ„œλŠ” 자기쑰절뿐만 μ•„λ‹ˆλΌ μ‚¬νšŒμ  ν˜•νƒœμ˜ μ‘°μ ˆμ„ κ³ λ €ν•΄μ•Ό ν•œλ‹€. λ”°λΌμ„œ λ³Έ μ—°κ΅¬μ—μ„œλŠ” 쀑학ꡐ κ³Όν•™μ˜μž¬ 학생듀을 λŒ€μƒμœΌλ‘œ ν…ŒλΌν¬λ°μ΄λž€ 주제의 κ°œλ°©ν˜• 과제λ₯Ό λΆ€μ—¬ν•˜μ˜€μœΌλ©°, ν…ŒλΌν¬λ° μ†Œκ·Έλ£Ή ν™œλ™μ—μ„œ λ‚˜νƒ€λ‚˜λŠ” 인지적 κ³΅λ™μ‘°μ ˆ 양상을 νŒŒμ•…ν•˜κ³ μž ν•˜μ˜€λ‹€. λ³Έ μ—°κ΅¬μ—μ„œλŠ” μ—°κ΅¬μ˜ λͺ©μ μ— 맞게 κ³΅λ™μ‘°μ ˆμ„ λ‘˜ λ˜λŠ” 더 λ§Žμ€ λ™λ£Œλ“€κ³Όμ˜ μƒν˜Έμž‘μš©μ„ 톡해 μ‘°μ •λ˜λŠ” 역동적인 쑰절 과정이라고 μ •μ˜ν•˜μ˜€μœΌλ©°, 인지적인 뢀뢄에 μ΄ˆμ μ„ λ§žμΆ”μ—ˆλ‹€. μ΄λŸ¬ν•œ 인지적 κ³΅λ™μ‘°μ ˆ 양상을 효과적으둜 μ‚΄νŽ΄λ³΄κΈ° μœ„ν•΄μ„œλŠ” μ†Œκ·Έλ£Ή ꡬ성원듀 κ°„μ˜ μƒν˜Έμž‘μš©μ΄ ν™œλ°œν•΄μ•Όν•˜λ―€λ‘œ 정해진 닡이 μ—†λŠ” ν…ŒλΌν¬λ° μ†Œκ·Έλ£Ή ν™œλ™ μˆ˜μ—…μ„ μ‹€μ‹œν•˜μ˜€λ‹€. ν…ŒλΌν¬λ°μ΄λž€ 지ꡬ μ™Έμ˜ λ‹€λ₯Έ 천체λ₯Ό 지ꡬ와 λΉ„μŠ·ν•˜κ²Œ λŒ€κΈ° 및 μ˜¨λ„, μƒνƒœκ³„λ₯Ό λ°”κΎΈμ–΄ 생λͺ…체가 μ‚΄ 수 μžˆλŠ” ν™˜κ²½μœΌλ‘œ λ§Œλ“€μ–΄μ£ΌλŠ” μž‘μ—…μ„ λ§ν•œλ‹€. λ³Έ μ—°κ΅¬λŠ” μ„œμšΈμ‹œ μ†Œμž¬ Gμ˜μž¬μ›μ— μ†Œμ†λœ 기초반 34λͺ… 학생듀을 λŒ€μƒμœΌλ‘œ ν•˜μ˜€μœΌλ©°, 이 쀑 κΈˆμ„± 두 κ·Έλ£Ήκ³Ό ν™”μ„± 두 그룹에 λŒ€ν•˜μ—¬ μ‹¬μΈ΅μ μœΌλ‘œ λΆ„μ„ν•˜μ˜€λ‹€. ν…ŒλΌν¬λ°μ— λŒ€ν•œ 그룹원 κ°„μ˜ ν† μ˜λ₯Ό λΉ„λ‘―ν•œ 전체적인 ν™œλ™ 과정을 μ΄¬μ˜ν•˜κ³  λ…ΉμŒν•œ ν›„ λͺ¨λ“  λ‚΄μš©μ„ μ „μ‚¬ν•˜μ˜€λ‹€. 이것에 λŒ€ν•˜μ—¬ 인지적 κ³΅λ™μ‘°μ ˆμ˜ 언어적 μƒν˜Έμž‘μš© 기반 λ‹΄ν™” 뢄석을 μ‹€μ‹œν•˜μ˜€κ³  μ „μ‚¬λœ λ‚΄μš©μ„ ν™•μΈν•˜κΈ° μœ„ν•˜μ—¬ 인터뷰λ₯Ό μˆ˜ν–‰ν•˜μ˜€λ‹€. λ˜ν•œ, λ¬Έν—Œ 연ꡬλ₯Ό λ°”νƒ•μœΌλ‘œ κ³ μ•ˆν•œ ν…ŒλΌν¬λ° 뢄석틀과 μ‹œκ°„μ˜ 흐름에 따라 ν…ŒλΌν¬λ° ν™œλ™μ„ μ •λ¦¬ν•œ νƒ€μž„ν…Œμ΄λΈ”μ„ 톡해 각 그룹의 ν…ŒλΌν¬λ° νŠΉμ§•μ„ μ •μ„±μ μœΌλ‘œ λΆ„μ„ν•˜μ˜€λ‹€. 뢄석 κ²°κ³Ό, ν…ŒλΌν¬λ°μ˜ νŠΉμ§•μ€ λ‹€μŒκ³Ό κ°™λ‹€. 첫째, κΈˆμ„±κ³Ό ν™”μ„±μ˜ ν…ŒλΌν¬λ°μ—μ„œ λŒ€κΈ° μš”μΈμ„ μ§‘μ€‘μ μœΌλ‘œ λ‹€λ£¨μ—ˆμœΌλ©°, 그에 λŒ€ν•œ μ‘°μž‘ 방법이 κ°€μž₯ λ§Žμ•˜λ‹€. κ·Έ μ΄μœ λŠ” ν…ŒλΌν¬λ° ν™œλ™μ—μ„œ κΈˆμ„±μ˜ 높은 기온과 κΈ°μ••, ν™”μ„±μ˜ ν¬λ°•ν•œ λŒ€κΈ°μΈ΅μ΄ κ°€μž₯ 큰 λ‚œμ œμ΄κΈ° λ•Œλ¬Έμ΄λ‹€. λ‘˜μ§Έ, μ‘°μž‘ 방법을 맀개둜 μ„œλ‘œ λ‹€λ₯Έ μš”μΈλ“€μ΄ 연결될 수 μžˆμ—ˆλ‹€. 예λ₯Ό λ“€μ–΄, λŒ€κΈ°κΆŒμ„ κ°•ν™”ν•˜κΈ° μœ„ν•΄ ν–‰μ„±μ˜ μ§ˆλŸ‰μ„ 늘렀 쀑λ ₯을 λ†’μ΄μžλŠ” μ‘°μž‘ 방법이 μ œμ‹œλ˜μ—ˆλ‹€λ©΄ λŒ€κΈ° μš”μΈκ³Ό 쀑λ ₯ μš”μΈμ΄ μ—°μ†μ μœΌλ‘œ λ…Όμ˜λ  수 μžˆλ‹€. μ…‹μ§Έ, ν•œ 가지 μ‘°μž‘ λ°©λ²•μœΌλ‘œ μ—¬λŸ¬ μš”μΈλ“€μ—μ„œ λ°œμƒν•˜λŠ” λ¬Έμ œμ λ“€μ„ ν•΄κ²°ν•˜λ €λŠ” κ²½ν–₯을 λ³΄μ˜€λ‹€. λ‹€μŒμœΌλ‘œ ν…ŒλΌν¬λ° μ†Œκ·Έλ£Ή ν™œλ™μ—μ„œ λ‚˜νƒ€λ‚˜λŠ” 인지적 κ³΅λ™μ‘°μ ˆμ— λŒ€ν•˜μ—¬ μ‚΄νŽ΄λ³Έ κ²°κ³Ό, λ‹€μŒκ³Ό 같은 양상을 λ³΄μ˜€λ‹€. 첫째, ν…ŒλΌν¬λ° μ†Œκ·Έλ£Ή ν™œλ™μ—μ„œμ˜ 인지적 κ³΅λ™μ‘°μ ˆμ€ κ³„νš, 점검, ν‰κ°€μ˜ 과정을 거치며 일어났닀. λ‘˜μ§Έ, 학생듀은 인지적 κ³΅λ™μ‘°μ ˆμ„ 톡해 ν…ŒλΌν¬λ°μ—μ„œ κ³ λ €ν•΄μ•Ό ν•  μ„œλ‘œ λ‹€λ₯Έ μš”μΈλ“€μ„ μ—°κ²° μ§€μ–΄μ„œ μƒκ°ν–ˆλ‹€. 예λ₯Ό λ“€μ–΄, μ–΄λ– ν•œ μš”μΈμ— λŒ€ν•œ μ‘°μž‘ 방법을 μ œμ‹œν•œλ‹€κ±°λ‚˜ λΆ€μ—° μ„€λͺ…ν•˜κΈ° μœ„ν•΄ λ‹€λ₯Έ μš”μΈμœΌλ‘œ ν™”μ œκ°€ μ „ν™˜λ  수 μžˆμ—ˆλ‹€. μ…‹μ§Έ, 인지적 κ³΅λ™μ‘°μ ˆ 과정을 μˆ˜ν–‰ν•˜λ©΄μ„œ 아이디어가 μ΄‰μ§„λ˜κ³  μ–΅μ œλ  수 μžˆμ—ˆλ‹€. 학생듀이 과제 μƒν™©μ΄λ‚˜ λ‚΄μš©μ„ μ„œλ‘œ μ κ²€ν•˜λ©΄μ„œ 아이디어가 κ΅¬μ²΄ν™”λ˜κ³  μƒˆλ‘œμš΄ 아이디어가 μƒμ„±λ˜κΈ°λ„ ν•˜λ©°, μ œμ‹œλœ 아이디어가 보λ₯˜λ˜κ±°λ‚˜ 거뢀될 수 μžˆλ‹€. 결둠적으둜 μ†Œκ·Έλ£Ή ν™œλ™μ—μ„œ 인지적 κ³΅λ™μ‘°μ ˆμ„ 과정을 κ±°μΉ˜λ©΄μ„œ ν…ŒλΌν¬λ°μ—μ„œ κ³ λ €ν•΄μ•Ό ν•  μ„œλ‘œ λ‹€λ₯Έ μš”μΈμ„ μ—°κ²° 지어 생각할 수 있으며, λ‹€μ–‘ν•œ 아이디어가 μ œμ‹œλœλ‹€λŠ” 것을 μ•Œ 수 μžˆμ—ˆλ‹€. 즉, κ³΅λ™μ˜ 과제λ₯Ό 효과적으둜 μ™„μˆ˜ν•˜κΈ° μœ„ν•΄μ„œλŠ” μ†Œκ·Έλ£Ή ꡬ성원 κ°„μ˜ ν™œλ°œν•œ μƒν˜Έμž‘μš©μ„ 톡해 μœ λ°œλ˜λŠ” 인지적 κ³΅λ™μ‘°μ ˆ 과정이 ν•„μˆ˜μ μ΄λ―€λ‘œ 이에 λŒ€ν•œ μ „λž΅μ΄ 수립되길 κΈ°λŒ€ν•΄ λ³Έλ‹€.λͺ© μ°¨ β… . μ„œλ‘  1 1. μ—°κ΅¬μ˜ ν•„μš”μ„± 및 λͺ©μ  1 2. 연ꡬ 문제 4 β…‘. 이둠적 λ°°κ²½ 5 1. ν…ŒλΌν¬λ° 5 1) ν…ŒλΌν¬λ° κ°œλ… 5 2) κ΄€λ ¨ 선행연ꡬ 6 2. κ³΅λ™μ‘°μ ˆν•™μŠ΅ 9 1) κ³΅λ™μ‘°μ ˆ κ°œλ… 10 2) 인지적 κ³΅λ™μ‘°μ ˆ 11 3) κ΄€λ ¨ 선행연ꡬ 12 β…’. 연ꡬ 방법 15 1. 연ꡬ 절차 15 2. 연ꡬ λŒ€μƒ 17 3. λ¬Έν—Œ 연ꡬ 19 1) κ³΅λ™μ‘°μ ˆ 19 2) ν…ŒλΌν¬λ° 19 4. 섀문지 및 μˆ˜μ—… 자료 개발 22 5. μˆ˜μ—…μ˜ 흐름 23 6. 자료 μˆ˜μ§‘ 및 뢄석 25 1) 자료 μˆ˜μ§‘ 25 2) ν…ŒλΌν¬λ° 뢄석틀 26 3) 인지적 κ³΅λ™μ‘°μ ˆ 뢄석 28 β…£. 연ꡬ κ²°κ³Ό 30 1. ν…ŒλΌν¬λ° νŠΉμ§• 30 1) κΈˆμ„±μ˜ ν…ŒλΌν¬λ° 사둀 31 2) ν™”μ„±μ˜ ν…ŒλΌν¬λ° 사둀 41 2. 인지적 κ³΅λ™μ‘°μ ˆ 양상 50 1) 촉진 51 (1) ꡬ체화 51 (2) 생성 54 2) μ–΅μ œ 58 (1) 보λ₯˜ 58 (2) κ±°λΆ€ 60 β…€. κ²°λ‘  및 μ œμ–Έ 63 1. κ²°λ‘  63 2. μ œμ–Έ 66 μ°Έκ³ λ¬Έν—Œ 67 뢀둝 75 [뢀둝 1] κ³΅λ™μ‘°μ ˆν•™μŠ΅μ— λŒ€ν•œ 인식 쑰사 섀문지 75 [뢀둝 2] 학생 ν™œλ™μ§€ 77 Abstract 83Maste

    μ •μˆ˜κ°’μ„ κ°€μ§€λŠ” μ‹œκ³„μ—΄ λͺ¨ν˜•μ—μ„œμ˜ λͺ¨μˆ˜ λ³€ν™” κ²€μ •κ³Ό λ‘œλ²„μŠ€νŠΈ 좔정방법

    No full text
    ν•™μœ„λ…Όλ¬Έ (박사)-- μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› : 톡계학과, 2014. 2. 이상열.In this thesis, we consider the parameter change test and the robust estimation for integer-valued time series models. First, we consider the problem of testing for a parameter change in a first order random coefficient integer-valued autoregressive (RCINAR(1)) model. For a test, we employ the cumulative sum (CUSUM) test based on the conditional least-squares(CLS) and modified quasi-likelihood(MQL) estimators. It is shown that under regularity conditions, the CUSUM test has the same limiting distribution as the supremum of the squares of independent Brownian bridges. The CUSUM test is then applied to the analysis of the monthly polio counts data set. Second, we consider the problem of testing for a parameter change in Poisson autoregressive models. We suggest two types of CUSUM tests: estimates-based and residual-based tests. We first demonstrate that the conditional maximum likelihood estimator (CMLE) is strongly consistent and asymptotically normal and construct the CMLE-based CUSUM test. It is shown that under regularity conditions, its limiting null distribution is a functional of independent Brownian bridges. Next, we construct the residual-based CUSUM test and derive its limiting null distribution. Simulation results are provided for illustration. A real data analysis is performed for the polio incidence data and campylobacterosis infections data. Finally, we study the robust estimation for Poisson autoregressive models. As a robust estimator, we consider a minimum density power divergence estimator (MDPDE). It is shown that under regularity conditions, the MDPDE is strongly consistent and asymptotically normal. We perform a simulation study and a real data analysis to compare the proposed estimator with MLE.Abstract i List of Tables viii List of Figures ix 1 Introduction 1 2 Reviews 6 2.1 The integer-valued time series models . . . . . . . . . . . . . . . . . . 6 2.2 The cumulative sum (CUSUM) test . . . . . . . . . . . . . . . . . . . 8 2.3 The minimum density power divergence estimator (MDPDE) . . . . . 10 3 Parameter Change Test for Random Coefficient Integer-Valued Autoregressive Processes with Application to Polio Data Analysis 13 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2 Estimation for RCINAR(1) models . . . . . . . . . . . . . . . . . . . 15 iii 3.3 Change point test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.4 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.5 Real data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4 Parameter Change Test for Poisson Autoregressive Models 41 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.2 Estimation for Poisson autoregressive model . . . . . . . . . . . . . . 42 4.2.1 Poisson autoregressive model . . . . . . . . . . . . . . . . . . . 42 4.2.2 INGARCH(1,1) model . . . . . . . . . . . . . . . . . . . . . . 46 4.3 Change point test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.3.1 Estimates-based CUSUM test . . . . . . . . . . . . . . . . . . 48 4.3.2 Residual-based CUSUM test . . . . . . . . . . . . . . . . . . . 52 4.4 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.4.1 INGARCH(1,1) model . . . . . . . . . . . . . . . . . . . . . . 53 4.4.2 Poisson threshold autoregressive model . . . . . . . . . . . . . 57 4.5 Real data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.8 Supplementary material . . . . . . . . . . . . . . . . . . . . . . . . . 80 5 Minimum Density Power Divergence Estimator for Poisson Autoreiv gressive Models 87 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.2 MDPDE in Poisson autoregressive models . . . . . . . . . . . . . . . 88 5.3 Asymptotic properties of MDPDE . . . . . . . . . . . . . . . . . . . . 90 5.4 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 5.5 Real data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 5.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 BibliographyDocto

    Astaxanthin이 CClβ‚„λ‘œ μ²˜λ¦¬ν•œ λ°±μ„œμ˜ 간독성과 κ°„μ˜ μ§€μ§ˆκ³Όμ‚°ν™” 및 ν•­μ‚°ν™” νš¨μ†Œλ“€μ— λ―ΈμΉ˜λŠ” 영ν–₯

    No full text
    ν•™μœ„λ…Όλ¬Έ(석사)--μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› :μ‹ν’ˆμ˜μ–‘ν•™κ³Ό,1998.Maste

    Anatomical variations and morphological study of the sphenoid sinus.

    No full text
    μ˜ν•™κ³Ό/박사ope
    corecore