정수값을 가지는 시계열 모형에서의 모수 변화 검정과 로버스트 추정방법
- Publication date
- Publisher
- 서울대학교 대학원
Abstract
학위논문 (박사)-- 서울대학교 대학원 : 통계학과, 2014. 2. 이상열.In this thesis, we consider the parameter change test and the robust estimation
for integer-valued time series models.
First, we consider the problem of testing for a parameter change in a first order
random coefficient integer-valued autoregressive (RCINAR(1)) model.
For a test, we employ the cumulative sum (CUSUM) test based on the conditional least-squares(CLS)
and modified quasi-likelihood(MQL) estimators. It is shown that under regularity
conditions, the CUSUM test has the same limiting distribution as the supremum of
the squares of independent Brownian bridges. The CUSUM test is then applied to the
analysis of the monthly polio counts data set.
Second, we consider the problem of testing for a parameter change in Poisson
autoregressive models. We suggest two types of CUSUM tests: estimates-based and
residual-based tests. We first demonstrate that the conditional maximum likelihood
estimator (CMLE) is strongly consistent and asymptotically normal and construct the
CMLE-based CUSUM test. It is shown that under regularity conditions, its limiting
null distribution is a functional of independent
Brownian bridges. Next, we construct the residual-based CUSUM test and derive its
limiting null distribution. Simulation results are provided for illustration. A real
data analysis is performed for the polio incidence data and campylobacterosis infections
data. Finally, we study the robust estimation for Poisson autoregressive models.
As a robust estimator, we consider a minimum density power divergence estimator (MDPDE).
It is shown that under regularity conditions, the MDPDE is strongly consistent and
asymptotically normal. We perform a simulation study and a real data analysis to
compare the proposed estimator with MLE.Abstract i
List of Tables viii
List of Figures ix
1 Introduction 1
2 Reviews 6
2.1 The integer-valued time series models . . . . . . . . . . . . . . . . . . 6
2.2 The cumulative sum (CUSUM) test . . . . . . . . . . . . . . . . . . . 8
2.3 The minimum density power divergence estimator (MDPDE) . . . . . 10
3 Parameter Change Test for Random Coefficient Integer-Valued Autoregressive
Processes with Application to Polio Data Analysis 13
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Estimation for RCINAR(1) models . . . . . . . . . . . . . . . . . . . 15
iii
3.3 Change point test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5 Real data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4 Parameter Change Test for Poisson Autoregressive Models 41
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Estimation for Poisson autoregressive model . . . . . . . . . . . . . . 42
4.2.1 Poisson autoregressive model . . . . . . . . . . . . . . . . . . . 42
4.2.2 INGARCH(1,1) model . . . . . . . . . . . . . . . . . . . . . . 46
4.3 Change point test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3.1 Estimates-based CUSUM test . . . . . . . . . . . . . . . . . . 48
4.3.2 Residual-based CUSUM test . . . . . . . . . . . . . . . . . . . 52
4.4 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.4.1 INGARCH(1,1) model . . . . . . . . . . . . . . . . . . . . . . 53
4.4.2 Poisson threshold autoregressive model . . . . . . . . . . . . . 57
4.5 Real data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.8 Supplementary material . . . . . . . . . . . . . . . . . . . . . . . . . 80
5 Minimum Density Power Divergence Estimator for Poisson Autoreiv
gressive Models 87
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.2 MDPDE in Poisson autoregressive models . . . . . . . . . . . . . . . 88
5.3 Asymptotic properties of MDPDE . . . . . . . . . . . . . . . . . . . . 90
5.4 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.5 Real data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
BibliographyDocto