8 research outputs found
Risk of Bladder Cancer among Patients with Diabetes Treated with a 15 mg Pioglitazone Dose in Korea: A Multi-Center Retrospective Cohort Study
It has not yet been determined whether chronic exposure to relatively low doses of pioglitazone increases risk of bladder cancer. We aimed to assess the risk of bladder cancer associated with pioglitazone in Korean patients. This was a retrospective cohort study of diabetic patients who had ≥ 2 clinic visits between November 2005 and June 2011 at one of four tertiary referral hospitals in Korea. A prevalent case-control analysis nested within the cohort was conducted to further adjust confounders. A total of 101,953 control patients and 11,240 pioglitazone-treated patients were included, in which there were 237 and 30 cases of incidental bladder cancer (64.9 and 54.9 per 100,000 person-years; age, sex-adjusted HR 1.135, 95% confidence interval [CI] 0.769-1.677), respectively. In the prevalent case-control analysis nested within the cohort, use of pioglitazone for a duration of > 6 months, but not ever use of pioglitazone, was associated with an increased rate of bladder cancer as compared to never use of pioglitazone. In conclusion, we failed to exclude the possible association between use of pioglitazone for a duration of > 6 months and bladder cancer.ope
The Return Spillovers within Korean Stock Market on Banking and Non-banking Financial Institutions
As the collapse of Lehman Brothers in 2008 swept through global financial markets, the importance of cross-market volatility spillovers and system risk related to financial stability has been emphasized. Starting with the study on volatility spillovers between asset markets, research on measuring system risk, as well as on spillover effects from CDS market to analyze the volatility of asset markets depending on credit risk, has been conducted actively. Prior to measuring the system risk, this study empirically analyzes the stock return spillovers of Korean financial institutions including banking and non-banking sectors with Diebold, Yilmaz(2012) volatility spillover index. More specifically, this study examines directional spillover index and the size of spillover effects to look over the relationships between individual institutions and between different financial sectors. The major results are as follows: First, the total spillover indices of all 3 sectors increased after the financial crisis. Second, spillovers between different sectors show that securities sector leads bank and insurance sectors. Lastly, 6 of directional spillover indices between sectors increased whenever there was turmoil in financial market, whereas spillovers within the same sector decreased when Lehman Brothers went bankrupt.;2008년 리먼 브라더스의 파산으로 확산된 세계금융위기로 인해 교차시장 변동성 전이효과와 금융 안정과 관련된 시스템 리스크의 중요성이 부각되면서 현재까지 많은 연구들이 있었다. 자산시장간 변동성 전이효과에 대한 연구를 시작으로 신용위험도에 따른 자산시장의 변화를 측정하기 위해 CDS시장과 관련한 전이효과 분석과 더불어 시스템 리스크의 측정방법에 대한 연구가 활발히 진행되었다. 본 연구에서는 이런 전체 시스템 리스크를 측정하기에 앞서 Diebold, Yilmaz(2012)의 전이지수를 이용한 금융기관들의 주가 수익률에 대한 파급효과를 측정하고 또 파급효과의 방향과 정도를 측정함으로써 개별 금융기관과 서로 다른 금융 부문간 어떠한 전이가 있는지 구체적으로 분석한다. 분석한 결과, 먼저 각 부문별 분석에서 세계금융위기 이후에 총 전이지수가 모두 상승하는 것으로 나타났다. 둘째, 부문간 분석에서는 전제 기간 동안 증권, 보험, 은행 순으로 주도적인 역할을 하는 것으로 드러났다. 셋째, 6가지의 방향성을 고려한 부문간 전이지수가 모두 금융시장의 불안이 높아지는 시기에 증가하는 것을 확인하였다. 이와는 반대로, 리먼 브라더스 파산시기에 동일부문 내의 전이효과는 감소하였는데, 특히 고유효과는 금융위기 이후 급격히 하락하는 것을 확인하였다.Ⅰ. 서론 1
A. 연구의 목적 및 배경 1
Ⅱ. 분석 방법 4
A. 벡터자기회귀모형(VAR)을 이용한 전이지수 4
Ⅲ. 실증분석 결과 9
A. 은행권 및 비 은행권 금융기관들의 수익률 전이효과 분석 9
B. 금융위기를 기준으로 한 시기별 전이효과 분석 13
C. 금융부문간 분석 17
Ⅳ. 결론 28
참고문헌 32
ABSTRACT 3
국내 거주 외국인의 문화적응 전략과 관람스포츠 관여도의 관계
학위논문 (석사)-- 서울대학교 대학원 : 체육교육과, 2015. 2. 강준호.본 연구의 목적은 국내에 거주하는 외국인들을 대상으로 Berry(1997)의 이차원적 문화적응이론에서 제시한 이주민의 네 가지 문화적응전략(통합형, 동화형, 분리형, 주변형)에 따른 관람스포츠(원문화 / 한국) 관여도 차이를 분석하는 것이다. 이러한 연구 목적의 달성을 위하여 일차적으로 이들의 문화적응지수(Acculturation Index)의 측정을 통해 설문 참여자의 문화적응전략 유형을 통합형 79명, 동화형 28명, 분리형 53명, 주변형 20명으로 분류하였다. 이후 각 유형별 외국인들의 원문화 관람스포츠와 한국의 관람스포츠에 대한 관여도 차이를 분석하고자 세부 연구 가설을 설정하였으며 이에 대한 검증 결과는 다음과 같았다.
첫째, 통합형 문화적응 전략을 취하는 외국인의 관람스포츠 관여도는주변형 전략을 취하는 외국인의 관람스포츠 관여도 보다 높게 나타났다. 둘째,동화형 문화적응 전략을 취하는 외국인의한국 관람스포츠에 대한 관여도는 원문화 관람스포츠에 대한 관여도 보다 낮게 나타났다. 셋째, 분리형 문화적응 전략을 취하는 외국인의 원문화 관람스포츠에 대한 관여도는 한국의 관람스포츠에 대한 관여도 보다 높게 나타났다. 넷째, 분리형 문화적응 전략을 취하는 외국인의 원문화 관람스포츠에 대한 관여도는 동화형 문화적응 전략을 취하는 외국인의 원문화 관람스포츠 관여도와 비교하여 유의한 차이가 나타나지 않았다. 다섯째, 통합형과 동화형 문화적응 전략을 취하는 외국인의 한국 관람스포츠에 대한 관여도는 분리형과 주변형 문화적응 전략을 취하는 외국인의 한국 관람스포츠에 대한 관여도 보다 높게 나타났다. 마지막으로, 각 문화적응 전략별 한국 관람스포츠에 대한 관여도 차이는 통합형-주변형, 통합형-분리형 간의 관여도 차이가 가장 크게 나타났다.
본 연구의 결과를 통해 나타난 국내 거주 외국인들의 문화적응 전략별 원문화와 한국의 관람스포츠에 대한 관여도 차이는 Berry(1997)의 문화적응이론에서 제시하는 네 가지 문화적응전략(통합형, 동화형, 분리형, 주변형)의 일반적 특성과 대체로 일치 하였다. 그러나 국내에 거주하는 외국인들은 네 가지 유형 모두에서 한국의 관람스포츠보다 원문화에서 주로 관람하던 관람스포츠에 대한 관여도 수준이 더 높게 나타났다. 이는 비록 한국 문화에 대한 문화적응 수준이 높은 유형의 외국인이라 할지라도 관람스포츠 관여도에 있어서는 원문화 관람스포츠의 관여도가 한국의 관람스포츠 관여도 보다 더 높다는 것을 의미하는 것으로 그들의 관람스포츠에 대한 심리적 선호를 파악할 수 있었다.목 차
Ⅰ. 서 론 ····················································································· 1
1. 연구의 배경 ······················································································· 1
2. 연구의 필요성 ····················································································· 3
3. 연구의 목적 및 연구문제 ································································· 7
Ⅱ. 이론적 배경 ·········································································· 9
1. 문화적응 ······························································································ 9
1) 문화적응의 개념······················································································ 9
2. 문화적응이론 ····················································································· 11
1) 단일 차원적 문화적응이론(bipolar acculturation theory) ·············· 11
2) 이차원적 문화적응이론(bi-dimensional acculturation theory) ······ 12
3. 문화적응에 영향을 미치는 요인들················································ 15
1) 개인적 요인···························································································· 15
2) 상황적 요인···························································································· 16
4. 스포츠와 이주민의 문화적응에 관한 선행연구 ·························· 18
1) 참여스포츠와 문화적응에 관한 선행연구 ········································· 19
2) 관람스포츠와 문화적응에 관한 선행연구 ········································· 21
5. 민족정체성과 문화적응 ··································································· 23
1) 민족정체성의 개념 ··················································································· 23
2) 민족정체성 이론 ······················································································· 25
① 정체성형성이론(identity formation theory) ····································· 26
② 사회정체성이론(social identity theory) ············································ 27
3) 민족정체성과 문화적응과의 관계 ·························································· 28
6. 관여도·········································································································29
1) 관여도의 개념 ··························································································· 29
2) 스포츠 관여도 ··························································································· 32
3) 스포츠 관여도 수준과 관람스포츠 소비자행동 ··································· 34
Ⅲ. 연구가설 ·············································································· 38
1. 국내거주 외국인의 문화적응전략 유형분류 ································ 39
2. 국내거주 외국인의 문화적응전략과 관람스포츠 관여도 ··········· 39
Ⅳ. 연구방법 ·············································································· 41
1. 연구대상 ··························································································· 41
2. 조사도구 ···························································································· 43
1) 문화적응지수(Acculturation Index: AI) ············································ 43
2) 관여도····································································································· 46
3. 자료처리방법 ····················································································· 46
1) 기술통계분석(descriptive analysis) ···················································· 46
2) 신뢰도 분석(reliability analysis) ····················································· 46
3) 확인적 요인분석(confirmatory factor analysis) ······························ 47
4) T-검정(paired & independent t-test) ··············································· 50
5) 일원배치분산분석(one-way ANOVA analysis) ······························ 50
Ⅴ. 연구결과 ·············································································· 51
1. 국내거주 외국인의 문화적응전략 분류 ·············································· 51
2. 연구가설 1의 검증결과········································································· 52
3. 연구가설 2의 검증결과········································································· 53
4. 연구가설 3의 검증결과········································································· 54
5. 연구가설 4의 검증결과········································································· 55
6. 연구가설 5의 검증결과········································································· 56
7. 연구가설 6의 검증결과········································································· 57
Ⅵ. 논의 및 결론 ······································································ 60
1. 논의 ···································································································· 60
2. 시사점 ································································································ 62
3. 연구의 제한점 및 제언 ··································································· 65
4. 결론 ···································································································· 66Maste
Workload-aware Virtual Machine Consolidation on Cloud Platforms
학위논문 (석사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2012. 2. 엄현상.As the cloud markets grow, the cloud providers are faced with new challenges such as reduction of power consumption and guaranteeing service level agreements (SLAs). One reason for these problems is the use of server consolidation policy based on virtualization for maximizing the efficiency of resource usage. Because current virtualization technologies do not ensure performance isolation among active virtual machines (VMs), it is required to consider resource usage pattern of VMs to improve total throughput and quality of service. In this paper, we propose a new consolidation policy which exploits per-VM resource usage monitoring techniques. Specifically, we focus on the performance impact of contention in a last-level shared cache (LLC). We have found that the ratio of LLC reference is highly associated with cache demand, and a throughput-maximizing VM consolidation policy can be devised by using the ratio. We also show that our policy is effective in throughput evaluation for various workloads.클라우드 시장이 성장함에 따라, 클라우드 제공자들은 파워 소비량을 줄이거나 서비스 수준 협약들을 보장하는 등의 새로운 문제에 직면하게 되었다. 이러한 문제점들의 원인 중 하나는 자원 사용의 효율성을 극대화하기 위한 가상화 기반의 서버 통합 사용에 있다. 현재 가상화 기술들은 활성화된 가상머신들 사이에서 성능 격리를 보장하지 않기 때문에,전체 처리량과 서비스의 질을 향상시키기 위해서 자원 사용의 패턴을 고려하는 것이 요구된다. 이 논문에서 우리는 가상머신당 자원 사용을 감시하는 기술들을 개발하는 새로운 통합 정책을 제안한다. 그 중에서도 특별히 말단에서 공유되는 캐쉬 안에서 경합에 대한 성능 영향에 집중한다. 여기서 우리는 말단 캐쉬의 참조 비율이 캐쉬 요구량과 매우 밀접한 관련이 있다는 것을 찾았고, 처리량을 최대화 할 수 있는 가상머신 통합 정책은 이 비율을 사용하여 고안될 수 있다는 것을 알아냈다. 또한 우리가 제안한 정책이여러워크로드에서 처리량을 평가하는데 효과적이라는 것을 보여준다.Maste
Estimation of the hazard ratios from survival curves
의학전산통계학 협동과정/석사임상연구에서 어떤 사건에 대한 두 군의 위험률이 얼마나 차이가 있는지를 알아보는 척도로 위험비를 많이 사용한다. 그러나 임상 논문에서 생존함수는 제시되어 있으나 위험비가 제시되지 않는 경우가 많으며 위험비를 추정할 만큼의 충분한 정보를 기재하지 않는 경우도 많다. 따라서 본 연구에서는 원시자료가 없는 경우에 출판된 논문에 제시되어 있는 한정된 자료를 가지고 두 군의 위험비를 추정하는 방법에 대해 알아보고자 하였다. 본 연구에서는 생존곡선의 정보만을 이용하여 위험비를 추정하는 경우와 위험에 노출된 대상자 수의 정보를 추가로 이용할 수 있는 경우로 나누어 살펴보았다. 생존곡선의 정보만을 이용하는 경우는 추적관찰 완료 시점 정보를 이용하는 방법과 전체 자료의 중도절단 비율을 가정하는 방법으로 나누어 살펴보았다. 위험에 노출된 대상자 수의 정보를 이용하여 위험비를 추정하는 경우에는 비례위험을 가정한 경우와 그렇지 않은 경우를 각각 소개하고 각 방법의 추정능력을 평가하였다. 제시한 네 가지 방법들을 평가해 본 결과, 중도절단 비율이 높아질수록, 참 위험비가 높아질수록 위험비 추정치의 95% 신뢰구간이 참 위험비를 포함한 분율이 낮아지는 결과를 보였다. 또한, 모든 방법에서 군별 표본 수에 따른 위험비 추정은 크게 달라지지 않는 것으로 나타났다. 두 군의 생존곡선이 교차하지 않는 상황에서 생존곡선과 추적관찰 완료 시점의 정보를 이용하여 위험비를 추정하는 방법, 생존곡선과 가정한 전체 자료의 중도절단 비율을 이용하여 위험비를 추정하는 방법과 비례위험을 가정하지 않고 생존곡선과 위험에 노출된 대상자 수의 정보를 이용하여 위험비를 추정하는 방법은 위험비를 대체로 잘 추정하였으나. 비례위험을 가정하여 생존곡선과 위험에 노출된 대상자 수의 정보를 이용하여 위험비를 추정하는 방법은 위험비 95% 신뢰구간이 참 위험비를 포함한 분율이 50% 정도의 낮은 결과를 보였다. 이 방법은 다른 방법들에 비해 위험비의 추정치가 참 위험비에 가장 근접하게 추정된 방법이었으나, 위험비의 분산 추정에 문제가 있었다. 두 군의 생존곡선이 교차하는 상황에서는 위험비가 시간에 따라 달라지기 때문에 전체 생존시간에 대한 하나의 위험비를 추정하는 것은 매우 왜곡된 결과를 보일 수 있다. 네 가지 추정방법의 모의실험 결과 이를 뒷받침하는 결과를 보였다. 또한 실제 출판된 논문의 자료들을 통해서 네 가지 방법을 이용하여 추정한 위험비의 결과와 참 위험비를 비교할 수 있었다ope
