102 research outputs found

    Magnesium as a predictor of cardiovascular disease in pre-dialysis CKD patients

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ์˜๊ณผ๋Œ€ํ•™ ์ž„์ƒ์˜๊ณผํ•™๊ณผ, 2022. 8. ์˜ค๊ตญํ™˜.์„œ๋ก : ํˆฌ์„์„ ํ•˜์ง€ ์•Š๋Š” ๋งŒ์„ฑ์‹ ์žฅ์งˆํ™˜ ํ™˜์ž์—์„œ ๋งˆ๊ทธ๋„ค์Š˜๊ณผ ์‹ฌํ˜ˆ๊ด€๊ณ„ ์งˆํ™˜์˜ ๊ด€๋ จ์„ฑ์„ ๋ถ„์„ํ•œ ๋Œ€๊ทœ๋ชจ์˜ ์—ฐ๊ตฌ๋Š” ๋“œ๋ฌผ๋‹ค. ๋˜ํ•œ ๋งˆ๊ทธ๋„ค์Š˜์ด NF-ฮบB๋ฅผ ์–ต์ œํ•˜์—ฌ ํ˜ˆ๊ด€์„ํšŒํ™”์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ๊ธฐ์ „์€ ๋ฐํ˜€์ง€์ง€ ์•Š์•˜๋‹ค. ๋”ฐ๋ผ์„œ, ์ด ์—ฐ๊ตฌ๋Š” ๋Œ€๊ทœ๋ชจ์˜, ํˆฌ์„์„ ํ•˜์ง€ ์•Š๋Š” ๋งŒ์„ฑ์‹ ์žฅ์งˆํ™˜ ํ™˜์ž๋“ค์„ ๋Œ€์ƒ์œผ๋กœ ๋งˆ๊ทธ๋„ค์Š˜์ด ์‹ฌํ˜ˆ๊ด€๊ณ„ ์งˆํ™˜์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์— ๋Œ€ํ•ด์„œ ๋ถ„์„ํ•˜๊ณ  ๋งˆ๊ทธ๋„ค์Š˜์ด NF-ฮบB๋ฅผ ์–ต์ œํ•˜์—ฌ ํ˜ˆ๊ด€์„ํšŒํ™”๋ฅผ ์–ต์ œํ•˜๋Š” ๊ธฐ์ „์„ ๋ฐํžˆ๊ณ ์ž ํ•œ๋‹ค. ๋ฐฉ๋ฒ•: ํˆฌ์„์„ ํ•˜์ง€ ์•Š๋Š” ๋งŒ์„ฑ์‹ ์žฅ์งˆํ™˜ ํ™˜์ž๋กœ ๊ตฌ์„ฑ๋œ ์ „ํ–ฅ์ , ๋‹ค๊ธฐ๊ด€ ์ฝ”ํ˜ธํŠธ๋ฅผ ์ด์šฉํ•˜์—ฌ 1,646๋ช…์˜ ํ™˜์ž์—์„œ ํ˜ˆ์ฒญ ๋งˆ๊ทธ๋„ค์Š˜๊ณผ ์‹ฌํ˜ˆ๊ด€๊ณ„ ์งˆํ™˜์˜ ๊ด€๋ จ์„ฑ์„ ๋ถ„์„ํ•˜์˜€๋‹ค. ํ™˜์ž๋Š” ํ˜ˆ์ฒญ ๋งˆ๊ทธ๋„ค์Š˜ ๋†๋„์— ๋”ฐ๋ผ ์„ธ ๊ทธ๋ฃน์œผ๋กœ ๋‚˜๋ˆ„์—ˆ๋‹ค. ์ผ์ฐจ ๊ฒฐ๊ณผ ๋ณ€์ˆ˜๋Š” ์‹ฌํ˜ˆ๊ด€๊ณ„ ์งˆํ™˜์ด๋‚˜ ๋ชจ๋“  ์›์ธ์˜ ์‚ฌ๋ง์œผ๋กœ ์ •์˜๋œ ๋ณตํ•ฉ ๊ฒฐ๊ณผ ๋ณ€์ˆ˜๋กœ ์ •์˜ํ•˜์˜€๋‹ค. ์ด์ฐจ ๊ฒฐ๊ณผ ๋ณ€์ˆ˜๋Š” ๊ด€์ƒ๋™๋งฅํ˜ˆ๊ด€ ์„ํšŒํ™”์˜ ์ง„ํ–‰๊ณผ ํ‰๊ท  ์ƒ์™„-๋ฐœ๋ชฉ ๋งฅํŒŒ ์†๋„๋กœ ํ‰๊ฐ€ํ•œ ๋™๋งฅ๊ฒฝํ™”๋„์˜ ์ง„ํ–‰์ด์—ˆ๋‹ค. ์‹คํ—˜์€ ์ธ๊ฐ„์˜ ๋Œ€๋™๋งฅ ํ˜ˆ๊ด€ ํ‰ํ™œ๊ทผ ์„ธํฌ๋กœ ์ง„ํ–‰ํ•˜์˜€๋‹ค. ๊ฒฐ๊ณผ: ์ค‘์•™๊ฐ’ 6๋…„์˜ ์ถ”์ ๊ธฐ๊ฐ„ ๋™์•ˆ, 153๋ช… (9.3%)์˜ ํ™˜์ž์—์„œ ์‹ฌํ˜ˆ๊ด€๊ณ„ ์งˆํ™˜์ด๋‚˜ ๋ชจ๋“  ์›์ธ์˜ ์‚ฌ๋ง์ด ๋ฐœ์ƒํ•˜์˜€๋‹ค. ๋‹ค๋ณ€์ˆ˜ ๋ชจ๋ธ์—์„œ ์ €๋งˆ๊ทธ๋„ค์Š˜ํ˜ˆ์ฆ ํ™˜์ž๊ตฐ (ํ˜ˆ์ฒญ ๋งˆ๊ทธ๋„ค์Š˜ <1.8 mg/dL)์€ ์ •์ƒ ํ˜ˆ์ค‘ ๋งˆ๊ทธ๋„ค์Š˜ ํ™˜์ž๊ตฐ (ํ˜ˆ์ฒญ ๋งˆ๊ทธ๋„ค์Š˜ 1.8โˆ’2.2 mg/ dL)์— ๋น„ํ•ด์„œ ์‹ฌํ˜ˆ๊ด€๊ณ„ ์งˆํ™˜์ด๋‚˜ ๋ชจ๋“  ์›์ธ์˜ ์‚ฌ๋ง์˜ ๋ฐœ์ƒ์˜ ์œ„ํ—˜์ด ๋†’์•˜๋‹ค (์œ„ํ—˜๋น„ 2.53 [1.12โˆ’5.69]; P=0.024). ์ €๋งˆ๊ทธ๋„ค์Š˜ํ˜ˆ์ฆ ํ™˜์ž๊ตฐ์€ ๊ด€์ƒ๋™๋งฅํ˜ˆ๊ด€ ์„ํšŒํ™”์˜ ์ง„ํ–‰๊ณผ ๋™๋งฅ๊ฒฝํ™”๋„์˜ ์ง„ํ–‰์˜ ์œ„ํ—˜์ด ๋†’์•˜๋‹ค. ๋ฐฐ์–‘ํ•œ ๋Œ€๋™๋งฅ ํ˜ˆ๊ด€ ํ‰ํ™œ๊ทผ ์„ธํฌ์—์„œ, ๋งˆ๊ทธ๋„ค์Š˜์„ ์ฒ˜๋ฆฌํ•˜๋ฉด NF-ฮบB์ด ์–ต์ œ๋˜๋ฉด์„œ ์ธ์‚ฐ์—ผ์œผ๋กœ ์œ ๋„๋œ ์„ํšŒํ™”๊ฐ€ ์–ต์ œ๋˜์—ˆ๋‹ค. ๊ฒฐ๋ก : ์ €๋งˆ๊ทธ๋„ค์Š˜ํ˜ˆ์ฆ์€ ํˆฌ์„์„ ํ•˜๊ธฐ ์ „ ๋งŒ์„ฑ์‹ ์žฅ์งˆํ™˜ ํ™˜์ž์—์„œ ์‹ฌํ˜ˆ๊ด€๊ณ„ ์งˆํ™˜์˜ ์˜ˆ์ธก์ธ์ž์ด๋‹ค. ๋งˆ๊ทธ๋„ค์Š˜์€ NF-ฮบB๋ฅผ ์–ต์ œํ•˜์—ฌ ์ธ์‚ฐ์—ผ์œผ๋กœ ์œ ๋„๋œ ํ˜ˆ๊ด€์„ํšŒํ™”๋ฅผ ์–ต์ œํ•œ๋‹ค.Background: There are few large-scale studies of the association between magnesium (Mg) and cardiovascular (CV) outcomes in pre-dialysis chronic kidney disease (CKD) patients. The effect of Mg on vascular calcification through the NF-ฮบB pathway has not been elucidated. Therefore, I investigated the effects of Mg on CV outcomes in a large-scale cohort of pre-dialysis CKD patients and explored the mechanism of Mg in vascular calcification through NF-ฮบB. Methods: I investigated the association between serum Mg and CV outcomes in a prospective, multi-center cohort of pre-dialysis CKD patients (n=1,646). Patients were divided into three groups according to serum Mg concentration. The primary endpoint was composite outcome, defined as either a CV event and/or all-cause death. Secondary outcomes were coronary artery calcification (CAC) progression and arterial stiffness progression as assessed by mean brachial-ankle pulse wave velocity (baPWV). Experiments were conducted with primary human aortic vascular smooth muscle cells (VSMCs). Results: During 7,368 person-years of follow up, the primary outcome occurred in 153 patients (20.8 per 1,000 person-years). In a multivariable cause-specific model, patients in the hypomagnesemia group (serum Mg <1.8 mg/dL) were at elevated risk of the composite outcome (hazard ratio (HR) 2.53 [1.12โˆ’5.69]; P=0.024; serum Mg 1.8โˆ’2.2 mg/dL as the reference group). Patients with hypomagnesemia also had exhibited risk of progression to CAC and arterial stiffness. In cultured VSMCs, treatment with MgCl2 blunted phosphate-induced calcification, osteo-chondrogenic signaling, and NF-ฮบB activation. Conclusions: Low Mg level is a predictor of cardiovascular outcomes in pre-dialysis CKD patients. Mg supplementation ameliorates phosphate-induced osteochondrogenic transdifferentiation of VSMCs and vascular calcification through suppression of NF-ฮบB activation.Chapter 1. General introduction 1 Chapter 2. Low magnesium predicts cardiovascular outcomes in pre-dialysis CKD patients 7 Chapter 3. Magnesium inhibits phosphate-induced vascular calcification through suppression of NF-ฤธB 29 Chapter 4. General discussions and conclusions 39 Bibilography 45 Abstract in Korean 51๋ฐ•

    A Study on the Role of Histone Deacetylase HDA9 in Arabidopsis Flowering and Germination

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ƒ๋ช…๊ณผํ•™๋ถ€ ์ƒ๋ช…๊ณผํ•™ ์ „๊ณต, 2016. 2. ๋…ธ์œ ์„ .Posttranslational acetylation of histones is reversibly regulated by histone deacetylases (HDACs). Despite the evident significances of HDACs in Arabidopsis development, the biological roles and underlying molecular mechanisms of many HDACs are yet to be elucidated. In this study, I revealed the biological role of the RPD3/HDA1-class histone deacetylase HDA9 in resetting histone acetylation levels during active transcription to maintain proper transcription activity in two major phase transition of plantsseed germination and flowering. Loss-of-function in HDA9 flowered early under non-inductive short-day (SD) condition and showed increased expression of the floral integrator, FT and floral activator, AGL19. The hda9 mutation increased histone H3 acetylation and RNA polymerase II occupancy at AGL19 chromatin but not FT during active transcription. In addition, HDA9 directly targeted AGL19, and AGL19 expression was higher in SD than LD condition. The agl19 mutation is epistatic to the hda9 mutation, masking the early flowering and increased FT expression of hda9. Taken together, my data indicates that HDA9 prevents precocious flowering in SD by curbing the hyper-activation of AGL19, an upstream activator of FT, through resetting local chromatin environment. Epigenetic regulation network through HAT and HDAC is known to play crucial roles in seed development. Timing of seed germination is controlled by various environmental factors in order to initiate a successful new life cycle under favorable environment. Light is the most critical environmental factor to promote seed germination. Light-induced germination process involves the perception of light mainly by phytochrome B (phyB) and degradation of the germination repressor PHYTOCHROME INTERACTING FACTOR (PIF1) resulted from its interaction with phyB. Through this study, I found out that HDA9 adds a new layer of regulation for phyB-dependent germination process. Loss-of-HDA9 activity caused rapid germination after red-light pulse treatment and under continuous white light. The expressin of HECs, previously known repressors of PIF1 transcription activity was also increased in the hda9 mutant. Epistatic analysis between the hda9 mutant and hec1hec2 RNAi showed that rapid seed germination of the hda9 mutant was caused by the increased HECs expression. Histone H3 acetylation level and RNA polymerase II occupancy at HECs were more elevated in hda9-1 than in wt after red light pulse but not after far-red light pulse. The direct association of HDA9 with HECs chromatin was also observed after red light pulse but not after far-red light pulse. Furthermore, HDA9 also affect the expression of GA-INSENSITIVE (GAI) and REPRESSOR OF GA1-3 (RGA/RGA1), downstream target genes of PIF1. Taken together, my results indicate that HDA9 plays a role in the prevention of the hyper light-sensitive germination by inhibiting the hyper-activation of HECs transcription by light through deacetylating HEC chromatin during active transcription. Thus, HDA9 acts as a fine-tuning mechanism of phyB-dependent germination ensuring the beginning of germination under proper light condition. In conclusion, throughout my research, I focused on the identification of the novel roles of HDA9 during seed germination and flowering. The role of HDA9 in transcription, unlike the conventional idea of HDACs is to modulate the transcription activity of target chromatin (AGL19 and HECs) by resetting the landscape of chromatin during active transcription.1. Chapter I. General introduction 1 1. Epigenetics and gene regulation 2 1.1 Histone modification 2 1.1.1 Histone acetylation 4 1.1.2 Histone deacetylation 8 1.2 DNA methylation 14 1.3 ATP-dependent chromatin remodeling 16 1.4 RNA interference (RNAi) 19 2. Photoperiod regulates floral transition 22 2.1 Photoperiod and circadian rhythm 23 2.2 Vernalization pathway 26 2.3 Autonomous pathway 30 2.4 GA pathway 32 3. Light regulates seed germination 32 3.1 Light regulates phytochrome signaling 34 3.2 Phytochrome interacting factors (PIFs) 35 3.3 Phytochrome modulates PIF1 during seed germination 37 3.4 Light regulates GA pathway during seed germination 38 3.5 Light regulates ABA pathway 40 2. Chapter II. Repression of flowering in non-inductive photoperiod by the HDA9-AGL19-FT module in Arabidopsis 43 2.1 Abstract 44 2.2 Introduction 45 2.3 Material and methods 49 2.3.1 Plant materials and growth conditions 49 2.3.2 Histochemical ฮฒ-glucuronidase (GUS) assay 49 2.3.3 Subcellular localization study 50 2.3.4 HDA9 complementation construct and HDA9:HA 50 2.3.5 Flowering time analysis 51 2.3.6 RT-PCR and RT-qPCR analyses 51 2.3.7 ChIP assay 52 2.4 Results 66 2.4.1 Isolation of an hda9 mutant 66 2.4.2 Spatial expression pattern and nuclear localization of HDA9 72 2.4.3 The hda9-1 mutation causes early flowering in SD 79 2.4.4 Loss of HDA9 affects the expression of FLC, MAF4, MAF5, and FT 83 2.4.5 HDA9 controls flowering mostly independently of FLC, MAF4, and MAF5 87 2.4.6 The expression of AGL19, a floral activator, is increased in hda9-1 91 2.4.7 HDA9 directly represses AGL19 transcription through histone deacetylation 97 2.4.8 HDA9 controls FT expression and flowering through AGL19 101 2.4.9 Loss of HDA9 increases the levels of AGL19 mRNA and H3Ac at AGL19 in vernalized seedlings 103 2.4.10 AGL19 is differentially expressed in different photoperiods 105 2.5 Discussion 108 3. Chapter III. HDA 9 plays a negative role in light-induced seed Germination 111 3.1 Abstract 112 3.2 Introduction 114 3.3 Material and methods 118 3.3.1 Plant materials and growth conditions 118 3.3.2 Light treatment and seed germination assay 118 3.3.3 Histochemical ฮฒ-glucuronidase (GUS) assay 119 3.3.4 RNA extraction and RT-qPCR analysis 119 3.3.5 Protein extraction and western blot 120 3.3.6 Chromatin immunoprecipitation (ChIP) assay 122 3.4 Results 129 3.4.1 HDA9 negatively regulates the phyB- dependent promotion of seed germination 129 3.4.2 Expression of HDA9 is not affected by red light 135 3.4.3 Expression of HECATEs, positive regulators in seed germination, is increased by the hda9-1 mutation 137 3.4.4 HECATE expressions were enhanced in seed germination 139 3.4.5 HDA9 directly represses HECs transcription through histone deacetylation 144 3.4.6 HDA9 acts as an upstream regulator of HECs 148 3.4.7 GAI and RGA mRNAs are reduced by the hda9 mutation under red light regime 150 3.4.8 The pif1 mutation is epistatic to the hda9 mutation 154 3.4.9 HDA9 targeting to HFR1 is less clear 156 3.4.10 Proposed working model of HDA9-HEC-PIF1 regulatory module controlling the phyB-dependent seed germination 160 3.4.11 HECs are involved in controlling the light- dependent inhibition of hypocotyl elongation by HDA9 163 3.5 Discussion 165 References 168 Abstract in Korean 193Docto

    ์ •์น˜์  ์ฃผ๋ชฉ๋„์™€ ๊ธฐ์—…์ง€๋ฐฐ๊ตฌ์กฐ ๊ฐœํ˜์˜ ๋‹ด๋ก  ํ˜•์„ฑ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ •์น˜์™ธ๊ตํ•™๋ถ€(์ •์น˜ํ•™์ „๊ณต), 2014. 2. ์ž„ํ˜œ๋ž€.๋ณธ ๋…ผ๋ฌธ์€ ๊น€๋Œ€์ค‘ ์ •๋ถ€์™€ ๋…ธ๋ฌดํ˜„ ์ •๋ถ€์˜ ์žฌ๋ฒŒ ๊ธฐ์—…์ง€๋ฐฐ๊ตฌ์กฐ ๊ฐœํ˜์— ์žˆ์–ด ์ฐจ์ด๊ฐ€ ๋‚˜ํƒ€๋‚˜๋Š” ์›์ธ์„ ์‚ดํŽด๋ณด๋Š” ๋ฐ ๋ชฉ์ ์ด ์žˆ๋‹ค. ํŠนํžˆ ๊ทธ ๋™์•ˆ ๋งŽ์ด ์ง€์ ๋˜์–ด ์˜จ ์™ธํ™˜์œ„๊ธฐ๋ผ๋Š” ์™ธ๋ถ€์  ์š”์ธ์—๋งŒ ์ดˆ์ ์„ ๋งž์ถ˜ ๊ฒƒ์ด ์•„๋‹ˆ๋ผ ๊ตญ๋‚ด ์ •์น˜์  ์š”์ธ์—๋„ ์ดˆ์ ์„ ๋งž์ถ”์—ˆ๋‹ค. ์™ธํ™˜์œ„๊ธฐ๋ผ๋Š” ์™ธ๋ถ€์  ์š”์ธ์ด ํ•œ๊ตญ ์žฌ๋ฒŒ์˜ ๊ธฐ์—…์ง€๋ฐฐ๊ตฌ์กฐ ๊ฐœํ˜์— ์ค‘์š”ํ•œ ์˜ํ–ฅ์„ ๋ผ์น˜๊ธด ํ•˜์˜€์ง€๋งŒ, ์™ธ๋ถ€์  ์š”์ธ๋งŒ ๊ณ ๋ คํ•œ๋‹ค๋ฉด ๊ฐœํ˜์˜ ๋‚ด๋ถ€์  ๋™๋ ฅ์„ ๊ฐ„๊ณผํ•  ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ ์™ธ๋ถ€์  ์ถฉ๊ฒฉ์ด ์žˆ์„ ๋•Œ ํ•ญ์ƒ ๊ธฐ์—…์ง€๋ฐฐ๊ตฌ์กฐ ๊ฐœํ˜์ด ์ผ์–ด๋‚˜๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ๋Š” ๊ฒƒ์„ ๋…์ผ์˜ ๊ฒฝ์šฐ๋ฅผ ํ†ตํ•ด ์•Œ ์ˆ˜ ์žˆ๋‹ค. ๋…ธ๋ฌดํ˜„ ์ •๋ถ€์˜ ๊ฒฝ์šฐ ์™ธํ™˜์œ„๊ธฐ๋ผ๋Š” ์™ธ๋ถ€์  ์š”์ธ์ด ์™ธํ™˜์œ„๊ธฐ์˜ ๊ทน๋ณต์œผ๋กœ ์ธํ•ด ์‚ฌ๋ผ์กŒ์œผ๋‚˜ ์ •๊ถŒ ์ถœ๋ฒ” ์ดˆ๊ธฐ๋ถ€ํ„ฐ ์žฌ๋ฒŒ ๊ฐœํ˜์— ๋Œ€ํ•œ ๊ฐ•ํ•œ ์˜์ง€๋ฅผ ๋‚˜ํƒ€๋‚ด์—ˆ๋‹ค. ๋…ธ๋ฌดํ˜„ ์ •๋ถ€๊ฐ€ ์—ฐํ•ฉ ์ •๊ถŒ์ด ์•„๋‹ˆ๋ผ ๋‹จ๋… ์ •๊ถŒ์œผ๋กœ ์ถœ๋ฐœํ•œ ๊ฒƒ๊ณผ ํ—Œ๋ฒ•์žฌํŒ์†Œ์—์„œ ํƒ„ํ•ต์†Œ์ถ” ๊ธฐ๊ฐ ๊ฒฐ์ •์ด ๋‚œ ์ดํ›„ ์—ฌ๋‹น์ธ ์—ด๋ฆฐ์šฐ๋ฆฌ๋‹น์ด 17๋Œ€ ๊ตญํšŒ์˜์› ์„ ๊ฑฐ์—์„œ ๋‹ค์ˆ˜ ์˜์„์„ ์ฐจ์ง€ํ•˜๊ฒŒ ๋œ ๊ฒƒ์€ ๊ฐœํ˜ ์ •์ฑ… ์ถ”์ง„์— ์œ ๋ฆฌํ•œ ๊ตญ๋‚ด ์ •์น˜์  ์ƒํ™ฉ์ด์—ˆ๋‹ค. ์ด๋ ‡๊ฒŒ ์œ ๋ฆฌํ•œ ๊ตญ๋‚ธ ์ •์น˜์  ์ƒํ™ฉ์—์„œ ๊ฒฐ๊ณผ์ ์œผ๋กœ ๋…ธ๋ฌดํ˜„ ์ •๋ถ€์˜ ์žฌ๋ฒŒ ๊ฐœํ˜ ์ •์ฑ…์€ ๊ฐ•๋ ฅํ•˜๊ฒŒ ์ถ”์ง„๋˜์ง€ ๋ชปํ•˜์˜€๋‹ค. ๊น€๋Œ€์ค‘ ์ •๋ถ€์˜ ๊ฒฝ์šฐ๋„ ์žฌ๋ฒŒ ๊ฐœํ˜์— ๋Œ€ํ•œ ๊ฐ•๋ ฅํ•œ ์˜์ง€๋ฅผ ๊ฐ€์ง€๊ณ  ์ถœ๋ฒ”ํ•˜์˜€๋‹ค. ์™ธํ™˜์œ„๊ธฐ๊ฐ€ ์ผ์–ด๋‚œ ์งํ›„ ์ •๊ถŒ์ด ์ถœ๋ฒ”ํ•˜์˜€๊ธฐ ๋•Œ๋ฌธ์— ์™ธ๋ถ€์  ์š”์ธ์€ ์žฌ๋ฒŒ ๊ฐœํ˜์— ์œ ๋ฆฌํ•œ ์ƒํ™ฉ์ด์—ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊น€๋Œ€์ค‘ ์ •๋ถ€๋Š” ๋ณด์ˆ˜๋‹น๊ณผ์˜ ์—ฐํ•ฉ ์ •๊ถŒ์œผ๋กœ ์ถœ๋ฐœํ•˜์˜€๊ณ  ๊ตญํšŒ์—์„œ ์—ฌ๋‹น์ด ์†Œ์ˆ˜ ์ •๋‹น์ด๋ผ๋Š” ๊ตญ๋‚ด ์ •์น˜์ ์œผ๋กœ ๊ฐœํ˜ ์ •์ฑ…์— ๋งค์šฐ ๋ถˆ๋ฆฌํ•œ ์ƒํ™ฉ์— ์žˆ์—ˆ๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ ๊น€๋Œ€์ค‘ ์ •๋ถ€์˜ ์žฌ๋ฒŒ ๊ฐœํ˜ ์ •์ฑ…์€ ๊ตญ๋‚ด ์ •์น˜์ ์œผ๋กœ ๋ถˆ๋ฆฌํ•œ ์ƒํ™ฉ์—์„œ๋„ ๊ฐ•๋ ฅํ•˜๊ฒŒ ์ถ”์ง„๋  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ด ๊ธ€์—์„œ๋Š” ์ด ๋‘ ์ •๋ถ€์˜ ์žฌ๋ฒŒ ๊ฐœํ˜ ์ •์ฑ…์˜ ์ฐจ์ด๊ฐ€ ๋‚˜ํƒ€๋‚œ ์›์ธ์„ ์™ธ๋ถ€์  ์š”์ธ์ด๋‚˜ ๊ตญ๋‚ด ์ •์น˜์  ์š”์ธ ์ค‘ ํ•˜๋‚˜์—๋งŒ ์ฃผ๋ชฉํ•˜์—ฌ ๊ณ ์ฐฐํ•˜๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ ๋‘ ์š”์ธ์„ ๋ชจ๋‘ ํฌํ•จํ•˜์—ฌ ๋ถ„์„ํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ๊ธฐ์กด ๋ฌธํ—Œ์„ ๊ฒ€ํ† ํ•œ ๊ฒฐ๊ณผ, ๊น€๋Œ€์ค‘ ์ •๋ถ€์™€ ๋…ธ๋ฌดํ˜„ ์ •๋ถ€์‹œ๊ธฐ์— ๋‚˜ํƒ€๋‚œ ์žฌ๋ฒŒ ๊ฐœํ˜ ์ •์ฑ…์˜ ์ฐจ์ด๋ฅผ ์™ธ๋ถ€์  ์š”์†Œ์™€ ๊ตญ๋‚ด ์ •์น˜์  ์š”์†Œ๋ฅผ ๋ชจ๋‘ ํฌํ•จํ•˜์—ฌ ์„ค๋ช…ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๋‹ด๋ก (discourse)์— ์ฃผ๋ชฉํ•  ํ•„์š”๊ฐ€ ์žˆ๋‹ค๋Š” ์ ์„ ํ™•์ธํ•˜์˜€๋‹ค. ํŠนํžˆ ๋‹ด๋ก ์˜ ํ˜•์„ฑ๊ณผ ์ „ํŒŒ์˜ ๊ณผ์ •์— ์ดˆ์ ์„ ๋งž์ถ”๊ธฐ ์œ„ํ•ด ์ •์น˜์  ์ฃผ๋ชฉ๋„(political salience)๋ผ๋Š” ๊ธฐ์ค€์„ ๋ถ„์„ํ‹€์— ๋„์ž…ํ•˜์˜€๋‹ค. ์ •์น˜์  ์ฃผ๋ชฉ๋„๊ฐ€ ๋†’์„ ๋•Œ ์œ ๊ถŒ์ž๋“ค์€ ๊ทธ ์ด์Šˆ์— ์ฃผ๋ชฉํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์ •์น˜์ธ๋“ค์ด ๊ทธ ์ด์Šˆ์— ๊ฐœ์ž…ํ•˜๋ ค๋Š” ๊ฐ•๋ ฅํ•œ ์œ ์ธ์„ ๊ฐ€์ง€๊ฒŒ ๋˜์–ด ์˜ํšŒ์˜ ์ž…๋ฒ• ๊ณผ์ •๊ณผ ๊ฐ™์€ ๊ณต์‹์  ์ œ๋„๋ฅผ ํ†ตํ•œ ์ •์น˜๊ณผ์ •์ด ๋‹ด๋ก  ํ˜•์„ฑ์— ํฌ๊ฒŒ ์˜ํ–ฅ์„ ๋ฏธ์น˜๊ฒŒ ๋œ๋‹ค. ๋ฐ˜๋ฉด ์ •์น˜์  ์ฃผ๋ชฉ๋„๊ฐ€ ๋‚ฎ์„ ๊ฒฝ์šฐ ์œ ๊ถŒ์ž์˜ ์ •์น˜์  ๊ด€์‹ฌ์ด ๋–จ์–ด์ง€๊ฒŒ ๋˜์–ด ์ •์น˜์ธ๋“ค์ด ๊ทธ ์ด์Šˆ์— ๊ฐœ์ž…ํ•˜๋ ค๋Š” ์œ ์ธ์ด ์ ๊ฒŒ ๋˜์–ด ๊ณต์‹์  ์ œ๋„๋ณด๋‹ค ๋น„๊ณต์‹์  ์ œ๋„๋ฅผ ํ†ตํ•œ ์ •์น˜๊ณผ์ •์ด ๋‹ด๋ก  ํ˜•์„ฑ์— ๋” ํฐ ์˜ํ–ฅ์„ ๋ฏธ์น˜๊ฒŒ ๋œ๋‹ค. ์ด๋ ‡๊ฒŒ ๋น„๊ณต์‹์  ์ œ๋„๊ฐ€ ํฐ ์˜ํ–ฅ๋ ฅ์„ ๊ฐ€์ง€๊ฒŒ ๋˜์—ˆ์„ ๋•Œ ๋…ธ๋™์กฐํ•ฉ์˜ ํž˜์ด ๊ฐ•ํ•œ ๊ฒฝ์šฐ ๊ธฐ์—…์ง€๋ฐฐ๊ตฌ์กฐ ๊ฐœํ˜ ๋‹ด๋ก ์ด ๊ฒฝ์˜์ž์˜ ์„ ํ˜ธ์™€ ๋…ธ๋™์ž์˜ ์„ ํ˜ธ๊ฐ€ ๋ชจ๋‘ ๋ฐ˜์˜๋˜์–ด ํ˜•์„ฑ๋˜์ง€๋งŒ, ๋…ธ๋™์กฐํ•ฉ์˜ ํž˜์ด ์•ฝํ•œ ๊ฒฝ์šฐ ์ „๋ฌธ๊ฐ€์ธ ๊ฒฝ์˜์ž์˜ ์„ ํ˜ธ๊ฐ€ ๊ฐ•๋ ฅํ•˜๊ฒŒ ๋ฐ˜์˜๋˜์–ด ํ˜•์„ฑ๋˜๋Š” ๊ฒฐ๊ณผ๊ฐ€ ๋‚˜ํƒ€๋‚˜๊ฒŒ ๋œ๋‹ค. ์ด์Šˆ๊ฐ€ ๋ณต์žกํ•˜๊ณ  ์–ด๋ ค์šด ๊ฒฝ์šฐ ์ •์น˜์  ์ฃผ๋ชฉ๋„๊ฐ€ ๋‚ฎ์€ ๊ฒฝํ–ฅ์„ ๋ณด์ด์ง€๋งŒ ๊ทธ๋Ÿฌํ•œ ์ด์Šˆ๋„ ์™ธํ™˜์œ„๊ธฐ์™€ ๊ฐ™์€ ์™ธ๋ถ€์  ์š”์ธ์ด ๋ฐœ์ƒํ•  ๊ฒฝ์šฐ ์ •์น˜์  ์ฃผ๋ชฉ๋„๊ฐ€ ๋†’์•„์งˆ ์ˆ˜ ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ถ„์„ํ‹€์— ๋”ฐ๋ผ ํ•œ๊ตญ ์žฌ๋ฒŒ์˜ ๊ธฐ์—…์ง€๋ฐฐ๊ตฌ์กฐ ๊ฐœํ˜์„ ์‚ดํŽด๋ณด๋ฉด ๊น€๋Œ€์ค‘ ์ •๋ถ€๋Š” ์™ธํ™˜์œ„๊ธฐ๋ผ๋Š” ์™ธ๋ถ€์  ์š”์ธ์œผ๋กœ ์ธํ•ด ์ •์น˜์  ์ฃผ๋ชฉ๋„๊ฐ€ ๋†’์•„์ ธ ๊ฐ•๋ ฅํ•œ ๊ฐœํ˜ ์ถ”์ง„์ด ๊ฐ€๋Šฅํ–ˆ๊ณ , ๋…ธ๋ฌดํ˜„ ์ •๋ถ€๋Š” ์™ธํ™˜์œ„๊ธฐ์˜ ๊ทน๋ณต์œผ๋กœ ๊ธฐ์—…์ง€๋ฐฐ๊ตฌ์กฐ ๊ฐœํ˜ ์ด์Šˆ์˜ ์ •์น˜์  ์ฃผ๋ชฉ๋„๊ฐ€ ๋‚ฎ์•„์ ธ ๊ฐœํ˜์˜ ์•ฝํ™”๊ฐ€ ๋‚˜ํƒ€๋‚ฌ๋‹ค๊ณ  ๋ณผ ์ˆ˜ ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ถ„์„ํ‹€์„ ๋ฐ”ํƒ•์œผ๋กœ ๊น€๋Œ€์ค‘ ์ •๋ถ€์™€ ๋…ธ๋ฌดํ˜„ ์ •๋ถ€์˜ ์žฌ๋ฒŒ ๊ฐœํ˜์„ ์ •๋ถ€์˜ ์žฌ๋ฒŒ ๊ฐœํ˜ ์ •์ฑ… ์ถ”์ง„ ๊ณผ์ •๊ณผ ๊ทธ์— ๋Œ€ํ•œ ์žฌ๋ฒŒ์˜ ๋Œ€์‘์„ ํ†ตํ•ด ์ข€ ๋” ๋ฉด๋ฐ€ํžˆ ์‚ดํŽด๋ณด๋ฉด ์žฌ๋ฒŒ ๊ฐœํ˜์— ๋Œ€ํ•œ ๋Œ€์ค‘์˜ ๊ด€์‹ฌ์ด๋‚˜ ์—ฌ๋ก ์˜ ํ๋ฆ„์ด ์žฌ๋ฒŒ ๊ฐœํ˜ ์ •์ฑ… ์ถ”์ง„์„ ๊ฐ•๋ ฅํ•˜๊ฒŒ ํ•  ์ˆ˜ ์žˆ๋Š๋ƒ์˜ ์—ฌ๋ถ€์™€ ๊ด€๋ จ๋œ๋‹ค๋Š” ๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋Œ€์ค‘์˜ ๊ด€์‹ฌ์ด๋‚˜ ์—ฌ๋ก ์˜ ํ๋ฆ„์€ ๋ถ„์„ํ‹€์—์„œ ์ œ์‹œํ•œ ์ •์น˜์  ์ฃผ๋ชฉ๋„๋ผ๋Š” ๋ณ€์ˆ˜๋กœ ๋งŒ๋“ค ์ˆ˜ ์žˆ๋‹ค. ๊น€๋Œ€์ค‘ ์ •๋ถ€์™€ ๋…ธ๋ฌดํ˜„ ์ •๋ถ€์‹œ๊ธฐ์— ์žฌ๋ฒŒ ๊ฐœํ˜์— ๋Œ€ํ•œ ์ •์น˜์  ์ฃผ๋ชฉ๋„๋Š” ์žฌ๋ฒŒ ๊ฐœํ˜์— ๋Œ€ํ•œ ์–ธ๋ก ๋ณด๋„์˜ ํšŸ์ˆ˜์™€ ๊ตญํšŒ์˜์› ์„ ๊ฑฐ์—์„œ์˜ ์ •๋‹น๋ณ„ ์žฌ๋ฒŒ ๊ฐœํ˜์— ๋Œ€ํ•œ ๊ณต์•ฝ์œผ๋กœ ์ธก์ •ํ•  ์ˆ˜ ์žˆ๋‹ค. ์žฌ๋ฒŒ ๊ฐœํ˜์— ๋Œ€ํ•œ ์–ธ๋ก ๋ณด๋„์˜ ํšŸ์ˆ˜๋Š” ๊น€๋Œ€์ค‘ ์ •๋ถ€์— ๋น„ํ•ด ๋…ธ๋ฌดํ˜„ ์ •๋ถ€์‹œ๊ธฐ์— TV์™€ ์‹ ๋ฌธ ๋ชจ๋‘ ๊ฐ์†Œํ•˜์˜€๋‹ค. ๊ตญํšŒ์˜์› ์„ ๊ฑฐ์—์„œ ์ •๋‹น๋ณ„ ์žฌ๋ฒŒ ๊ฐœํ˜์— ๋Œ€ํ•œ ๊ณต์•ฝ์€ ๊น€๋Œ€์ค‘ ์ •๋ถ€์‹œ๊ธฐ์— ์—ฌ๋‹น๊ณผ ์•ผ๋‹น์˜ ๊ณต์•ฝ์ด ๋šœ๋ ท์ด ๋Œ€๋น„๋˜์–ด ๊ฒฝ์Ÿํ•˜๋Š” ๋ชจ์Šต์„ ๋ณด์ด์ง€๋งŒ, ๋…ธ๋ฌดํ˜„ ์ •๋ถ€์‹œ๊ธฐ์—๋Š” ์—ฌ๋‹น๊ณผ ์•ผ๋‹น์˜ ๊ณต์•ฝ์ด ๊ฐ๋ก ์€ ๋‹ค๋ฅด์ง€๋งŒ ํฐ ํ‹€์—์„œ ์ˆ˜๋ ดํ•˜๋Š” ๋ชจ์Šต์„ ๋ณด์˜€๊ณ  ์‹ค์ œ ์„ ๊ฑฐ ๊ณผ์ •์—์„œ ํƒ„ํ•ต์ด ๋…ผ์ ์„ ์ง€๋ฐฐํ•จ์— ๋”ฐ๋ผ ๊ฒฝ์ œ์— ๋Œ€ํ•œ ์ด์Šˆ๊ฐ€ ์Ÿ์ ํ™”๋˜์ง€ ๋ชปํ•˜์˜€๋‹ค. ๋”ฐ๋ผ์„œ ๊น€๋Œ€์ค‘ ์ •๋ถ€์— ๋น„ํ•ด ๋…ธ๋ฌดํ˜„ ์ •๋ถ€์‹œ๊ธฐ์— ์ •์น˜์  ์ฃผ๋ชฉ๋„๊ฐ€ ๊ฐ์†Œํ•˜์˜€์Œ์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค. ์‹ค์ œ ๊น€๋Œ€์ค‘ ์ •๋ถ€์™€ ๋…ธ๋ฌดํ˜„ ์ •๋ถ€์‹œ๊ธฐ์— ์ผ์–ด๋‚ฌ๋˜ ์žฌ๋ฒŒ ๊ฐœํ˜์— ๋Œ€ํ•œ ๋‹ด๋ก ์˜ ํ˜•์„ฑ ๊ณผ์ •์„ ์‚ดํŽด๋ณด์•˜์„ ๋•Œ, ์ถœ์ž์ด์•ก์ œํ•œ์ œ์˜ ์‚ฌ๋ก€๋ฅผ ํ†ตํ•ด ๊น€๋Œ€์ค‘ ์ •๋ถ€์‹œ๊ธฐ ์žฌ๋ฒŒ ๊ฐœํ˜์— ๋Œ€ํ•œ ๋‹ด๋ก ์€ ์ž…๋ฒ•๊ณผ์ •์ด๋ผ๋Š” ๊ณต์‹์  ์ œ๋„๋ฅผ ํ†ตํ•ด ์œ ๊ถŒ์ž๋“ค์˜ ์ด์ต์ด ๋ฐ˜์˜๋˜์—ˆ๋‹ค๋Š” ๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค. ๋ฐ˜๋ฉด, ์ฆ๊ถŒ๊ด€๋ จ ์ง‘๋‹จ์†Œ์†ก๋ฒ•์˜ ์‚ฌ๋ก€๋ฅผ ํ†ตํ•ด ๋…ธ๋ฌดํ˜„ ์ •๋ถ€์‹œ๊ธฐ ์žฌ๋ฒŒ ๊ฐœํ˜์€ ์ž…๋ฒ•๊ณผ์ •์ด๋ผ๋Š” ๊ณต์‹์  ์ œ๋„๊ฐ€ ๋‹ด๋ก  ํ˜•์„ฑ์— ์˜ํ–ฅ์„ ๋ฏธ์น˜์ง€ ๋ชปํ–ˆ์Œ์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค. ๋…ธ๋ฌดํ˜„ ์ •๋ถ€์‹œ๊ธฐ์˜ ์žฌ๋ฒŒ ๊ฐœํ˜์— ๋Œ€ํ•œ ๋‹ด๋ก  ํ˜•์„ฑ์€ ๋น„๊ณต์‹์  ์ œ๋„์ธ ์žฌ๋ฒŒ์˜ ์ธ์ ๋„คํŠธ์›Œํฌ๋ฅผ ํ†ตํ•œ ๋กœ๋น„, ์žฌ๋ฒŒ ๊ณ„์—ด์‚ฌ์ธ ๊ฒฝ์ œ์—ฐ๊ตฌ์†Œ ๋ณด๊ณ ์„œ๋ฅผ ํ†ตํ•ด ๋น„๊ณต์‹์  ์ •์ฑ…๊ฐœ๋ฐœํŒ€์˜ ์˜์ œ ์„ค์ •์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ๊ฒƒ, ์–ธ๋ก  ๋ณด๋„ ๋‚ด์šฉ์— ์žฌ๋ฒŒ์˜ ๊ฒฝ์˜์ž์ธ ์žฌ๋ฒŒ ์ด์ˆ˜๊ฐ€ ์˜ํ–ฅ์„ ๋ฏธ์ณ ์ž์‹ ์˜ ์ด์ต์— ๋งž๋Š” ์–ธ๋ก ๋ณด๋„์˜ ํ‹€์„ ์งœ๋Š” ๊ฒƒ์„ ํ†ตํ•ด ์ด๋ฃจ์–ด์กŒ๋‹ค. ๋…ธ๋ฌดํ˜„ ์ •๋ถ€ ๋‹น์‹œ ๋…ธ๋™์กฐํ•ฉ์€ ๋…ธ๋™์‹œ์žฅ ์œ ์—ฐํ™”์™€ ๋น„์ •๊ทœ์ง๊ณผ ์ •๊ทœ์ง์˜ ๋…ธ๋™์‹œ์žฅ ๋ถ„ํ™”๋กœ ํž˜์ด ์•ฝํ™”๋˜์–ด ์žฌ๋ฒŒ ๊ฐœํ˜์— ๋Œ€ํ•œ ๋‹ด๋ก  ํ˜•์„ฑ์— ์˜ํ–ฅ๋ ฅ์„ ๋ฏธ์น˜์ง€ ๋ชปํ–ˆ๋‹ค. ๋”ฐ๋ผ์„œ ๋…ธ๋ฌดํ˜„ ์ •๋ถ€์‹œ๊ธฐ ์žฌ๋ฒŒ ๊ฐœํ˜ ๋‹ด๋ก  ํ˜•์„ฑ์— ์žฌ๋ฒŒ ์ด์ˆ˜๋งŒ์ด ๊ฐ•๋ ฅํ•œ ์˜ํ–ฅ๋ ฅ์„ ํ–‰์‚ฌํ–ˆ๊ธฐ ๋•Œ๋ฌธ์— ์‚ฌ์™ธ์ด์‚ฌ์ œ์™€ ๊ฐ™์€ ๊ฐœํ˜ ์กฐ์น˜๋Š” ๋ฐ›์•„๋“ค์ด์ง€๋งŒ ์ถœ์ž์ด์•ก์ œํ•œ์ œ๋‚˜ ์ฆ๊ถŒ์ง‘๋‹จ์†Œ์†ก์ œ์™€ ๊ฐ™์€ ์žฌ๋ฒŒ๋“ค์ด ์ž์‹ ์˜ ์ด์ต์— ์น˜๋ช…์ ์ด๋ผ๊ณ  ์ƒ๊ฐํ•˜๋Š” ๊ฐœํ˜ ์กฐ์น˜๋“ค์€ ์ œ๋Œ€๋กœ ์ถ”์ง„๋˜์ง€ ๋ชปํ•˜๊ณ  ์žฌ๋ฒŒ์˜ ์ž…์žฅ์ด ๋ฐ˜์˜๋œ ๊ฐœํ˜ ์ •์ฑ…๋“ค์ด ๋‚˜ํƒ€๋‚  ์ˆ˜๋ฐ–์— ์—†์—ˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ๋‹ค์Œ๊ณผ ๊ฐ™์€ ์ด๋ก ์  ํ•จ์˜์™€ ์ •์ฑ…์  ํ•จ์˜๋ฅผ ๊ฐ€์ง„๋‹ค. ๋จผ์ € ๋‹ด๋ก ๊ณผ ๊ด€๋ จํ•œ ๋…ผ์˜์—์„œ ๊ธฐ์กด ์—ฐ๊ตฌ๊ฐ€ ๋‹ด๋ก ์˜ ๋‚ด์šฉ์— ์ดˆ์ ์„ ๋งž์ถ”์—ˆ๋‹ค๋ฉด ๋ณธ ๋…ผ๋ฌธ์€ ๋‹ด๋ก ์˜ ํ˜•์„ฑ๊ณผ ์ „ํŒŒ์˜ ๊ณผ์ •์— ์ฃผ๋ชฉํ•˜์˜€๋‹ค๋Š” ์˜๋ฏธ๊ฐ€ ์žˆ๋‹ค. ๋˜ํ•œ ๊ธฐ์—…์ง€๋ฐฐ๊ตฌ์กฐ ๋…ผ์˜์—์„œ ๋ถ„์„ ๋Œ€์ƒ์„ ํ™•๋Œ€ํ•˜์˜€๋‹ค๋Š” ์˜์˜๊ฐ€ ์žˆ๋‹ค. ๊ธฐ์กด ๊ธฐ์—…์ง€๋ฐฐ๊ตฌ์กฐ ๋…ผ์˜๋Š” ์ผ๋ณธ์„ ํฌํ•จํ•œ ์„œ๊ตฌ ์„ ์ง„๊ตญ์˜ ๋ถ„์„์ด ์ฃผ๋ฅผ ์ด๋ฃจ์–ด ๋ถ„์„ํ‹€์„ ๋น„์„œ๊ตฌ ๊ฐœ๋ฐœ๋„์ƒ๊ตญ์— ์ ์šฉํ•˜๊ธฐ ์–ด๋ ค์› ๋‹ค. ์ •์น˜์  ์ฃผ๋ชฉ๋„์™€ ๋‹ด๋ก  ํ˜•์„ฑ์ด๋ผ๋Š” ๋ถ„์„ํ‹€์€ ๋น„์„œ๊ตฌ ๊ฐœ๋ฐœ๋„์ƒ๊ตญ์—๋„ ์ ์šฉ ๊ฐ€๋Šฅํ•˜๋‹ค. ์ •์ฑ…์  ํ•จ์˜๋กœ๋Š” ์ •์น˜์ธ๋“ค์˜ ์ •์น˜์  ์ฃผ๋ชฉ๋„๋ฅผ ๋†’์ด๊ธฐ ์œ„ํ•œ ๋…ธ๋ ฅ๊ณผ ๋…ธ๋™์กฐํ•ฉ์˜ ํž˜์„ ์ œ๋„์ ์œผ๋กœ ๊ฐ•ํ™”ํ•˜๋„๋ก ํ•˜๋Š” ๊ฒƒ์ด ์žฌ๋ฒŒ ๊ธฐ์—…์ง€๋ฐฐ๊ตฌ์กฐ ๊ฐœํ˜์˜ ์•ฝํ™”๋ฅผ ๋ง‰์„ ์ˆ˜ ์žˆ๋Š” ๊ธธ์ž„์„ ๋„์ถœํ•  ์ˆ˜ ์žˆ๋‹ค.โ… . ์„œ๋ก  1 1. ๋ฌธ์ œ์ œ๊ธฐ 1 2. ๋…ผ๋ฌธ์˜ ๊ตฌ์„ฑ 12 โ…ก. ๋ฌธํ—Œ ์—ฐ๊ตฌ 14 1. ์ง‘๊ถŒ ์„ธ๋ ฅ์˜ ํŠน์„ฑ(partisan approach) 15 2. ์ •์น˜์  ์—ฐํ•ฉ(coalitional approach) 17 3. ์ œ๋„๋“ค ๊ฐ„์˜ ์ƒํ˜ธ๋ณด์™„์„ฑ(institutional complementarity) 22 โ…ข. ๋ถ„์„ํ‹€ 26 1. ๋‹ด๋ก (discursive approach) 26 2. ์ •์น˜์  ์ฃผ๋ชฉ๋„(political salience)์™€ ๋‹ด๋ก  ํ˜•์„ฑ 29 3. ์—ฐ๊ตฌ ๊ฐ€์„ค 32 โ…ฃ. ๊น€๋Œ€์ค‘, ๋…ธ๋ฌดํ˜„ ์ •๋ถ€์˜ ์žฌ๋ฒŒ ๊ฐœํ˜ 35 1. ๊น€๋Œ€์ค‘ ์ •๋ถ€์˜ ์žฌ๋ฒŒ ๊ฐœํ˜ 35 (1) ์žฌ๋ฒŒ ๋ถ€์ฑ„๋น„์œจ ๊ฐ์ถ• 35 (2) ์žฌ๋ฒŒ์ง€๋ฐฐ๊ตฌ์กฐ ๊ฐœํ˜ 36 โ‘  ๊ณต์ •๊ฑฐ๋ž˜๊ทœ์ œ 38 โ‘ก ๋‚ด๋ถ€์ง€๋ฐฐ๊ตฌ์กฐ 39 2. ๋…ธ๋ฌดํ˜„ ์ •๋ถ€์˜ ์žฌ๋ฒŒ ๊ฐœํ˜ 41 (1) ์ถœ์ž์ด์•ก์ œํ•œ์ œ 44 (2) ์†Œ์•ก์ฃผ์ฃผ ๊ถŒ๋ฆฌ ๊ฐ•ํ™”: ์ฆ๊ถŒ์ง‘๋‹จ์†Œ์†ก์ œ 46 3. ์žฌ๋ฒŒ ๊ฐœํ˜ ์–‘์ƒ์˜ ์ฐจ์ด 47 4. ์žฌ๋ฒŒ ๊ฐœํ˜์— ๋Œ€ํ•œ ์ •์น˜์  ์ฃผ๋ชฉ๋„ ์ธก์ • 49 โ…ค. ์žฌ๋ฒŒ ๊ฐœํ˜์— ๋Œ€ํ•œ ๋‹ด๋ก  ํ˜•์„ฑ 59 1. ๊ณต์‹์  ์ œ๋„๋ฅผ ํ†ตํ•œ ์žฌ๋ฒŒ ๊ฐœํ˜ ๋‹ด๋ก  ํ˜•์„ฑ 59 (1) ๊น€๋Œ€์ค‘ ์ •๋ถ€์‹œ๊ธฐ 61 (2) ๋…ธ๋ฌดํ˜„ ์ •๋ถ€์‹œ๊ธฐ 63 2. ๋น„๊ณต์‹์  ์ œ๋„๋ฅผ ํ†ตํ•œ ์žฌ๋ฒŒ ๊ฐœํ˜ ๋‹ด๋ก  ํ˜•์„ฑ 66 (1) ์žฌ๋ฒŒ์˜ ๋น„๊ณต์‹์  ์ œ๋„๋ฅผ ํ†ตํ•œ ์˜ํ–ฅ๋ ฅ 66 โ‘  ๋กœ๋น„ 66 โ‘ก ๋น„๊ณต์‹์  ์ •์ฑ…๊ฐœ๋ฐœํŒ€(informal working group) 67 โ‘ข ์–ธ๋ก ๋ณด๋„ ํ‹€ ์งœ๊ธฐ(framing) 69 (2) ๋…ธ๋™์„ธ๋ ฅ์˜ ์˜ํ–ฅ๋ ฅ 69 โ…ฅ. ๊ฒฐ๋ก  71 1. ๋…ผ์˜์˜ ์š”์•ฝ 71 2. ๋…ผ์˜์˜ ํ•จ์˜ 75 (1) ์ด๋ก ์  ํ•จ์˜ 75 (2) ์ •์ฑ…์  ํ•จ์˜ 76 ์ฐธ๊ณ ๋ฌธํ—Œ 79 Abstract 88Maste

    Architectural Significance of Hybridity: Homi K. Bhabha's Hybridity and Alvar Aaltos Hybrid works

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ฑด์ถ•ํ•™๊ณผ, 2013. 2. ๋ฐฑ์ง„.๋ณธ ์—ฐ๊ตฌ๋Š” ํ˜ผ์„ฑ์„ฑ์˜ ๊ฐœ๋…์„ ๊ฑด์ถ• ์„ค๊ณ„๊ณผ์ •์—์„œ ๊ธ์ •์  ์š”์†Œ๋กœ ๋ถ„์„ํ•˜๊ณ ์ž ํ•œ๋‹ค. ํ˜ผ์„ฑ์„ฑ์ด ์–ด๋–ป๊ฒŒ ์ง„๋ถ€ํ•˜๊ณ  ์˜๋ฏธ๋ก ์ ์ธ ์ฐธ๊ณ ๋“ค์˜ ์กฐํ•ฉ์„ ์ดˆ์›”ํ•˜์—ฌ ๋‹ค๋ฅธ ์ง€ํ‰๋“ค์˜ ์œตํ•ฉ์„ ์œ ๋ฐœํ•˜๋Š”์ง€์™€ ๋‹ค๋ฅด๊ฑฐ๋‚˜ ํ˜น์€ ์ƒ๋ฐ˜๋˜๋Š” ๊ฒƒ๊ณผ์˜ ์ƒํ˜ธ์ž‘์šฉ์„ ์ˆ˜์šฉํ•˜๊ณ  ์ƒˆ๋กœ์šด ๊ฒƒ์˜ ํ•ฉ์„ฑ์„ ๋งŒ๋“ค์–ด๋‚ด๋Š” ํ˜„์ƒ์„ ๊ณ ์ฐฐํ•œ๋‹ค. ํƒˆ์‹๋ฏผ์ฃผ์˜ ํ˜ผ์„ฑ์ด๋ก ์˜ ๊ถŒ์œ„์ž์ธ ํ˜ธ๋ฏธ ๋ฐ”๋ฐ”(Homi K. Bhabha)์˜ ์ด๋ก ์„ ๊ณ ์ฐฐํ•˜๊ณ , ๊ทธ์˜ ์ด๋ก ์„ ๋ฐ”ํƒ•์œผ๋กœ ์‹๋ฏผ๊ฑด์ถ•์˜ ํ˜ผ์„ฑ์„ฑ์„ ์—ฐ๊ตฌํ•œ ์‚ฌ๋ก€๋ฅผ ๋ถ„์„ํ•œ๋‹ค. ๊ทธ ๊ฒฐ๊ณผ, ์ง€๊ธˆ๊นŒ์ง€ ์ฃผ๋กœ ๋…ผ์˜ ๋˜์–ด์˜จ ์‹๋ฏผ์ฃผ์˜ ๊ฑด์ถ•์— ํ•œ์ •๋œ ํ˜ผ์„ฑ์„ฑ์ด ์•„๋‹Œ, ๊ฑด์ถ• ์ „์ฒด์— ์ ์šฉ๋˜๋Š” ์ƒํ™ฉ์˜ ํ˜ผ์„ฑ์„ฑ ๊ฐœ๋…์„ ์ •๋ฆฝํ•œ๋‹ค. ์ด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๊ฑด์ถ• ์—ญ์‚ฌ์ด๋ก ์˜ ํ๋ฆ„์—์„œ ๋‚˜ํƒ€๋‚˜๋Š” ์ƒํ™ฉ์˜ ํ˜ผ์„ฑ์„ฑ์„ ์‚ดํŽด๋ณด๊ณ , ํŠนํžˆ ํ˜ผ์„ฑ์˜ ๊ฑด์ถ•๊ฐ€๋กœ ์ค‘์š”ํ•˜๊ฒŒ ์–ธ๊ธ‰๋˜์–ด์ง€๋Š” ์•Œ๋ฐ”์•Œํ† ์˜ ๊ธฐ์กด์—ฐ๊ตฌ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ํ•˜์—ฌ ํ˜ผ์„ฑ์„ฑ์˜ ํŠน์ง•์„ ๋งŽ์ด ๋ณด์—ฌ์ฃผ๋Š” ์•Œ๋ฐ” ์•Œํ† ์˜ ๊ฑด์ถ•์„ ์—ฐ๊ตฌ๋Œ€์ƒ์œผ๋กœ ์‚ผ๋Š”๋‹ค. ๊ธฐ์กด ์ด๋ก ๊ฐ€๋“ค์˜ ๋ถ„์„ ํ‹€๊ณผ ์œ ์‚ฌํ•˜์ง€๋งŒ, ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ƒํ™ฉ์˜ ํ˜ผ์„ฑ์„ฑ์„ ๊ตฌํ˜„ํ•˜๋Š” ์ „๋žต์œผ๋กœ์จ์˜ ํ˜•ํƒœ, ์žฌ๋ฃŒ, ๊ตฌ์กฐ์˜ ํ˜ผ์„ฑ์„ ๋ถ„์„ํ•˜๊ณ ์ž ํ•œ๋‹ค. ์ด๋ฅผ ๊ตฌ์ฒดํ™”์‹œํ‚ค๊ธฐ ์œ„ํ•ด, ์•Œ๋ฐ” ์•Œํ† (Alvar Aalto)์˜ ์ž‘ํ’ˆ์„ ๋„ค ๊ฐ€์ง€ ๋ถ€๋ฅ˜๋กœ ๋‚˜๋ˆ„์–ด ์–ด๋– ํ•œ ํŠน์ง•์ด ๋“œ๋Ÿฌ๋‚˜๋Š” ํ˜ผ์„ฑ์„ฑ์„ ๊ฐ€์ง€๊ณ  ์žˆ๋Š”์ง€ ๋ถ„์„ํ•œ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์•Œํ†  ์ž‘ํ’ˆ์—์„œ ์ƒํ™ฉ์˜ ํ˜ผ์„ฑ์„ฑ์ด ์–ด๋– ํ•œ ๊ด€๊ณ„๋ฅผ ๊ฐ€์ง€๋Š” ์ฐจ์ด๋“ค์˜ ์ƒํ˜ธ์ž‘์šฉ์œผ๋กœ ๋‚˜ํƒ€๋‚˜๋Š”์ง€ ๊ณต๊ฐ„์  ์„ฑ๊ฒฉ์„ ๊ทœ๋ช…ํ•˜๊ณ , ์ด๊ฒƒ์ด ์–ด๋– ํ•œ ๊ฑด์ถ•์  ์˜๋ฏธ๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ๋Š”์ง€ ๋ฐํ˜€๋‚ธ๋‹ค.์ œ 1 ์žฅ ์„œ๋ก  1 1.1. ์—ฐ๊ตฌ์˜ ๋ฐฐ๊ฒฝ ๋ฐ ๋ชฉ์  2 1.2. ์—ฐ๊ตฌ์˜ ๋ฐฉ๋ฒ• ๋ฐ ๋ฒ”์œ„ 4 ์ œ 2 ์žฅ ํ˜ผ์„ฑ์„ฑ(Hybridity)์— ๋Œ€ํ•œ ๊ณ ์ฐฐ 6 2.1. ํ˜ผ์„ฑ์— ๋Œ€ํ•œ ๊ณ ์ฐฐ 7 2.1.1. ํ˜ผ์„ฑ(Hybrid)์— ๋Œ€ํ•œ ๊ณ ์ฐฐ 7 2.1.2. ํ˜ผ์„ฑ ์ด๋ก ์—์„œ์˜ ํ˜ธ๋ฏธ ๋ฐ”๋ฐ” 9 2.2. ํ˜ธ๋ฏธ ๋ฐ”๋ฐ”(Homi K. Bhabha)์˜ ํ˜ผ์„ฑ์„ฑ 11 2.2.1. ํ˜ธ๋ฏธ ๋ฐ”๋ฐ”์˜ ํ˜ผ์„ฑ์„ฑ(Hybridity)์ด๋ก  11 2.2.2. ํƒˆ์‹๋ฏผ์ฃผ์˜(Post-colonialism)์™€ ํ˜ผ์„ฑ์„ฑ 15 2.2.3. ๋ฐ”๋ฐ”์˜ ํ˜ผ์„ฑ์„ฑ ์ด๋ก ์˜ ๋ณ€์ฆ๋ฒ•์  ์˜๋ฏธ 18 2.3. ๋ฐ”๋ฐ”์˜ ํ˜ผ์„ฑ์„ฑ ์ด๋ก ๊ณผ ๊ฑด์ถ• 22 2.3.1. ๋ฐ”๋ฐ”์˜ ํ˜ผ์„ฑ์„ฑ ์ด๋ก ์˜ ๊ฑด์ถ•์  ์ ์šฉ 22 2.3.2. ์•„๋ฒจ: ๋ง๋ ˆ์ด์‹œ์•„ ์‹๋ฏผ๊ฑด์ถ•๊ณผ ์–‘์‹์˜ ํ˜ผํ•ฉ 22 2.3.3. ๋ชจํ†ค: ๋ฐ•๋žŒํšŒ ๊ฑด์ถ•๊ณผ ์ •์น˜์  ์˜ํ–ฅ 30 2.3.4. ์ƒํ™ฉ์˜ ํ˜ผ์„ฑ์„ฑ์œผ๋กœ์˜ ๊ฑด์ถ• 33 ์ œ 3 ์žฅ ์ƒํ™ฉ์˜ ํ˜ผ์„ฑ์„ฑ๊ณผ ๊ฑด์ถ•๊ฐ€ ์•Œ๋ฐ” ์•Œํ†  42 3.1. ๊ฑด์ถ•์—ญ์‚ฌ์—์„œ์˜ ์ƒํ™ฉ์˜ ํ˜ผ์„ฑ์„ฑ 43 3.1.1. ๊ทผ๋Œ€ ์ด์ „ 43 3.1.2. ๊ทผโ€คํ˜„๋Œ€ 50 3.1.3. ์†Œ๊ฒฐ: ์•Œ๋ฐ” ์•Œํ† ์— ์ฃผ๋ชฉํ•˜๋Š” ์ด์œ  53 3.2. ๊ธฐ์กด์˜ ์•Œ๋ฐ” ์•Œํ† ์— ๋Œ€ํ•œ ํ˜ผ์„ฑ์„ฑ ์—ฐ๊ตฌ 57 3.2.1. ๋กœ๋ฒ„ํŠธ ๋ฒค์ธ„๋ฆฌ๊ฐ€ ๋ณธ ์•Œ๋ฐ”์•Œํ†  57 3.2.2. ์ผ€๋„ค์Šค ํ”„๋žจํŠผ์ด ๋ณธ ์•Œ๋ฐ”์•Œํ†  60 3.2.3. ๊ธฐ์กด ์•Œ๋ฐ” ์•Œํ†  ์—ฐ๊ตฌ์˜ ํ•œ๊ณ„ 62 3.3. ์•Œ๋ฐ” ์•Œํ†  ๊ฑด์ถ•์˜ ํ…Œ๋งˆ์™€ ๋ถ„์„๋ฐฉ๋ฒ•๋ก  64 3.3.1. ์•Œ๋ฐ” ์•Œํ†  ๊ฑด์ถ•์˜ ํ…Œ๋งˆ 64 3.3.2. ์•Œ๋ฐ” ์•Œํ†  ๊ฑด์ถ•์˜ ๋ถ„์„๋ฐฉ๋ฒ•๋ก  66 ์ œ 4 ์žฅ ์ƒํ™ฉ์˜ ํ˜ผ์„ฑ์„ฑ์œผ๋กœ์จ์˜ ์•Œ๋ฐ” ์•Œํ† ์˜ ๊ฑด์ถ• 69 4.1. ์ฐจ์ด์˜ ๊ตํ™˜ 70 4.1.1. Church in Vuoksenniska 70 4.1.2. Church and Parish Community Center in Riola 74 4.1.3. ์ปค๋ฎค๋‹ˆํ‹ฐ์™€ ์™ธ๋ถ€๊ณต๊ฐ„ 75 4.2. ์ฐจ์ด์˜ ๊ณต์กด 77 4.1.1. Municipal Library in Seinajoki 77 4.1.2. Library in Rovaniemi 78 4.1.3. ๊ณต๊ฐ„์˜ ์ˆ˜์ง์ ยท์ˆ˜ํ‰์  ํ™•์žฅ 79 4.3. ์ฐจ์ด์˜ ๋ณ‘์น˜ 80 4.2.1. Architect's Summer House, Muuratsalo 80 4.2.2. Villa Mairea in Noormarkku 84 4.2.3. ๋‹ค์–‘ํ•œ ์„ฑ๊ฒฉ์˜ ๊ณต๊ฐ„์„ ์•„์šฐ๋ฅด๋Š” ์™ธ๋ถ€๊ณต๊ฐ„ 91 4.4. ์ฐจ์ด์˜ ์—ฎ์Œ 93 4.4.1. Cultural Center in Wolfsbug 93 4.4.2. Town Hall in Marl 94 4.4.3. ๋‹ค์–‘ํ•œ ์ธต์œ„์˜ ์ค‘์‹ฌ 95 4.5. ์†Œ๊ฒฐ 97 ์ œ 5 ์žฅ ๊ฒฐ๋ก  99 ์ฐธ๊ณ ๋ฌธํ—Œ 102 Abstract 106Maste

    Gustatory receptors required for avoiding the insecticide L-canavanine

    Get PDF
    Insect survival depends on contact chemosensation to sense and avoid consuming plant-derived insecticides, such as L-canavanine. Members of a family of โˆผ60 gustatory receptors (GRs) comprise the main peripheral receptors responsible for taste sensation in Drosophila. However, the roles of most Drosophila GRs are unknown. In addition to GRs, a G protein-coupled receptor, DmXR, has been reported to be required for detecting L-canavanine. Here, we showed that GRs are essential for responding to L-canavanine and that flies missing DmXR displayed normal L-canavanine avoidance and L-canavanine-evoked action potentials. Mutations disrupting either Gr8a or Gr66a resulted in an inability to detect L-canavanine. We found that L-canavanine stimulated action potentials in S-type sensilla, which were where Gr8a and Gr66a were both expressed, but not in Gr66a-expressing sensilla that did not express Gr8a. L-canavanine-induced action potentials were also abolished in the Gr8a and Gr66a mutant animals. Gr8a was narrowly required for responding to L-canavanine, in contrast to Gr66a, which was broadly required for responding to other noxious tastants. Our data suggest that GR8a and GR66a are subunits of an L-canavanine receptor and that GR8a contributes to the specificity for L-canavanine.ope

    A study on multimodal elements for the flow of digital reading based on the reading process

    Get PDF
    ๋””์ง€ํ„ธํ™˜๊ฒฝ์—์„œ ๋…์„œ์˜ ๊ฐœ๋…์ด ํ™•์žฅ๋˜๋ฉด์„œ ๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ๋ฆฌํ‹ฐ์˜ ํŠน์„ฑ์ด ๊ฐ•์กฐ๋˜๊ณ  ์ฝ๊ธฐ์˜ ๊ณผ์ •๋„ ๋ณต์žกํ•˜๊ณ  ๋‹ค์–‘ํ•ด์กŒ๋‹ค. ๋”ฐ๋ผ์„œ ๋””์ง€ํ„ธ๋ฆฌ๋”ฉ์€ ์ฝ๊ธฐ์˜ ์ „ ๊ณผ์ •์ด ๋ง‰ํž˜์—†์ด ์ด๋ฃจ์–ด์งˆ ๋•Œ ๋ชฐ์ž…๊ฐ์ด ๋‚˜ํƒ€๋‚œ๋‹ค๊ณ  ๊ฐ€์ •ํ•˜์˜€๋‹ค. ๋ฌธํ—Œ์—ฐ๊ตฌ์—์„œ ๋””์ง€ํ„ธ๋ฆฌ๋”ฉ์€ ์•„๋‚ ๋กœ๊ทธ๋ฆฌ๋”ฉ์˜ ํŠน์„ฑ์ธ ์ƒ์ƒ์— ์˜ํ•ด ์ฐฝ์กฐ๋œ ๊ฐ€์ƒ์˜ ์„ธ๊ณ„์—์„œ ์˜ค๋Š” ์ธ์ง€์  ๋ชฐ๋‘์™€ ๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ๋ฆฌํ‹ฐ ํŠน์„ฑ์ธ ๊ธฐ์ˆ ์  ํฅ๋ฏธ์™€ ๋™๊ธฐ์™€ ๊ด€๋ จ๋œ ์ •์„œ์  ๋ชฐ๋‘, ๋…์ž๋“ค์˜ ๊ด€์—ฌ๋ฅผ ํ†ตํ•œ ์ฐธ์—ฌ์  ๋ชฐ๋‘๊ฐ€ ์„œ๋กœ ๊ต์ฐจํ•˜๋ฉด์„œ ๋ชฐ์ž…(flow)์ด ์ด๋ฃจ ์–ด์ง„๋‹ค. ๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ๋ฆฌํ‹ฐ์˜ ํŠน์„ฑ์€ ์‚ฌ์šฉ์„ฑ, ์ธ์ง€์„ฑ, ์œ ์šฉ์„ฑ์œผ๋กœ ์ •์˜๋˜๊ณ  ๋””์ง€ํ„ธ๋ฆฌ๋”ฉ์˜ ๊ณผ์ •์€ ์ ‘๊ทผ, ํŒ๋‹จ, ์ˆ˜์ง‘, ์ดํ•ด, ๊ณต์œ , ์ฐฝ์กฐ์˜ 6๋‹จ๊ณ„๋กœ ์ถ”์ถœ์ด ๋˜์—ˆ๋‹ค. ์‚ฌ๋ก€์กฐ์‚ฌ์—์„œ ์ฝ๊ธฐ ๊ฐ ๋‹จ๊ณ„๋ฅผ ๋Œ€ํ‘œํ•˜๋Š” ์•„์ดํŒจ๋“œ์šฉ ์•ฑ์„ ์„ ์ •ํ•˜์—ฌ google(์ ‘๊ทผ), goodreads(ํŒ๋‹จ,์ดํ•ด), instapaper(์ˆ˜์ง‘,์ดํ•ด), flipboard(์ดํ•ด,๊ณต์œ ), youtube(์ดํ•ด, ๊ณต์œ ), evernote(์ฐฝ์กฐ)๋ฅผ ๋ถ„์„ํ•˜์—ฌ ๊ฐ ๋‹จ๊ณ„์—์„œ ์‚ฌ์šฉ๋˜๊ณ  ์žˆ๋Š” ๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ ์š”์†Œ๋ฅผ ์ถ”์ถœํ•˜๊ณ  ๋ชฐ์ž…๊ฐ์˜ ์œ ํ˜•์„ ๋งค์น˜ํ•˜์˜€๋‹ค. ์„ค๋ฌธ์กฐ์‚ฌ์—์„œ ์ง€์‹์œผ๋กœ์„œ ๋…ผ๋ฌธ๊ณผ ์ •๋ณด๋กœ์„œ ๋‰ด์Šค์˜ ์ฝ๊ธฐ ๋‹จ๊ณ„์™€ ๋‹จ๊ณ„๋ณ„ ์ฃผ์š” ๊ณ ๋ ค ์š”์†Œ๋“ค์˜ ์ฐจ์ด์ ์„ ๋ฐํ˜€๋ณด์•˜๋‹ค.As the concept of reading extends in digital environment, multimodality becomes important and the reading steps become diverse and complex. We claim that flow occurs when users go through the whole reading steps seamlessly. We find out that flow consists of cognitive immersion from the virtual world created by imagination same to analog reading, affective immersion from technological attraction, and engaged immersion such as participation. This paper defines three characteristics of multimodality; usability, cognition, and effectiveness and six steps of the digital reading; approach, judge, collect, comprehension, share, and create. In case study, we extract the multimodal elements from the ipad apps which represent each reading step; google, goodreads, instapaper, flipboard, youtube, and evernote and match the types of immersion to each step. We found from a survey the difference between journal papers and news articles in the reading process and multimodal elements of each step.OAIID:oai:osos.snu.ac.kr:snu2013-01/104/0000025799/2SEQ:2PERF_CD:SNU2013-01EVAL_ITEM_CD:104USER_ID:0000025799ADJUST_YN:NEMP_ID:A075458DEPT_CD:611CITE_RATE:0FILENAME:๋””์ง€ํ„ธํ™˜๊ฒฝ์—์„œ_์ฝ๊ธฐ_๋‹จ๊ณ„์—_๋”ฐ๋ฅธ_๋ชฐ์ž…๊ฐ_ํ–ฅ์ƒ์„_์œ„ํ•œ_๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ๋ฆฌํ‹ฐ_์—ฐ๊ตฌ.pdfDEPT_NM:๋””์ž์ธํ•™๋ถ€EMAIL:[email protected]:

    A Study on a Digital Reading Ecosystem based on Content for Flow Improvement

    Get PDF
    ๋ฐฐ๊ฒฝ : ๋””์ง€ํ„ธํ™˜๊ฒฝ์—์„œ ๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ๋ฆฌํ‹ฐ์˜ ํŠน์„ฑ์ด ๊ฐ•์กฐ๋จ์— ๋”ฐ๋ผ ์ฝ๊ธฐ๊ฒฝํ—˜์˜ ๊ณผ์ •์ด ๋‹ค์–‘ํ•ด์กŒ๋‹ค. ๊ทธ๋กœ ์ธํ•ด ์ฝ๊ธฐ์˜ ๊ณผ์ •์„ ๋ณต์žกํ•˜๊ฒŒ ๋Š๋ผ๊ธฐ๋„ ํ•˜๋ฉฐ ๋ชฐ์ž…์ด ์–ด๋ ค์›Œ์ง€๊ธฐ๋„ ํ•œ๋‹ค. ๋””์ง€ํ„ธ ๋ฆฌ๋”ฉ์— ์žˆ์–ด์„œ ๋ชฐ์ž…๊ฐ์€ ์ฝ๊ธฐ์˜ ์ „ ๊ณผ์ •์ด ๋ง‰ํž˜์—†์ด ์ด๋ฃจ์–ด์งˆ ๋•Œ ๋‚˜ํƒ€๋‚œ๋‹ค๊ณ  ๊ฐ€์ •ํ•˜์˜€๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ฝ˜ํ…์ธ ์— ๋”ฐ๋ผ ๋‹ฌ๋ผ์ง€๋Š” ์ฝ๊ธฐ๋‹จ๊ณ„์™€ ๊ฐ ๋‹จ๊ณ„์—์„œ ์š”๊ตฌ๋˜๋Š” ๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ ์š”์†Œ๋ฅผ ๋ฐํ˜€ ๋””์ง€ํ„ธ ๋ฆฌ๋”ฉ ์—์ฝ”์‹œ์Šคํ…œ ์ œ์•ˆ์„ ๋ชฉ์ ์œผ๋กœ ํ•œ๋‹ค. ๋ฐฉ๋ฒ• : ๋ณธ ๋…ผ๋ฌธ์€ ๋ฌธํ—Œ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด ๋””์ง€ํ„ธ ๋ฆฌ๋”ฉ์˜ ๋ชฐ์ž…๊ฐ์— ๋Œ€ํ•ด์„œ ์ •์˜ํ•˜๊ณ  ๋””์ง€ํ„ธ ๋ฆฌ๋”ฉ์˜ ๋‹จ๊ณ„ ์š”์†Œ๋ฅผ ์ถ”์ถœํ•˜์˜€๋‹ค. ์„ค๋ฌธ์กฐ์‚ฌ์—์„œ๋Š” ๋…ผ๋ฌธ๊ณผ ๋‰ด์Šค ๋‘ ์ฝ˜ํ…์ธ ๋ฅผ ๋น„๊ตํ•˜์—ฌ ์ฝ๊ธฐ๋‹จ๊ณ„์™€ ๋ฉ€ํ‹ฐ๋ชจ๋‹ฌ ์š”์†Œ๋“ค์˜ ์ฐจ์ด๋ฅผ ๋ฐํ˜€ ๋””์ง€ํ„ธ ๋ฆฌ๋”ฉ ์—์ฝ”์‹œ์Šคํ…œ์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๊ฒฐ๊ณผ : ๋ฌธํ—Œ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด ๋””์ง€ํ„ธ ๋ฆฌ๋”ฉ์€ ์ธ์ง€์ , ์ •์„œ์ , ์ฐธ์—ฌ์  ๋ชฐ๋‘๊ฐ€ ์„œ๋กœ ๊ต์ฐจํ•˜๋ฉด์„œ ๋ชฐ์ž…(flow)์ด ์ด๋ฃจ์–ด์ง€๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋˜ํ•œ ๋””์ง€ํ„ธ ๋ฆฌ๋”ฉ์˜ ๊ณผ์ •์„ ์ด๋ฃจ๋Š” ํ•ญ๋ชฉ์œผ๋กœ ์ ‘๊ทผ, ํŒ๋‹จ, ์ˆ˜์ง‘, ์ดํ•ด, ๊ณต์œ , ์ฐฝ์กฐ์˜ 6๊ฐ€์ง€ํ•ญ๋ชฉ์ด ์ถ”์ถœ ๋˜์—ˆ๋‹ค. ์„ค๋ฌธ์กฐ์‚ฌ์—์„œ ๋…ผ๋ฌธ๊ณผ ๋‰ด์Šค์˜ ์ฝ๊ธฐ๋‹จ๊ณ„์™€ ๋‹จ๊ณ„๋ณ„ ๊ณ ๋ ค ์š”์†Œ๋“ค์„ ๋น„๊ตํ•œ ๊ฒฐ๊ณผ ๋‰ด์Šค๋Š” ์ ‘๊ทผ, ํŒ๋‹จ, ์ดํ•ด, ์ˆ˜์ง‘, ๊ณต์œ  ์ˆœ์œผ๋กœ ๋…ผ๋ฌธ์€ ์ ‘๊ทผ, ํŒ๋‹จ ๋˜๋Š” ์ˆ˜์ง‘, ์ดํ•ด, ์ฐฝ์กฐ๋กœ ์‘๋‹ต์ด ๋‚˜์™”๋‹ค. ๋…ผ๋ฌธ์˜ ๊ฒฝ์šฐ ์ฃผ๋กœ ๊ฒ€์ƒ‰๊ณผ ๋ถ๋งˆํฌ, ๋‰ด์Šค๋Š” ๊ฒ€์ƒ‰๊ณผ ๊ณต์œ ๋œ ๊ธ€์„ ํ†ตํ•ด ์ฝ˜ํ…์ธ ์— ์ ‘๊ทผํ•˜๊ณ  ์ดํ•ด๋‹จ๊ณ„์—์„œ๋Š” ๋‘ ์ฝ˜ํ…์ธ ๋ชจ๋‘ ๋น ๋ฅธ ์ ‘๊ทผ์ด ๊ฐ€์žฅ ์ค‘์š”ํ•˜๊ณ  ๊ทธ ๋‹ค์Œ์œผ๋กœ ๋…ผ๋ฌธ์€ ํ‘œํ˜„๋„๊ตฌ, ์ข…์ด๋กœ ์ฝ๊ธฐ์™€ ์œ ์‚ฌํ•œ ๊ฒฝํ—˜์œผ๋กœ ์‘๋‹ตํ•˜์˜€๊ณ  ๋‰ด์Šค์˜ ๊ฒฝ์šฐ SNSํ†ตํ•œ ์†Œํ†ต๊ณผ ๋ฐฐ๊ฒฝ์ง€์‹์ด ๋ชฐ์ž…์— ๋„์›€์„ ์ค€๋‹ค๊ณ  ๋‹ตํ•˜์˜€๋‹ค. ๊ฒฐ๋ก  : ์ด๋Ÿฌํ•œ ๊ฒฐ๊ณผ๋ฅผ ํ† ๋Œ€๋กœ ๋””์ง€ํ„ธ ๋ฆฌ๋”ฉ์—์„œ ์ฝ˜ํ…์ธ ์˜ ์ƒ์‚ฐ๊ณผ ์†Œ๋น„๊ฐ€ ํ•˜๋‚˜์˜ ์•ฑ์—์„œ ์ด๋ฃจ์–ด์ง์œผ๋กœ์„œ ๋Š๊น€ ์—†๋Š” ๊ฒฝํ—˜์„ ์œ„ํ•œ ๋””์ง€ํ„ธ ๋ฆฌ๋”ฉ ์—์ฝ”์‹œ์Šคํ…œ์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ๋””์ง€ํ„ธ ๋ฆฌ๋”ฉ์˜ ๋ชฐ์ž…๊ฐ์„ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ๋…์„œ์•ฑ์„ ๋””์ž์ธํ•˜๊ธฐ์œ„ํ•ด ๊ธฐ์ดˆ์ž๋ฃŒ๋กœ์„œ ํ™œ์šฉ๊ฐ€์น˜๊ฐ€ ์žˆ์„ ๊ฒƒ์ด๋ผ ๊ธฐ๋Œ€ํ•œ๋‹ค.Background : As the concept and behavior of reading is augmented in the digital environment, the importance of multi-modality becomes apparent while reading steps grow increasingly diverse and complex. This paper claims that Flow occurs when users move through all of the reading steps seamlessly. In order to improve the Flow of digital reading, we aim to discover and examine the specific reading stages and accompanying multimodal elements supporting each stage depending on the content type and suggest a digital reading ecosystem to promote and realize seamless reading for the achievement of Flow. Methods : In this paper, we conducted a literature review and survey. The literature review was focused on the act of digital reading, multi-modality, Flow, and the derived reading stages. The survey investigated the discrepancies between a newspapers and a research papers reading stages and their multimodal elements. Based on the results we proposed a digital reading ecosystem. Results : Following the literature review, we discovered that digital reading consists of three types of immersion: cognitive immersion created by the readers imagination, affective immersion that is related to interest and motivation, and participatory immersion that relies on the readers engagement. We extracted six reading stages of digital reading: approaching, judging, collecting, comprehending, sharing and creating. The results reveal differences between journal papers and news articles mainly in the reading process and multimodal elements of each stage. The process of journal papers involves the order of approaching, judging & collecting, comprehending and sharing. The process of news articles involves the order of approaching, judging, comprehending, collecting, sharing and creating. In terms of immersion, fast access is the most important factor for both contents. Secondly, reproducing the experience of reading from printed text, and expression tools, are critical elements for journal papers, communications via SNS, and related information are observed as the important elements for news articles. Conclusion : Based on the results, we propose a digital reading ecosystem, which aids in realizing the seamless reading experience. We believe that this study provides useful insights in designing reading apps that encourage Flow in digital reading for knowledge acquisition.OAIID:oai:osos.snu.ac.kr:snu2013-01/102/0000025799/2SEQ:2PERF_CD:SNU2013-01EVAL_ITEM_CD:102USER_ID:0000025799ADJUST_YN:NEMP_ID:A075458DEPT_CD:611CITE_RATE:0FILENAME:์ฒจ๋ถ€๋œ ๋‚ด์—ญ์ด ์—†์Šต๋‹ˆ๋‹ค.DEPT_NM:๋””์ž์ธํ•™๋ถ€EMAIL:[email protected]_YN:NCONFIRM:

    Mechanism of ATP transport into the rat liver endoplasmic reticulum

    No full text
    Thesis (master`s)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :ํ™”ํ•™๊ณผ ์ƒํ™”ํ•™์ „๊ณต,1996.Maste

    ์•Œ๋ฃจ๋ฏธ๋Š„ ๋ ˆ์ด์ € ์šฉ์ ‘๋ถ€์˜ ๊ณ ์˜จ๊ท ์—ด ๊ฑฐ๋™์— ๋Œ€ํ•œ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์žฌ๋ฃŒ๊ณตํ•™๋ถ€(ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ์žฌ๋ฃŒ), 2018. 8. ํ•œํฅ๋‚จ.The laser was first introduced into the microelectronics industry in the late 1960s for sealing electronic packages and thin-wire connections. At present, laser welding is a proven joining technique in the automotive, metals (parts supply), shipyard, microelectronics, packaging, and aerospace industries. A laser has a high-power density heat source. Therefore, laser welding is recognized as an advanced process to join materials with a laser beam of high-power, high-energy density. Laser welding promising joining technology with high quality, high precision, high performance, high speed, good flexibility and low distortion. Consequently, application of laser welding is increasing with the development of novel laser apparatuses and joining processes. On the other hand, the development and commercialization of electric cars and hybrid cars, the application of aluminum to car body is gradually expanding. However, solidification cracking is frequently observed in aluminum welds. The low ductility of a semi-solid in the mushy zone and the high solidification shrinkage of aluminum alloys both increase hot cracking susceptibility. Solidification cracking is initiated by complex interactions between metallurgical and mechanical factors not by one factor. During laser welding, this can be diminished by improving chemical composition, refining solidification structure, optimizing laser pulsing parameters, and/or reducing thermal strains. This is very important that deep understanding for the affecting factors to suppress the hot cracking propagation during laser welding, Since the changing of chemical composition by adding a filler wire is not practical for the laser welding, the effects of thermal cycle and residual stress of the welds have to be considered more seriously. Various laser welding process was selected to change the thermal cycle. Also, these effects on microstructural and mechanical properties were investigated, too. Therefore, the complex physics during laser welding depending on penetration depth, the finite element method based on the thermal conduction was conducted for the simulation. Microstructural evolution highly related with thermal cycle resulted from temperature gradient and solidification rate. According to the welding parameters, the width of equiaxed region was varied and the direction of grain growth was fluctuated. Firstly, the microstructural change in the laser welds of Al 6014 alloy is analyzed. High-quality, defect-free welds are successfully produced by ARM laser which can be changed the beam profile freely. An equiaxed structure was formed at the center of the welds, and the equiaxed region compared with fusion zone width was increased as increasing of welding speed. Hot cracking susceptibility was decreased as increasing of equiaxed fraction per unit area. It means that the microstructure formation of the welds affects the hot cracking propagation. Molten pool size and shape directly influence hot cracking susceptibility. To evaluate the influence of oscillation parameters, laser beam oscillation welding was performed with different beam patterns, widths, and frequencies. The behavior of hot cracking propagation was analyzed by high-speed camera and electron backscatter diffraction. The behavior of crack propagation was observed to be highly correlated with the microstructural evolution of the fusion zone. For an oscillation with an infinite-shaped scanning pattern at 100 Hz and 3.5 m/min welding speed, the bead width, solidification microstructure, and the width of the equiaxed zone at the center of fusion were fluctuating. Furthermore, the equiaxed and columnar regions alternated periodically, which could reduce solidification cracking susceptibility. This originated from the sinuous movement of the laser beam along the longitudinal direction. Consequently, crack propagation was hindered by formation of solidification morphology. Residual stress at the welds is highly related with the bead appearance. When penetration mode changed from full to partial penetration, length of hot cracking was reduced. To analyze the influence of penetration mode, bead shape factor was analyzed and thermo-mechanical model was developed coupled with the convection heat transfer model. Heat input subjected to the workpiece would affect residual stress behavior during solidification. The strong stress was acted at the bottom place, and it is fairly well agreed with experimental results. From the results, it is confirmed that stress distribution resulted from variation of penetration mode of the welds affects the hot cracking propagation. From this study, the effects of thermal cycle and residual stress on hot cracking susceptibility, which has not been clear up to now, is described well. Experimental results and the developed model lead to a clearer understanding about hot cracking propagation during laser welding of aluminum alloy sensitive to hot cracking. These results can be used beneficially to arrange an alternative methodology to avoid hot cracking.Chapter 1 Introduction 1 1.1 Growth of the lightweight materials application in automotive industry 1 1.2 Laser welding: joining techniqure using low heat input by high energy density 3 1.2.1 Development of laser welding technology 4 1.2.2 Comparison between keyhole and conduction laser welding 5 1.3 Thesis motivations: clear understanding about hot crack propagation during laser welding 7 1.4 References 10 Chapter 2 Literature review 14 2.1 An overview of hot crack formation models 14 2.2 Thermomechanics in weld pool vicinity 15 2.3 An overview of cracking test method with self-restraint 20 2.4 References 22 Chapter 3 Analysis of hot cracking susceptibility according to thermal cycle induced by laser welding 24 3.1 Analysis of hot cracking susceptibility according to thermal cycle induced by laser welding I (ARM laser) 24 3.1.1 Introduction 24 3.1.2 Experimental procedure for ARM laser welding 27 3.1.3 Effect of beam profiling on laser welding characteristics 33 3.1.4 Effects of beam profiling on microstructural evolution 42 3.1.5 Conclusions 49 3.1.6 References 51 3.2 Analysis of hot cracking susceptibility according to thermal cycle induced by laser welding II (Laser beam oscillation) 54 3.2.1 Introduction 56 3.2.2 Experimental procedure for laser beam oscillation 60 3.2.3 Effect of circular beam pattern on hot crack susceptibility 67 3.2.4 Effect of infinite beam pattern on hot crack susceptibility 73 3.2.5 Conclusions 84 3.2.6 References 85 Chapter 4 Analysis of stress field subjected to the laser oscillation welding and its effect on hot cracking susceptibility 90 4.1 Introduction: hot cracking in lap fillet joint 90 4.2 Effects of laser oscillation parameter to the penetration mode 92 4.3 The effects of the bead appearance subjected laser beam oscillation on hot cracking susceptibility 99 4.4 Conclusion 107 4.6 References 108 Chapter 5 Total conclusion 111Docto
    • โ€ฆ
    corecore