36 research outputs found

    ์‹ ๊ฒฝ์„ธํฌ์™€ ๊ต์„ธํฌ์˜ Ras ๊ฒฝ๋กœ ๊ณผํ™œ์„ฑํ™”๊ฐ€ Ras ๊ด€๋ จ ์‹ ๊ฒฝ๋ฐœ๋‹ฌ์žฅ์•  ์ƒ์ฅ ๋ชจ๋ธ์˜ ๊ธฐ์–ต์žฅ์• ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ์˜๊ณผ๋Œ€ํ•™ ์˜๊ณผํ•™๊ณผ, 2023. 8. ์ด์šฉ์„.RAS-ERK ์‹ ํ˜ธ ์ „๋‹ฌ ๊ฒฝ๋กœ๋Š” ์—ฌ๋Ÿฌ ์„ธํฌ์— ์กด์žฌํ•œ๋‹ค๊ณ  ์•Œ๋ ค์ ธ ์žˆ๋Š” ์‹ ํ˜ธ ์ „๋‹ฌ ๊ฒฝ๋กœ๋กœ์จ ์„ธํฌ์˜ ์ƒ์กด๊ณผ ๋ถ„ํ™”, ์‹œ๋ƒ…์Šค ์ „๋‹ฌ, ๊ทธ๋ฆฌ๊ณ  ํ•™์Šต๊ณผ ๊ธฐ์–ต ๋“ฑ ์ค‘์ถ”์‹ ๊ฒฝ๊ณ„์—์„œ ๋‹ค์–‘ํ•œ ๋‡Œ ๊ธฐ๋Šฅ์— ๊ด€์—ฌํ•œ๋‹ค. ์ด ๊ฒฝ๋กœ์— ๊ด€์—ฌํ•˜๋Š” ์œ ์ „์ž๋“ค์˜ ๋Œ์—ฐ๋ณ€์ด์— ์˜ํ•ด์„œ ๋‹ค์–‘ํ•œ ์งˆ๋ณ‘์ด ๋ฐœ์ƒํ•˜๊ฒŒ ๋˜๋Š”๋ฐ ์ด๋“ค์„ ์ด์นญํ•˜์—ฌ RASopathy๋ผ๊ณ  ๋ถ€๋ฅด๊ณ , ์‹ ๊ฒฝ์„ฌ์œ ์ข… 1ํ˜•, ๋ˆ„๋‚œ ์ฆํ›„๊ตฐ, ์‹ฌ์žฅ-์–ผ๊ตด-ํ”ผ๋ถ€ ์ฆํ›„๊ตฐ, ๊ทธ๋ฆฌ๊ณ  ์ฝ”์Šคํ…”๋กœ ์ฆํ›„๊ตฐ ๋“ฑ์ด ์ด์— ์†ํ•œ๋‹ค. RASopathy์™€ ์—ฐ๊ด€๋˜์–ด ์žˆ๋Š” ๋Œ์—ฐ๋ณ€์ด๋“ค์€ ๋Œ€๋ถ€๋ถ„ RAS-ERK ์‹ ํ˜ธ ์ „๋‹ฌ ๊ฒฝ๋กœ๋ฅผ ๊ณผํ™œ์„ฑ์‹œํ‚ค๋ฉฐ ๋Œ€๋ถ€๋ถ„์˜ RASopathy ์ผ€์ด์Šค๋Š” ๊ณตํ†ต์ ์ธ ํŠน์ง•์„ ๋ณด์ด๋Š”๋ฐ, ๊ทธ์ค‘ ํ•˜๋‚˜๊ฐ€ ๋ฐ”๋กœ ์ธ์ง€ ๊ธฐ๋Šฅ ์žฅ์• ์ด๋‹ค. ๋‹ค์–‘ํ•œ ์ƒ์ฅ ๋ชจ๋ธ์„ ์ด์šฉํ•œ ์ตœ๊ทผ ์—ฐ๊ตฌ๋“ค์€ RAS-ERK ์‹ ํ˜ธ ์ „๋‹ฌ ๊ฒฝ๋กœ ๊ตฌ์„ฑ ์œ ์ „์ž๋“ค์ด ์„ธํฌ ํƒ€์ž… ํŠน์ด์„ฑ์— ๋”ฐ๋ผ ๊ฐ๊ธฐ ๋‹ค๋ฅธ ๋ถ„์ž, ์„ธํฌ์  ๋ณ‘๋ฆฌ ์ƒ๋ฆฌํ•™์  ๊ธฐ์ „์„ ๊ฐ€์ง„๋‹ค๊ณ  ๋ณด๊ณ ํ•œ ๋ฐ” ์žˆ๋‹ค. ๋ณธ ํ•™์œ„ ๋…ผ๋ฌธ์—์„œ๋Š” RASopathy ์—ฐ๊ด€ ์ธ์ง€ ๊ธฐ๋Šฅ ์žฅ์• ์˜ ๋ณ‘๋ฆฌ๊ธฐ์ „์— ์žˆ์–ด ์‹ ๊ฒฝ์„ธํฌ์™€ ์„ฑ์ƒ๊ต์„ธํฌ๊ฐ€ ๊ฐ๊ธฐ ๋‹ค๋ฅธ ์—ญํ• ์„ ์ˆ˜ํ–‰ํ•  ๊ฒƒ์ด๋ผ๋Š” ๊ฐ€์„ค์„ ์„ค์ •ํ•˜์˜€๋‹ค. ์ด๋ฅผ ํ™•์ธํ•˜๊ธฐ ์œ„ํ•ด ๋‘ ๊ฐ€์ง€ ์ข…๋ฅ˜์˜ RASopathy ์ƒ์ฅ ๋ชจ๋ธ, KRAS G12V์™€ BRAF K499E์—์„œ ์ธ์ง€ ์žฅ์• ๋ฅผ ์œ ๋ฐœํ•˜๋Š” ์„ธํฌ ํƒ€์ž… ํŠน์ด์  ๋ฉ”์ปค๋‹ˆ์ฆ˜์— ๋Œ€ํ•ด ์—ฐ๊ตฌํ•˜์˜€๋‹ค. Chapter 1์—์„œ๋Š”, ํ™˜์ž์™€ ์ƒ์ฅ ๋ชจ๋ธ์˜ ์ค‘์ถ”์‹ ๊ฒฝ๊ณ„ ๋ฐœ๋‹ฌ๊ณผ ์ธ์ง€ ๊ธฐ๋Šฅ์— ์žˆ์–ด RASopathy ๊ด€๋ จ ๋Œ์—ฐ๋ณ€์ด์˜ ํŠน์ง•์ ์ธ ์—ญํ• ์„ ๋ฆฌ๋ทฐํ•˜์˜€๊ณ , RAS-ERK ์‹ ํ˜ธ ์ „๋‹ฌ ๊ฒฝ๋กœ ์œ ์ „์ž๋“ค์˜ ๋ณ‘๋ฆฌ์  ๊ธฐ์ „์— ๊ด€ํ•œ ๋ฌธํ—Œ๋“ค์„ ์ •๋ฆฌํ•˜์˜€๋‹ค. Chapter 2์—์„œ๋Š” KRAS G12V ๋ฐœํ˜„์„ ํ†ตํ•œ RAS-ERK ์‹ ํ˜ธ ์ „๋‹ฌ ๊ฒฝ๋กœ์˜ ์‹ ๊ฒฝ์„ธํฌ ํƒ€์ž… ํŠน์ด์  ์กฐ์ ˆ์ด ํ•ด๋งˆ ์ธ์ง€ ๊ธฐ๋Šฅ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์— ๋Œ€ํ•ด ์—ฐ๊ตฌํ•˜์˜€๊ณ , KRAS G12V์˜ ๋ฐœํ˜„์ด ํฅ๋ถ„์„ฑ ์‹ ๊ฒฝ์„ธํฌ์™€ ์–ต์ œ์„ฑ ์‹ ๊ฒฝ์„ธํฌ ๋ชจ๋‘์—์„œ ๊ฐ๊ธฐ ๋‹ค๋ฅธ ์ด์œ ๋กœ ํ•™์Šต๊ณผ ๊ธฐ์–ต ์žฅ์• ๋ฅผ ์œ ๋ฐœํ•˜๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. ์–ต์ œ์„ฑ ์‹ ๊ฒฝ์„ธํฌ์—์„œ KRAS G12V๋Š” ์–ต์ œ์„ฑ ์‹œ๋ƒ…์Šค ์ „๋‹ฌ๋ฅผ ์ฆ๊ฐ€์‹œ์ผฐ์œผ๋ฉฐ, ์‹œ๋ƒ…์Šค ๊ฐ€์†Œ์„ฑ์„ ์†์ƒ์‹œ์ผฐ๋‹ค. ์ด์— ๋ฐ˜ํ•ด ํฅ๋ถ„์„ฑ ์‹ ๊ฒฝ์„ธํฌ์—์„œ KRAS G12V๋Š” ์‹ ๊ฒฝ์„ธํฌ ์‚ฌ๋ฉธ์„ ์œ ๋ฐœํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ ๊ฒฐ๊ณผ๋Š” ์–ต์ œ์„ฑ ์‹ ๊ฒฝ์„ธํฌ์™€ ํฅ๋ถ„์„ฑ ์‹ ๊ฒฝ์„ธํฌ ๋‘ ๊ฐ€์ง€ ๋ชจ๋‘๊ฐ€ ์„œ๋กœ ๋‹ค๋ฅธ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ํ†ตํ•ด KRAS์™€ ์—ฐ๊ด€๋œ ์ธ์ง€ ๊ธฐ๋Šฅ ์žฅ์• ์— ๊ด€์—ฌํ•˜๊ณ  ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ์˜๋ฏธํ•œ๋‹ค. Chapter 3์—์„œ๋Š” ๋น„์ด์ƒ์ ์ธ Braf ์‹ ํ˜ธ๊ฐ€ ์–ด๋–ป๊ฒŒ ์ธ์ง€ ๊ธฐ๋Šฅ์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š”์ง€ RASopathy ์—ฐ๊ด€ Braf ๋Œ์—ฐ๋ณ€์ด๋ฅผ ์ด์šฉํ•˜์—ฌ ์—ฐ๊ตฌํ•˜์˜€๋‹ค. ์‹ ๊ฒฝ ์ค„๊ธฐ ์„ธํฌ ํŠน์ด์ ์œผ๋กœ Braf K499E๋ฅผ ๋ฐœํ˜„ํ•˜๋Š” ์ƒ์ฅ๋Š” ์‹ฌ๊ฐํ•œ ํ•™์Šต ์žฅ์• ๋ฅผ ๋ณด์˜€์ง€๋งŒ ํฅ๋ถ„์„ฑ ํ˜น์€ ์–ต์ œ์„ฑ ์‹ ๊ฒฝ์„ธํฌ ํŠน์ด์ ์œผ๋กœ Braf K499E๋ฅผ ๋ฐœํ˜„ํ•˜๋Š” ์ƒ์ฅ๋Š” ์ •์ƒ์ ์œผ๋กœ ํ•™์Šตํ–ˆ๋‹ค. Braf K499E๋Š” RAS-ERK ์‹ ํ˜ธ ์ „๋‹ฌ ๊ฒฝ๋กœ๋ฅผ ๊ณผํ™œ์„ฑํ™” ์‹œ์ผฐ์œผ๋ฉฐ, ์„ฑ์ƒ๊ต์„ธํฌ๋ฅผ ๋ฐ˜์‘์„ฑ ์ƒํƒœ๋กœ ๋ณ€ํ™”์‹œ์ผฐ๋‹ค. ํŠนํžˆ, ์„ฑ์ฒด ์‹œ๊ธฐ์—์„œ ์„ฑ์ƒ๊ต์„ธํฌ ํŠน์ด์ ์ธ ๋Œ์—ฐ๋ณ€์ด BRAF์˜ ๋ฐœํ˜„ ์—ญ์‹œ ์„ธํฌ์ , ํ–‰๋™์  ์žฅ์• ๋ฅผ ์œ ๋„ํ•  ์ˆ˜ ์žˆ์—ˆ๊ณ , ์„ฑ์ƒ๊ต์„ธํฌ ๋‚ด๋ถ€์˜ ์นผ์Š˜ ์‹ ํ˜ธ๊ฐ€ ๋น„์ด์ƒ์ ์œผ๋กœ ์ฆ๊ฐ€๋˜์–ด ์žˆ์Œ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ๋ฐœ๋‹ฌ ๋‹จ๊ณ„๋ถ€ํ„ฐ Braf K499E๋ฅผ ๋ฐœํ˜„ํ•˜๋Š” ์ƒ์ฅ์˜ ์„ฑ์ฒด ์‹œ๊ธฐ์— ์„ฑ์ƒ๊ต์„ธํฌ ํŠน์ด์ ์œผ๋กœ๋งŒ RAS-ERK ์‹ ํ˜ธ ์ „๋‹ฌ ๊ฒฝ๋กœ๋ฅผ ์ •์ƒํ™” ์‹œ์ผฐ์„ ๋•Œ ํ•™์Šต ์žฅ์• ๊ฐ€ ํšŒ๋ณต๋˜๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๊ฒฐ๋ก ์ ์œผ๋กœ, ๋ณธ ํ•™์œ„ ๋…ผ๋ฌธ์—์„œ๋Š” RASopathy ์—ฐ๊ด€ ์œ ์ „์ž๋“ค์ด ์—ฌ๋Ÿฌ ์ค‘์ถ”์‹ ๊ฒฝ๊ณ„ ์„ธํฌ ํƒ€์ž…์˜ ๊ธฐ๋Šฅ์  ํŠน์„ฑ์— ๊ฐ๊ธฐ ๋‹ค๋ฅธ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋ฉฐ, ์ด๋Š” RASopathy ํ™˜์ž๋“ค์˜ ์„ธํฌ ํƒ€์ž… ํŠน์ด์  ๋ณ‘๋ฆฌ๊ธฐ์ „์„ ๋’ท๋ฐ›์นจํ•œ๋‹ค. KRAS๋กœ ์ธํ•ด ๋งค๊ฐœ๋˜๋Š” ํ•™์Šต ์žฅ์• ์—์„œ ์‹ ๊ฒฝ์„ธํฌ์˜ ๊ธฐ์—ฌ๋ฅผ, ๊ทธ๋ฆฌ๊ณ  BRAF๋กœ ์ธํ•ด ๋งค๊ฐœ๋˜๋Š” ํ•™์Šต ์žฅ์• ์—์„œ๋Š” ์„ฑ์ƒ๊ต์„ธํฌ์˜ ๊ธฐ์—ฌ๋ฅผ ํ™•์ธํ•จ์œผ๋กœ์จ, ๊ฐ ์œ ์ „์ž ํŠน์ด์ ์ธ ์กฐ๊ฑด์—์„œ ์‹ ๊ฒฝ์„ธํฌ์™€ ์„ฑ์ƒ๊ต์„ธํฌ ๋ชจ๋‘๊ฐ€ RASopathy ์—ฐ๊ด€ ์ธ์ง€ ๊ธฐ๋Šฅ ์žฅ์• ์˜ ์›์ธ์ด๋ผ๋Š” ๊ฒฐ๋ก ์„ ์–ป์—ˆ๋‹ค. ๋˜ํ•œ, ๋ณธ ํ•™์œ„ ๋…ผ๋ฌธ์˜ ์—ฐ๊ตฌ๋Š” ์ด ์—ฐ๊ตฌ์—์„œ ๋‹ค๋ฃจ์ง€ ์•Š์€ ๋‹ค๋ฅธ RASopathy ์—ฐ๊ด€ ์ธ์ง€ ๊ธฐ๋Šฅ ์žฅ์• ์˜ ๋ฉ”์ปค๋‹ˆ์ฆ˜์— ๋Œ€ํ•ด ์ƒˆ๋กœ์šด ์ดํ•ด์™€ ํ†ต์ฐฐ์„ ์ œ๊ณตํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€ํ•œ๋‹ค.The RAS-ERK signaling pathway plays critical roles in brain function, including cellular processes, synaptic transmission, and learning and memory in central nervous system. Germline mutations of molecules in the RAS-ERK signaling pathway are associated with a series of developmental disorders, collectively called RASopathy, which includes neurofibromatosis type 1, Noonan syndrome, cardio-facio-cutaneous syndrome, and Costello syndrome. Most mutations associated with RASopathy enhance the activity of RAS-ERK signaling pathway, and therefore, most cases with RASopathies share representative clinical characteristics, especially, cognitive impairments. Recent studies using various mouse models of RASopathies have shown that each RAS-ERK signaling component may have a distinct molecular and cellular pathophysiology depending on cell type-specificity. In this dissertation, I hypothesized that each neuronal and astroglial cell type might have distinct roles that contribute to the cell type-specific pathophysiology in RASopathy-related cognitive deficits. To answer the question, I investigated the cellular mechanisms underlying learning and memory impairments in two types of RASopathy mouse models, KRAS G12V and BRAF K499E. In chapter 1, I reviewed the previous literatures that investigated the impact of RASopathy-associated mutations on central nervous system development in mice and humans, which provided understandings and insights into the specific roles of RAS-ERK signaling genes to central nervous system and the subsequent effect on cognitive function in adult mice. In chapter 2, I investigated the impacts of neuron type-specific manipulation of RAS-ERK signaling by expressing KRAS G12V in the hippocampus. I found that the expression of KRAS G12V in either hippocampal excitatory or inhibitory neurons results in spatial learning and memory deficits in adult mice, each for different reasons. In inhibitory neurons, KRAS G12V induced enhanced GABAergic inhibitory synaptic transmission, and impaired long-term potentiation, which could be restored by picrotoxin treatment. In contrast, in excitatory neurons, KRAS G12V induced neuronal cell death, which might be responsible to the behavioral defects. This result showed that both inhibitory and excitatory neurons are involved in KRAS-associated learning impairments in adult via distinct mechanisms. In chapter 3, I investigated how the aberrant Braf signaling affects cognitive functions by using CFC syndrome-associated Braf mutations. Expressing the Braf K499E under control of Nestin-Cre, resulted in severe hippocampal memory deficits in mice, whereas Braf K499E in either excitatory or inhibitory neurons did not alter learning and memory. Intriguingly, I found that the Braf K499E and subsequently activated ERK signaling renders astrocytes being in reactive-like status. Importantly, astrocyte-specific expression of the mutant BRAF in adult was sufficient to induce cellular and behavioral deficits in mice, which are accompanied by hyperactive Ca2+ fluctuations in astrocyte. Finally, the learning deficits of Nestin;Braf KE/+ mice can be reversed by normalizing RAS-ERK signaling solely in astrocytes. This study demonstrates that the reactive-like astrogliosis may underlies the severe cognitive deficits in CFC syndrome. In conclusion, I demonstrated that the RASopathy-associated genes are differentially affect functional properties of each cell type in central nervous system, which may be responsible for the cell type-specific pathophysiology of individual RASopathy patient. By showing the neuronal contribution in mutant KRAS-mediated learning deficits, and astrocytic contribution in mutant BRAF-mediated learning deficits, these results strongly suggest that both neuron and astrocyte are responsible for RASopathy-related cognitive impairments in each gene-specific manner. Furthermore, this study will provide insight to identify cell types as well as underlying mechanism accounting for the cognitive deficits in other RASopathies not covered here.Preface 1 Abstract 2 Table of Contents 5 Lists of Figures and Tables 7 Chapter 1. The impact of RASopathy-related mutations on CNS in human and mice 10 1. RAS-ERK signaling and RASopathy 11 2. RASopathy and central nervous system features 17 2.1 Neurofibromatosis type 1 17 2.2 Noonan syndrome / Noonan syndrome with multiple lentigines 21 2.3 Cardio-facio-cutaneous syndrome 25 2.4 Costello syndrome 29 2.5 Further questions 32 2.6 Purpose of this study 33 Chapter 2. Neuron type-specific expression of a RASopathy-related KRAS mutation impairs spatial learning and memory 34 Introduction 35 Material and Method 38 Results 2.1 Ectopic expression of KRAS G12V in hippocampal inhibitory neurons 42 2.2 Ectopic expression of KRAS G12V in inhibitory neurons impairs hippocampal-dependent spatial learning and memory 44 2.3 Ectopic expression of KRAS G12V in inhibitory neurons increases inhibitory synaptic transmission 48 2.4 Ectopic expression of KRAS G12V in hippocampal excitatory neurons 51 2.5 Ectopic expression of KRAS G12V in hippocampal excitatory neurons impairs hippocampal-dependent spatial learning and memory 53 2.6 Ectopic expression of KRAS G12V in hippocampal excitatory neurons induces neuronal death 56 Discussion 58 Chapter 3. Aberrant BRAF signaling impairs learning and memory via reactive-like astrogliosis 61 Introduction 62 Material and Method 64 Results 3.1 Braf K499E expression in either excitatory neurons or inhibitory neurons does not impair learning and memory 68 3.2 Braf K499E in neural stem cell impairs learning and memory 75 3.3 Braf K499E drives increased reactive-like astrogliosis in the hippocampus 80 3.4 Braf-driven reactive-like astrogliosis is established during adolescent period 89 3.5 Braf K499E in neural stem cell does not affect synaptic properties 93 3.6 Braf-mediated RAS-ERK signaling dysregulation in adult astrocytes leads to learning deficits 95 3.7 BRAF KE-expressing astrocyte showed hyperactive calcium fluctuation which is normalized by attenuation of RAS-ERK signaling activity 104 3.8 Hyperactive calcium fluctuation in Nestin;Braf KE/+ astrocytes were attenuated by GFAP-specific dnMEK1 injection 112 3.9 The learning deficits of Nestin;Braf KE/+ mice can be reversed by normalizing RAS-ERK signaling solely in astrocytes 116 Discussion 119 General Conclusion 124 Bibliography 128 Abstract in Korean 147๋ฐ•

    ์ž๊ฐ€-๋Œ€์กฐ ํ™˜์ž๊ตฐ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์•ฝํ•™๋Œ€ํ•™ ์•ฝํ•™๊ณผ, 2020. 8. ์ด์ฃผ์—ฐ.Sodium Glucose Co-Transporter 2(SGLT2) ์–ต์ œ์ œ๋Š” ์‹  ์„ธ๋‡จ๊ด€์— ์ฃผ๋กœ ๋ถ„ํฌํ•˜๋Š” SGLT2๋ฅผ ์„ ํƒ์ ์œผ๋กœ ์–ต์ œํ•˜์—ฌ, ๋‚˜ํŠธ๋ฅจ๊ณผ ๋‹น์˜ ๊ตํ™˜์„ ๋ง‰์•„ ์†Œ๋ณ€์œผ๋กœ์˜ ํฌ๋„๋‹น ๋ฐฐ์ถœ์„ ์ฆ๊ฐ€์‹œํ‚จ๋‹ค. ์ด๋กœ ์ธํ•ด ์†Œ๋ณ€์˜ ๋‹น ๋†๋„๊ฐ€ ์ƒ์Šนํ•˜์—ฌ ๋น„๋‡จ์ƒ์‹๊ธฐ๊ฐ์—ผ์ด ๋‚˜ํƒ€๋‚  ์ˆ˜ ์žˆ๋‹ค. SGLT2 ์–ต์ œ์ œ์˜ ๋ณต์šฉ์€ ๋‹น๋‡จ๋ณ‘ ํ™˜์ž์—์„œ ์ถ”๊ฐ€์ ์ธ ์š”๋กœ๊ฐ์—ผ๊ณผ ์ƒ์‹๊ธฐ๊ฐ์—ผ์˜ ์œ„ํ—˜์˜ ์ƒ์Šน์„ ์•ผ๊ธฐํ•  ์ˆ˜ ์žˆ๋‹ค. ํ•œํŽธ์œผ๋กœ, SGLT2 ์–ต์ œ์ œ์˜ ์š”๋กœ๊ฐ์—ผ์— ๋Œ€ํ•œ ๊ธฐ์กด ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋“ค์€ ์ผ์น˜๋˜๋Š” ๊ฒฐ๊ณผ๋ฅผ ๋ณด์ด์ง€ ์•Š์œผ๋ฉฐ, ์ƒ์‹๊ธฐ๊ฐ์—ผ์˜ ๊ฒฝ์šฐ ๋…ธ์ธ ์ธ๊ตฌ ๋ฐ ์ „์ฒด ์ธ๊ตฌ์ง‘๋‹จ์— ๋Œ€ํ•œ SGLT2 ์–ต์ œ์ œ์˜ ์˜ํ–ฅ์€ ์—ฐ๊ตฌ๋œ ๋ฐ” ์žˆ์œผ๋‚˜, ์ผ๋ฐ˜์ ์œผ๋กœ ์ƒ์‹๊ธฐ๊ฐ์—ผ์˜ ์œ„ํ—˜์„ฑ์ด ๋†’๋‹ค ์•Œ๋ ค์ ธ ์žˆ๋Š” ํ๊ฒฝ๊ธฐ ์—ฌ์„ฑ๊ตฐ์— ๋Œ€ํ•œ ์ •๋ณด๋Š” ์ œํ•œ์ ์ด๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ „๊ตญ๋ฏผ ํ‘œ๋ณธ์ž๋ฃŒ๋ฅผ ์ด์šฉํ•œ ์ž๊ฐ€-๋Œ€์กฐ๊ตฐ ์—ฐ๊ตฌ ์„ค๊ณ„๋ฅผ ํ†ตํ•˜์—ฌ, ๋‹น๋‡จ๋ณ‘ ํ™˜์ž์—์„œ SGLT2 ์–ต์ œ์ œ๋ฅผ ์‚ฌ์šฉํ•จ์œผ๋กœ ์ธํ•˜์—ฌ ๋‚˜ํƒ€๋‚˜๋Š” ์ถ”๊ฐ€์ ์ธ ๊ฐ์—ผ ์œ„ํ—˜์„ฑ์„ ํ™•์ธํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ๋˜ํ•œ, SGLT2 ์–ต์ œ์ œ ์‚ฌ์šฉ๊ธฐ๊ฐ„ ๋™์•ˆ ๋น„๋‡จ์ƒ์‹๊ธฐ๊ฐ์—ผ ๋ฐ ์š”๋กœ๊ฐ์—ผ, ์ƒ์‹๊ธฐ๊ฐ์—ผ์˜ ์œ„ํ—˜์ด ์œ ์˜ํ•˜๊ฒŒ ์ฆ๊ฐ€๋˜๋Š” ๊ธฐ๊ฐ„๊ณผ, ํ™˜์ž์˜ ์—ฐ๋ น ๋ฐ ์„ฑ๋ณ„, ๊ฐ์—ผ๋ถ€์œ„ ๋ฐ ์‚ฌ์šฉํ•˜๋Š” SGLT2 ์–ต์ œ์ œ์˜ ์ข…๋ฅ˜์— ๋”ฐ๋ฅธ ์ธตํ™” ๋ถ„์„์„ ํ†ตํ•ด ํŠนํžˆ ๊ฐ์—ผ์˜ ์œ„ํ—˜์„ฑ์ด ์ƒ์Šน๋˜๋Š” ๊ตฐ์„ ํ™•์ธํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” 2016๋…„, 2017๋…„์˜ ๊ฑด๊ฐ•๋ณดํ—˜์‹ฌ์‚ฌํ‰๊ฐ€์› ํ™˜์žํ‘œ๋ณธ์ž๋ฃŒ ์ค‘ ์ „์ฒดํ™˜์ž๋ฐ์ดํ„ฐ์…‹(HIRA-NPS-2016, HIRA-NPS2017)๊ณผ ๊ณ ๋ นํ™˜์ž๋ฐ์ดํ„ฐ์…‹(HIRA-APS-2016, HIRA-APS-2017)์„ ์ž๊ธฐ-๋Œ€์กฐํ™˜์ž๊ตฐ ์—ฐ๊ตฌ ์„ค๊ณ„๋ฅผ ํ†ตํ•ด ๋ถ„์„ํ•˜์˜€๋‹ค. ํ•ด๋‹น ๊ธฐ๊ฐ„ ๋™์•ˆ SGLT2 ์–ต์ œ์ œ๋ฅผ ํ•œ๋ฒˆ์ด๋ผ๋„ ์‚ฌ์šฉํ•œ ํ™˜์ž ์ค‘, ๋น„๋‡จ์ƒ์‹๊ธฐ๊ฐ์—ผ์ด ๋ฐœ์ƒํ•œ ํ™˜์ž๋ฅผ ํ™•์ธํ•˜์—ฌ ์—ฐ๊ตฌ ๋Œ€์ƒ์— ํฌํ•จํ•˜์˜€๋‹ค. ๋น„๋‡จ์ƒ์‹๊ธฐ๊ฐ์—ผ์€ ํ•ด๋‹น ๊ฐ์—ผ ์ง„๋‹จ๋ช…์ด ์žˆ์œผ๋ฉด์„œ ํ•ญ๊ท ์ œ, ํ•ญ์ง„๊ท ์ œ ๋˜๋Š” ํ•ญ๋ฐ”์ด๋Ÿฌ์Šค์ œ๊ฐ€ ์ฒ˜๋ฐฉ๋œ ๊ฒฝ์šฐ๋กœ ์ •์˜ํ•˜์˜€๋‹ค. 1๋…„๊ฐ„์˜ ๋ฐ์ดํ„ฐ์—์„œ 1์›”๋ถ€ํ„ฐ 3์›”๊นŒ์ง€์˜ ๊ธฐ๊ฐ„์€ ๋ถ„์„ ๊ธฐ๊ฐ„์— ํฌํ•จํ•˜์ง€ ์•Š์•˜์œผ๋ฉฐ, SGLT2 ์–ต์ œ์ œ ์‚ฌ์šฉ 1๋‹ฌ ์ „์— ๋น„๋‡จ์ƒ์‹๊ธฐ๊ฐ์—ผ์ฆ์ด ์ง„๋‹จ๋œ ๋ฐ” ์žˆ๋Š” ํ™˜์ž ๋ฐ ์—ฐ๊ตฌ๊ธฐ๊ฐ„ ๋™์•ˆ ์ง€์†์ ์œผ๋กœ SGLT2 ์–ต์ œ์ œ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๋Œ€์กฐ๊ตฐ์œผ๋กœ ์„ค์ •ํ•  ์ˆ˜ ์žˆ๋Š” ๊ธฐ๊ฐ„์ด ์—†๋Š” ํ™˜์ž๋Š” ๋ถ„์„์—์„œ ์ œ์™ธํ•˜์˜€๋‹ค. SGLT2 ์–ต์ œ์ œ ๋…ธ์ถœ๊ธฐ๊ฐ„์€ SGLT2 ์–ต์ œ์ œ๋ฅผ ์ฒ˜๋ฐฉ๋œ ๋‚ ๋กœ๋ถ€ํ„ฐ, ์ฒ˜๋ฐฉ์ผ์ˆ˜์— washout period๋ฅผ ๋”ํ•œ ๋‚ ์งœ๋กœ ์ •์˜ํ•˜์˜€๋‹ค. Washout period๋Š” 7์ผ๋กœ ์ •์˜ํ•˜์˜€์œผ๋ฉฐ, ํ™˜์ž๊ฐ€ ์ด์ „์— ์ฒ˜๋ฐฉ๋œ SGLT2 ์–ต์ œ์ œ์˜ ๋…ธ์ถœ๊ธฐ๊ฐ„ ์ดํ›„ 30์ผ ์ด๋‚ด์— ์žฌ์ฒ˜๋ฐฉ์„ ๋ฐ›์•˜์„ ๊ฒฝ์šฐ, ์ง€์† ํˆฌ์—ฌ๋กœ ๊ฐ„์ฃผํ•˜์˜€๋‹ค. ๋ถ„์„์— ํฌํ•จ๋œ ํ™˜์ž๋Š” ์ด 2,949๋ช…์ด์—ˆ์œผ๋ฉฐ, ์ „์ฒด ํ™˜์ž์˜ ์•ฝ 80%๊ฐ€ ์—ฌ์„ฑ์ด์—ˆ๋‹ค. ๊ด€์ฐฐ๋œ ๋น„๋‡จ์ƒ์‹๊ธฐ๊ฐ์—ผ ์ค‘ ์š”๋กœ๊ฐ์—ผ์€ 2,057๋ช…(69.75%)์˜€์œผ๋ฉฐ, ์ƒ์‹๊ธฐ๊ฐ์—ผ์€ 1,393๋ช…(47.24%)์˜€๋‹ค. ์ด SGLT2 ์–ต์ œ์ œ ์‚ฌ์šฉ ๊ธฐ๊ฐ„ ๋™์•ˆ์˜ ๊ฐ์—ผ ๋ฐœ์ƒ์œจ์€ ์ „์ฒด ๋น„๋‡จ์ƒ์‹๊ธฐ๊ฐ์—ผ 1.27 ์ธ-๋…„, ์š”๋กœ๊ฐ์—ผ 1.32 ์ธ-๋…„, ์ƒ์‹๊ธฐ๊ฐ์—ผ 1.49 ์ธ-๋…„์ด์—ˆ๋‹ค. SGLT2 ์–ต์ œ์ œ๋ฅผ ํˆฌ์—ฌํ•˜์ง€ ์•Š์€ ๊ธฐ๊ฐ„ ๋Œ€๋น„ ํˆฌ์—ฌ ๊ธฐ๊ฐ„์˜ ๋น„๋‡จ์ƒ์‹๊ธฐ๊ฐ์—ผ์˜ ์œ„ํ—˜์„ฑ์ด ์•ฝ 24% ์œ ์˜ํ•˜๊ฒŒ ์ƒ์Šนํ•˜์˜€์œผ๋ฉฐ(Incidence risk ratio, IRR 1.24, 95% CI 1.16-1.33), ์š”๋กœ๊ฐ์—ผ์˜ ์œ„ํ—˜์„ฑ์€ ์•ฝ 19% ์œ ์˜ํ•˜๊ฒŒ ์ƒ์Šนํ•˜์˜€๊ณ (IRR 1.19, 95% CI 1.10-1.30), ์ƒ์‹๊ธฐ๊ฐ์—ผ์˜ ์œ„ํ—˜์„ฑ์€ ์•ฝ 29% ์ƒ์Šนํ•˜์˜€๋‹ค(IRR 1.29, 95% CI 1.17-1.43). SGLT2 ์–ต์ œ์ œ์˜ ํˆฌ์—ฌ๊ธฐ๊ฐ„์„ 7์ผ ์ด๋‚ด, 8-14์ผ, 15-28์ผ, 29์ผ ์ดํ›„๋กœ ๋‚˜๋ˆ„์–ด ๋ถ„์„ํ•œ ๊ฒฐ๊ณผ, ์ „์ฒด ๋น„๋‡จ์ƒ์‹๊ธฐ๊ฐ์—ผ์€ SGLT2 ์–ต์ œ์ œ ํˆฌ์—ฌ์‹œ์ž‘ 8์ผ ์ดํ›„๋ถ€ํ„ฐ IRR์ด ์œ ์˜ํ•˜๊ฒŒ ์ƒ์Šนํ•˜์˜€๋‹ค(IRR 1.43, 95% CI 1.11-1.84). ์š”๋กœ๊ฐ์—ผ๊ตฐ์—์„œ๋Š” SGLT2 ์–ต์ œ์ œ ํˆฌ์—ฌ์‹œ์ž‘ 8์ผ์—์„œ 14์ผ ๊ธฐ๊ฐ„์—์„œ ๊ฐ€์žฅ ๋†’์€ IRR์„ ๋ณด์˜€์œผ๋ฉฐ(IRR 1.40, 95% CI 1.05-1.89), ํˆฌ์—ฌ์‹œ์ž‘ 15-28์ผ, 29์ผ ์ดํ›„์—๋„ ์ง€์†์ ์œผ๋กœ ์œ ์˜ํ•˜๊ฒŒ ๋†’๊ฒŒ ์œ ์ง€๋˜์—ˆ๋‹ค(IRR 1.15, 95% CI 1.06-1.26). ์ƒ์‹๊ธฐ๊ฐ์—ผ๊ตฐ์—์„œ๋Š” SGLT2 ์–ต์ œ์ œ ํˆฌ์—ฌ์‹œ์ž‘ 8-14์ผ์งธ๋ถ€ํ„ฐ IRR์ด ์œ ์˜ํ•˜๊ฒŒ ์ƒ์Šนํ•œ ํ›„(IRR 1.44, 95% CI 1.06-1.97) 15-28์ผ์งธ์— ๊ฐ€์žฅ ๋†’์€ ๊ฐ’์„ ๋‚˜ํƒ€๋ƒˆ์œผ๋ฉฐ(IRR 1.65, 95% CI 1.33-2.04), 29์ผ ์ดํ›„์—๋„ ์œ ์˜ํ•˜๊ฒŒ ๋†’๊ฒŒ ์œ ์ง€๋˜์—ˆ๋‹ค(IRR 1.25, 95% CI 1.13-1.38). ์„ฑ๋ณ„ ๋ฐ ์—ฐ๋ น์— ๋”ฐ๋ฅธ ์ธตํ™” ๋ถ„์„์—์„œ๋Š” ์ „์ฒด ๋น„๋‡จ์ƒ์‹๊ธฐ๊ฐ์—ผ์— ๋Œ€ํ•ด์„œ ์—ฌ์„ฑ์— ํ•œํ•˜์—ฌ SGLT2 ์–ต์ œ์ œ ์‚ฌ์šฉ์— ์˜ํ•ด ๋น„๋‡จ์ƒ์‹๊ธฐ๊ฐ์—ผ ์œ„ํ—˜์„ฑ์ด ์œ ์˜ํ•˜๊ฒŒ ์ƒ์Šนํ•˜์˜€์œผ๋ฉฐ, ๋‚จ์„ฑ์—์„œ๋Š” ์œ ์˜ํ•˜์ง€ ์•Š์•˜๋‹ค. ํŠนํžˆ 50์„ธ ์ด์ƒ 64์„ธ ๋ฏธ๋งŒ์˜ ํ๊ฒฝ๊ธฐ ์—ฌ์„ฑ์—์„œ SGLT2 ์–ต์ œ์ œ ์‚ฌ์šฉ์— ์˜ํ•œ ๋น„๋‡จ์ƒ์‹๊ธฐ๊ฐ์—ผ์˜ ์œ„ํ—˜์„ฑ์ด ์•ฝ 40%๊ฐ€๋Ÿ‰ ์ƒ์Šนํ•˜์—ฌ, ๊ฐ€์žฅ ๋†’์€ ์ƒ์Šนํญ์„ ๋ณด์˜€๋‹ค(IRR 1.40 95% CI 1.21-1.61). 50์„ธ ์ด์ƒ 64์„ธ ๋ฏธ๋งŒ์˜ ํ๊ฒฝ๊ธฐ ์—ฌ์„ฑ์—์„œ ์š”๋กœ๊ฐ์—ผ ์œ„ํ—˜์„ฑ์€ ์•ฝ 26% (IRR 1.26, 95% CI 1.06-1.50), ์ƒ์‹๊ธฐ๊ฐ์—ผ ์œ„ํ—˜์„ฑ์€ ์•ฝ 54% ์ƒ์Šนํ•˜์˜€๋‹ค(IRR 1.54, 95% CI 1.26-1.88). 65์„ธ ์ด์ƒ์˜ ์—ฌ์„ฑ์€ ์š”๋กœ๊ฐ์—ผ ์œ„ํ—˜์„ฑ์ด ์•ฝ 26%(IRR 1.26, 95% CI 1.12-1.41), ์ƒ์‹๊ธฐ๊ฐ์—ผ ์œ„ํ—˜์„ฑ์€ 47% ์ƒ์Šนํ•˜์˜€๋‹ค(IRR 1.47, 95% CI 1.27-1.71). ๊ฐ์—ผ ๋ถ€์œ„๋ณ„ ์ธตํ™” ๋ถ„์„์—์„œ๋Š” ์™ธ์Œ์งˆ ๊ฐ์—ผ(IRR 1.37, 95% CI 1.24-1.53), ์ž๊ถ ๊ฐ์—ผ(IRR 1.31, 95% CI 1.14-1.51), ์‹ ์žฅ๊ฐ์—ผ(IRR 1.30, 95% CI 1.08-1.55), ์š”๋„๊ฐ์—ผ(IRR 1.21, 95% CI 1.05-1.39), ๋ฐฉ๊ด‘์—ผ(IRR 1.16, 95% CI 1.06-1.27) ์ˆœ์œผ๋กœ SGLT2 ์–ต์ œ์ œ๋ฅผ ์‚ฌ์šฉํ•˜์ง€ ์•Š์€ ๊ธฐ๊ฐ„ ๋Œ€๋น„ ์‚ฌ์šฉํ•œ ๊ธฐ๊ฐ„์˜ ๊ฐ์—ผ์˜ ์œ„ํ—˜์„ฑ์ด ๋†’๊ฒŒ ์ƒ์Šนํ•˜์˜€๋‹ค. ์ „๋ฆฝ์„  ๊ฐ์—ผ์˜ ์œ„ํ—˜์„ฑ์€ ์œ ์˜ํ•œ ์ฐจ์ด๋ฅผ ๋ณด์ด์ง€ ์•Š์•˜๋‹ค(IRR 0.80, 95% CI 0.60-1.07). SGLT2 ์–ต์ œ์ œ ์ข…๋ฅ˜์— ๋”ฐ๋ฅธ ์ธตํ™” ๋ถ„์„์—์„œ๋Š” empagliflozin ๋ฐ dapagliflozin์˜ ์‚ฌ์šฉ์€ ๋น„๋‡จ์ƒ์‹๊ธฐ๊ฐ์—ผ ๋ฐ ์š”๋กœ๊ฐ์—ผ ์œ„ํ—˜์„ฑ์ด ์œ ์˜ํ•˜๊ฒŒ ์ƒ์Šนํ•˜์˜€์œผ๋ฉฐ, ์ƒ์‹๊ธฐ๊ฐ์—ผ์€ ๋ชจ๋“  SGLT2 ์–ต์ œ์ œ์—์„œ ๊ฐ์—ผ์˜ ์œ„ํ—˜์„ฑ์ด ์œ ์˜ํ•˜๊ฒŒ ์ƒ์Šนํ•˜์˜€๋‹ค. ๋น„๋‡จ์ƒ์‹๊ธฐ๊ฐ์—ผ์— ๋Œ€ํ•˜์—ฌ ์‚ฌ์šฉํ•œ ํ•ญ๊ท ์ œ, ํ•ญ์ง„๊ท ์ œ, ํ•ญ๋ฐ”์ด๋Ÿฌ์Šค์ œ๊ฐ€ ์ฃผ์‚ฌ ์ œํ˜•์ผ ๊ฒฝ์šฐ ์ด๋ฅผ ์‹ฌ๊ฐํ•œ ๊ฐ์—ผ์ด๋ผ ์ •์˜ํ•˜๊ณ , ์‹ฌ๊ฐ๋„์— ๋”ฐ๋ผ ๊ฐ์—ผ์„ ๋‚˜๋ˆ  ์ธตํ™” ๋ถ„์„ํ•œ ๊ฒฐ๊ณผ, ๋น„๋‡จ์ƒ์‹๊ธฐ๊ฐ์—ผ ๋ฐ ์š”๋กœ๊ฐ์—ผ์€ ์‹ฌ๊ฐํ•œ ๊ฐ์—ผ ๋ฐ ์‹ฌ๊ฐํ•˜์ง€ ์•Š์€ ๊ฐ์—ผ ๋ชจ๋‘์—์„œ ์œ ์˜ํ•œ ๊ฐ์—ผ ์œ„ํ—˜์„ฑ์˜ ์ƒ์Šน์„ ๋ณด์˜€์œผ๋‚˜, ์‹ฌ๊ฐํ•œ ์ƒ์‹๊ธฐ๊ฐ์—ผ์˜ ์œ„ํ—˜์€ SGLT2 ์–ต์ œ์ œ ์‚ฌ์šฉ์œผ๋กœ ์œ ์˜ํ•˜๊ฒŒ ์ƒ์Šน๋˜์ง€ ์•Š์•˜๋‹ค(IRR 0.99, 95% CI 0.71-1.39). ๋ณธ ์—ฐ๊ตฌ ๊ฒฐ๊ณผ ๋น„๋‡จ์ƒ์‹๊ธฐ๊ฐ์—ผ์„ ๊ฒฝํ—˜ํ•œ ๊ฐœ์ธ ๋‚ด์—์„œ SGLT2 ์–ต์ œ์ œ์˜ ์‚ฌ์šฉ๊ธฐ๊ฐ„์— ์‚ฌ์šฉํ•˜์ง€ ์•Š๋Š” ๊ธฐ๊ฐ„ ๋Œ€๋น„ ๋น„๋‡จ์ƒ์‹๊ธฐ๊ฐ์—ผ ์ „์ฒด์˜ ์œ„ํ—˜์„ฑ ๋ฐ ์š”๋กœ๊ฐ์—ผ์ฆ, ์ƒ์‹๊ธฐ๊ฐ์—ผ์ฆ์˜ ์œ„ํ—˜์„ฑ์€ ์œ ์˜ํ•˜๊ฒŒ ์ƒ์Šนํ•˜๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. ํŠนํžˆ ํ๊ฒฝ๊ธฐ ์—ฌ์„ฑ ํ™˜์ž์—์„œ SGLT2 ์–ต์ œ์ œ ํˆฌ์—ฌ ์‹œ์ž‘ ํ›„ 8-14์ผ ์‹œ์ ์— ์š”๋กœ๊ฐ์—ผ์˜ ์œ„ํ—˜์„ฑ, 15-28์ผ ์‹œ์ ์—์„œ ์ƒ์‹๊ธฐ๊ฐ์—ผ์˜ ์œ„ํ—˜์„ฑ์ด ๊ฐ€์žฅ ๋†’์ด ์ƒ์Šนํ•˜๊ณ , 29์ผ ์ดํ›„์—๋„ ์œ ์˜ํ•˜๊ฒŒ ์œ ์ง€๋˜๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. SGLT2 ์–ต์ œ์ œ์˜ ์‚ฌ์šฉ์œผ๋กœ ์ธํ•œ ๊ฐ์—ผ์œ„ํ—˜์˜ ์ƒ์Šน์€ ์ƒ์‹๊ธฐ ๊ฐ์—ผ์—์„œ ์š”๋กœ๊ฐ์—ผ๋ณด๋‹ค ํฌ๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค.Sodium-glucose cotransporter 2 (SGLT2) inhibitors selectively block SGLT2 in the renal tubule and prevent sodium-glucose exchange, leading to increased glucose excretion into the urine. Therefore, the use of SGLT2 inhibitors could increase the risk of urogenital infection in diabetic patients. In contrast, the risk of urinary tract infection with SGLT2 inhibitors is controversial. Moreover, limited studies have evaluated the risk of genital infection risk with SGLT2 inhibitors in menopausal patients, who are known to be vulnerable to genital infection. We aimed to investigate the incidence rate ratio of urogenital, urinary tract, and genital infections using a self-controlled case series design to minimize the bias due to the interindividual differences in susceptibility to urogenital infections. In addition, we investigated the increase in risk in relation to each period from the initiation of SGLT2 inhibitors and in relation to sex and age, infection sites, SGLT2 inhibitor type, and seriousness of infection. For this analysis, we used the national patient sample datasets (HIRA-NPS-2016, HIRA-NPS-2017) and aged population sample datasets (HIRA-APS-2016, HIRA-APS-2017) provided by the Health Insurance Review & Assessment Service in 2016 and 2017. We included as the subjects patients with diabetes who were prescribed SGLT2 inhibitors at least once and subsequently contracted urogenital infection. Urogenital infections were defined as having a diagnosis of urogenital infections and being prescribed antibiotics, antifungals, and antivirals on the same day as the diagnosis. Data from January to March were censored from the observation period, considering the possibility of SGLT2 inhibitors prescription which was carried forward from the previous year. Patients who were diagnosed with urogenital infection within 1 month of SGLT2 inhibitor use and those who used SGLT inhibitors persistently during the observation period were excluded due to the absence of a control period. The exposure period of the SGLT2 inhibitor was defined as the period from the prescription date to the end date of prescription supply plus a 7-day washout period. We allowed a gap of 30 days (grace period) between the supply of SGLT2 inhibitors for continuous use. A total of 2,949 patients were included in the analysis, and approximately 80% of the patients were women. The number of patients who were diagnosed with urinary tract infections was 2,057 (69.75%) and with genital infections was 1,393 (47.24%). The incidence rates of urogenital, urinary tract, and genital infections were 1.27 person-year, 1.32 person-year, and 1.49 person-year, respectively. The risk of urogenital (incidence risk ratio, IRR 1.24, 95% CI 1.16โ€“1.33), urinary tract (IRR 1.19, 95% CI 1.10โ€“1.30), and genital infections (IRR 1.29, 95% CI 1.17โ€“1.43) significantly increased during the SGLT2 inhibitor exposure period compared with the non-exposure period. The risk of total urogenital infection was significant 8โ€“14 days after initiating SGLT2 inhibitor therapy (IRR 1.43, 95% CI 1.11โ€“1.84). The highest increase in the risk of urinary tract infection and genital infection was observed from 8 to 14 days (IRR 1.40, 95% CI 1.05โ€“1.89) and 15 to 28 days (IRR 1.65, 95% CI 1.33โ€“2.04), respectively, after initiating SGLT2 inhibitor therapy. In stratified analysis by sex and age, only women older than 50 years, especially those between 50 and 64 years of age, showed a significant increase in the risk of urogenital infection during the periods of exposure to SGLT2 inhibitors (IRR 1.40, 95% CI 1.21โ€“1.61). The increase in risk of genital infection (IRR 1.54, 95% CI 1.26โ€“1.88) was higher than that of urinary tract infection (IRR 1.26, 95% CI 1.06โ€“1.50) in women aged between 50 and 64 years. A similar tendency was observed in women older than 65 years. The highest increase in the risk of urogenital infection was observed in vulvovaginal infection (IRR 1.37, 95% CI 1.24โ€“1.53), followed by uterine (IRR 1.31, 95% CI 1.14โ€“1.51), renal (IRR 1.30, 95% CI 1.08โ€“1.55), urethral (IRR 1.21, 95% CI 1.05โ€“1.39), and bladder infections (IRR 1.16, 95% CI 1.06โ€“1.27) during the exposure period of SGLT2 inhibitors. The use of SGLT2 inhibitors did not affect the risk of prostatic infection (IRR 0.80, 95% CI 0.60โ€“1.07). The empagliflozin and dapagliflozin groups showed a significant increase in the risk of urogenital and urinary tract infections during the SGLT2 inhibitor exposure period, respectively, while ipragliflozin showed no significant results. The increase in the risk of genital infection during the SGLT2 inhibitor exposure period was significant for all types of SGLT2 inhibitors. We defined seriousness by using an injection formulation of antibiotics, antifungals, and antivirals. The risk of urogenital and urinary tract infections increased significantly for both non-serious and serious infections during the SGLT2 inhibitor exposure period. The use of SGLT2 inhibitors did not affect the risk of serious genital infection (IRR 0.99, 95% CI 0.71โ€“1.39). In conclusion, we confirmed that exposure to SGLT2 inhibitors increases the risk of urogenital, urinary tract, and genital infections in diabetic patients, especially in women aged between 50 and 64 years, who contracted urogenital infections. The increase in the risk of genital infection was greater than that of urinary tract infection.1. ์„œ ๋ก  1 1.1 ์—ฐ๊ตฌ์˜ ๋ฐฐ๊ฒฝ 1 1.2 ์—ฐ๊ตฌ์˜ ํ•„์š”์„ฑ 6 1.3 ์—ฐ๊ตฌ์˜ ๋ชฉ์  7 2. ์—ฐ๊ตฌ ๋ฐฉ๋ฒ• 8 2.1 ์—ฐ๊ตฌ ์„ค๊ณ„ 8 2.2 ์—ฐ๊ตฌ ์ž๋ฃŒ 9 2.3 ์—ฐ๊ตฌ ๋Œ€์ƒ 11 2.4 ๋…ธ์ถœ๊ธฐ๊ฐ„ ์„ค์ • 23 2.5 ๊ฒฐ๊ณผ ๋ณ€์ˆ˜ 26 2.6 ๋ณ‘์šฉ ์•ฝ๋ฌผ 27 2.7 ์ธตํ™” ๋ถ„์„ 32 2.8 ๋ฏผ๊ฐ๋„ ๋ถ„์„ 33 2.9 ํ†ต๊ณ„ ๋ถ„์„ 34 3. ์—ฐ ๊ตฌ ๊ฒฐ ๊ณผ 35 3.1 ์—ฐ๊ตฌ ๋Œ€์ƒ์ž ์„ ์ • ๋ฐ ๊ธฐ์ดˆ ํŠน์„ฑ ํŒŒ์•… 35 3.2 ๋น„๋‡จ์ƒ์‹๊ธฐ๊ฐ์—ผ์˜ ๋ฐœ์ƒ 39 3.3 ์ธตํ™” ๋ถ„์„ 43 3.4 ๋ฏผ๊ฐ๋„ ๋ถ„์„ 49 4. ๊ณ  ์ฐฐ 58 5. ์š”์•ฝ ๋ฐ ๊ฒฐ ๋ก  65Maste

    Bone formation of the porous layer formed of Ti-Ag mesh for GBR membrane applications

    Get PDF
    ๋ณธ ์—ฐ๊ตฌ์˜ ๋ชฉ์ ์€ ๋งˆ์ดํฌ๋กœ ํ‘œ๋ฉด ์œ„์— ๋‚˜๋…ธ ๋‹จ์œ„์˜ ๋‹ค๊ณต์„ฑ ๊ตฌ์กฐ๋ฅผ ๊ฐ–๋Š” ํ‹ฐํƒ€๋Š„-์€ ๋ฉ”์‰ฌ๋ฅผ ์ œ์ž‘ํ•˜๊ณ  ๋ฉ”์‰ฌ์˜ ๊ณจ ํ˜•์„ฑ๋Šฅ์„ ํ‰๊ฐ€ํ•˜๋Š”๋ฐ ์žˆ๋‹ค. ์šฐ์„  ์‹œํŽธ ์ œ์ž‘์„ ์œ„ํ•ด cp-Ti์— ๋น„ํ•ด ๋ถ€์‹์ €ํ•ญ์„ฑ์ด ๋›ฐ์–ด๋‚œ ํ‹ฐํƒ€๋Š„-์€ ํ•ฉ๊ธˆ์„ ์€ 2.0 at%์„ ์ฒจ๊ฐ€์‹œ์ผœ ์ œ์ž‘ํ•˜์˜€๋‹ค. ๊ทธ๋ฆฌ๊ณ  ํ‘œ๋ฉด์— ๋‹ค๊ณต์„ฑ ๊ตฌ์กฐ๋ฅผ ํ˜•์„ฑํ•˜๊ธฐ ์œ„ํ•ด ์•Œ๋ฃจ๋ฏธ๋‚˜ ์ž…์ž๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์‹œํŽธ์„ ๋ธ”๋ผ์ŠคํŒ… ์ฒ˜๋ฆฌํ•œ ๋’ค 0.5% ๋ถˆ์‚ฐ ์ „ํ•ด์•ก์—์„œ 60๋ถ„ ๋™์•ˆ 20 V ์ „์••์„ ๊ฐ€ํ•˜์—ฌ ์–‘๊ทน์‚ฐํ™” ์ฒ˜๋ฆฌํ•˜์˜€๋‹ค. ์‹œํŽธ์˜ ํ‘œ๋ฉด ํ˜•ํƒœ๋Š” ์ฃผ์‚ฌ์ „์žํ˜„๋ฏธ๊ฒฝ์„ ํ†ตํ•ด ๊ด€์ฐฐํ•˜์˜€๋‹ค. ๊ณจ ํ˜•์„ฑ๋Šฅ์„ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•ด ํ† ๋ผ์˜ ๋‘๊ฐœ๊ณจ์„ ์ฒœ๊ณตํ•œ ๋’ค ํŒŒ์ ˆํŽธ์„ ์ œ๊ฑฐํ•˜๊ณ  ๊ทธ ์œ„์— ์‹œํŽธ์„ ์‹๋ฆฝํ•˜์˜€๋‹ค. ๊ฐ๊ฐ 2์ฃผ์™€ 4์ฃผ ๋’ค ๋ฉ”์‰ฌ ์ฃผ์œ„์˜ ๊ณจ ์กฐ์ง ํ˜•ํƒœ๋ฅผ 3D ์Šค์บ” ์ด๋ฏธ์ง€๋กœ ๊ด€์ฐฐํ•˜์˜€๊ณ  ์ƒ์„ฑ๋œ ๊ณจ์˜ ๋ถ€ํ”ผ๋ฅผ ์ธก์ •ํ•˜์˜€๋‹ค. ์‹œํŽธ ํ‘œ๋ฉด ํ˜•์ƒ ๊ด€์ฐฐ ๊ฒฐ๊ณผ ๋งˆ์ดํฌ๋กœ ๋‹จ์œ„์˜ ๋ฐ˜๊ตฌ ํ˜•ํƒœ ๊ตฌ์กฐ ์œ„์— ๋‚˜๋…ธ ๋‹จ์œ„์˜ ๋‹ค๊ณต์„ฑ ๊ตฌ์กฐ๋ฅผ ๊ด€์ฐฐํ•  ์ˆ˜ ์žˆ์—ˆ๊ณ , ๊ณจ ํ˜•์„ฑ๋Šฅ ๊ฒฐ๊ณผ์—์„œ๋Š” ๋Œ€์กฐ๊ตฐ์œผ๋กœ ๋ฉ”์‰ฌ๋ฅผ ์‹๋ฆฝํ•˜์ง€ ์•Š์€ ๊ฒฝ์šฐ์—์„œ ๋ณด๋‹ค ํ‹ฐํƒ€๋Š„-์€ ํ•ฉ๊ธˆ ๋ฉ”์‰ฌ๋ฅผ ์‹๋ฆฝํ•œ ๊ฒฝ์šฐ์—์„œ 2์ฃผ์™€ 4์ฃผ ๋ชจ๋‘ ์œ ์˜ํ•˜๊ฒŒ ๋” ๋งŽ์€ ๊ณจ ํ˜•์„ฑ๋Ÿ‰์„ ๋ณด์˜€๋‹ค(p<0.05). ๋”ฐ๋ผ์„œ ์ด ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋กœ ๋ฏธ๋ฃจ์–ด ๋ณด์•„ ํ‹ฐํƒ€๋Š„-์€ ํ•ฉ๊ธˆ์— ๋งˆ์ดํฌ๋กœ ํ‘œ๋ฉด ์œ„์— ๋‚˜๋…ธ ๋‹ค๊ณต์„ฑ ๊ตฌ์กฐ๋ฅผ ํ˜•์„ฑํ•  ์ˆ˜ ์žˆ์—ˆ์œผ๋ฉฐ ๊ณจ ํ˜•์„ฑ๋Šฅ ์—ญ์‹œ ์šฐ์ˆ˜ํ•˜์—ฌ ๊ณจ์œ ๋„ ์žฌ์ƒ์ˆ ์„ ์œ„ํ•œ ๋ฉ”์‰ฌ๋กœ์„œ ์œ ์šฉํ•˜๊ฒŒ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๋ผ๊ณ  ์‚ฌ๋ฃŒ๋œ๋‹ค.ope

    Echocardiographic Investigation of the Mechanism Underlying Abnormal Interventricular Septal Motion after Open Heart Surgery

    Get PDF
    BACKGROUND: Abnormal interventricular septal motion (ASM) is frequently observed after open heart surgery (OHS). The aim of this study was to investigate the incidence and temporal change of ASM, and its underlying mechanism in patients who underwent OHS using transthoracic echocardiography (TTE). METHODS: In total, 165 patients [60 ยฑ 13 years, 92 (56%) men] who underwent coronary bypass surgery or heart valve surgery were consecutively enrolled in a prospective manner. TTE was performed preoperatively, at 3--6-month postoperatively, and at the 1-year follow-up visit. Routine TTE images and strain analysis were performed using velocity vector imaging. RESULTS: ASM was documented in 121 of 165 patients (73%) immediately after surgery: 26 patients (17%) presented concomitant expiratory diastolic flow reversal of the hepatic vein, 11 (7%) had inferior vena cava plethora, and 11 (7%) had both. Only 2 patients (1%) showed clinically discernible constriction. ASM persisted 3--6 months after surgery in 38 patients (25%), but only in 23 (15%) after 1 year. There was no difference in preoperative and postoperative peak systolic strain of all segments of the left ventricle (LV) between groups with or without ASM. However, systolic radial velocity (VRad) of the mid anterior-septum and anterior wall of the LV significantly decreased in patients with ASM. CONCLUSION: Although ASM was common (74%) immediately after OHS, it disappeared over time without causing clinically detectable constriction. Furthermore, we consider that ASM might not be caused by myocardial ischemia, but by the decreased systolic VRad of the interventricular septum after pericardium incision.ope

    Prevalence and Clinical Characteristics of Pulmonary Arterial Hypertension in Human Immunodeficiency Virus-Infected Patients

    Get PDF
    Background/Aims: Human immunodeficiency virus-associated pulmonary arterial hypertension (HIV-PAH) is a complication of HIV infection. Due to improvements in HIV survival rates following the introduction of highly active antiretroviral therapy, HIV-PAH has become an important cause of HIV-related morbidity. Thus, the objective of this study was to explore the prevalence and characteristics of HIV-PAH. Methods: Ninety-two patients were enrolled in the study from March to August 2010. We investigated clinical characteristics and performed echocardiography. HIV-PAH was defined as having a mean pulmonary arterial pressure (mPAP)โ‰ฅ25 mmHg based on Mahan`s equation, without lung disease or heart disease. The HIV-PAH-possible group was defined as having a tricuspid regurgitation velocity (TRV) of 2.9-3.4 m/s and a pulmonary arterial systolic pressure (PASP) of 37-50 mmHg. Results: Fifteen patients (16.3%) met the criteria of HIV-PAH based on mPAP. With respect to TRV, six patients met the criteria of the HIV-PAH-possible group. Based on the criteria of mPAP, the duration of HIV infection was not different with or without HIV-PAH. HIV RNA titers and CD4 T cell counts tended to be higher in HIV-PAH patients (8,607ยฑ11 vs. 1,067ยฑ64 copies/mL, p=0.371; 471ยฑ148 vs. 499ยฑ252 cells/mm3, p=0.680, respectively). Echocardiographic indices of the right ventricle were significantly deteriorated in the HIV-PAH group as compared with the non-HIV-PAH group (TASPE: 20.52 vs. 23.2, p=0.001; Tei index: 0.42 vs. 0.39, p=0.037). In a multivariate regression analysis, HIV activity factors (HIV duration, HIV RNA titer, and CD4 cell count) were not associated with echocardiographic indices of PAH (mPAP, PASP, and pulmonary vascular resistance). Conclusions: In this study, the prevalence of HIV-PAH was comparable to that of previous studies.ope

    Studies on Ginkgo biloba (E)-4-Hydroxy-3-methylbut-(2)-enyl Diphosphate Reductase Gene and Promoter

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๋†์ƒ๋ช…๊ณตํ•™๋ถ€, 2013. 2. ๊น€์ˆ˜์–ธ.Isoprenoids, also known as terpenoids, are derived from the five-carbon building units isopentenyl diphophate (IPP) and its isomer dimethylallyl diphosphate (DMAPP). Even though they are synthesized in all living organisms, plants have more diverse and abundant isoprenoid compounds compared to others. Plants have two distinct isoprenoid biosynthetic pathways, 2-C-methyl-D-erythritol 4-phosphate (MEP) and mevalonic acid (MVA) pathways. In this study, plant IDS, the terminal enzyme in MEP pathway, is focused. Ginkgo biloba, one of the gymnosperm tree known as living fossil, has three copies of IDS genes. They are divided into two classes: GbIDS1 to class 1, and GbIDS2 and 2-1 to class 2. Each enzyme class is known to separately participate in primary and secondary metabolisms. In this research, promoter analysis and overexpression study of GbIDSs were performed respectively in Arabidopsis and poplar. The GbIDS1 and GbIDS2 promoters were fused with GUS protein and then introduced into Arabidopsis. GbIDS1pro::GUS transformant showed GUS expression in most organs except for roots, petals, and stamina, whereas GbIDS2pro::GUS was expressed only in the young leaves, internodes where the flower and shoot branched, and notably in primary root junction. This pattern of GUS expression correlated with high transcript level of GbIDS2 in Ginkgo roots compared to that of GbIDS. Methyl jasmonate (MeJA) treatment resulted in down-regulated GbIDS1pro activity in Arabidopsis leaves and upregulated GbIDS2pro activity in roots. The similar patterns of GUS activity in GbIDS2pro:: GUS Arabidopsis roots were also seen upon treatments of gibberellins (GA), abscisic acid (ABA), and indole butyric acid (IBA). Each of the GbIDS1 and GbIDS2 overexpression construct was introduced into poplars. Ten GbIDS1 overexpression lines were obtained while no transformants were made with GbIDS2. GbIDS1 transgenic poplars were taller than wild-type (WT) BH poplars by 25% and have 2 more leaves in indoor condition 7 weeks after potting in soil. Twenty five weeks after potting in outdoor nursery, GbIDS1 plants in pot gained height by 7% compared to BH, and showed delayed winter bud formation. In addition, overexpression of GbIDS1 gene led increase of chlorophyll and carotenoid contents by approximately 20% in transgenic poplars compared to WT poplars. Chlorophyll-related genes, CHS (chlorophyll synthase) and CAO (chlorophyll a oxidase) transcript levels were higher in transgenic poplars by 30% and 50% respectively. Transcript level analyses of GA biosynthetic genes, KS (kaurene synthase), GA20ox (gibberellin 20 oxidase), and GA2ox (gibberellin 2 oxidase), were performed in poplar. In this analysis, transcript levels of bioactive GA synthesis gene, KS and GA20ox, were up-regulated while GA inactivation gene, GA2ox, was down-regulated in transgenic poplars. In spite of signal peptide deletion, tGbIDS2 (truncated GbIDS2 devoid of signal peptide) targeted to the chloroplast. In the heterozygote Arabidopsis plants, overexpression of tGbIDS2 was previously reported to lead rapid growth and early flowering. However, in homozygote tGbIDS2 overexpression transgenic Arabidopsis in the current research, there were no significant phenotype changes compared to the Col-0 wild type (WT). Besides, little changes were observed in chlorophyll and carotenoids contents in transgenic and Col-0 Arabidopsis plants. On the other hand, transcript levels of floral genes and GA4 displayed differences between WT and transgenic Arabidopsis plants. CO (CONSTANTS) levels were up-regulated by 60% but FLC (FLOWERING LOCUS C), SOC1 (SUPPRESSOR OF OVEREXPRESSION OF CO1), and LFY (LEAFY) were down-regulated by 26%, 32%, and 24%, respectively. Also transcript level of GA4 gene increased by 56% in transgenic Arabidopsis, it infers decrease of GA amounts in transgenic Arabidopsis. Through these experiments, physiological differences of each GbIDS were examined, and applicability of GbIDSs for genetic engineering was evaluated.CONTENTS OVERALL ABSTRACT CONTENTS LIST OF FIGURES LIST OF TABLES LIST OFABBREVIATIONS LITERATURE REVIEW 1. Ginkgo biloba 2. Ginkgolides 3. Isoprenoid biosynthesis 4. MEP pathway in plants 5. (E)-4-Hydroxy-3-mehtylbut-2-enyl Diphosphate Reductase/Isopentenyl diphosphate synthase (HDR/IDS) in plants 6. GA biosynthesis 7. Flowering in Arabidopsis PART ะ†: Distinct expression patterns of two Ginkgo biloba (E)-4-Hydroxy-3-methylbut-2-enyl Diphosphate Reductase/Isopentyl Diphosphate Synthase (HDR/IDS) promoters in Arabidopsis model 1.1. ABSTRACT 1.2. INTRODUCTION 1.3. MATERIALS AND METHODS 1.3.1. Plants and growth condition 1.3.2. Isolation and analysis of GbIDS1 and GbIDS2 promoters 1.3.3. Construction of plasmids and Arabidopsis transformation 1.3.4. Histochemical GUS assay 1.3.5. GUS activity assay 1.3.6. RNA preparation and reverse transcription 1.3.7. Hormone treatments 1.3.8. RT-PCR and qRT-PCR 1.4. RESULTS 1.4.1. Isolation of GbIDS1 and GbIDS2 promoters 1.4.2. Histochemical analysis of GbIDSpro-driven GUS expression in Arabidopsis 1.4.3. Responsiveness of GbIDS promoters in Arabidopsis toward hormone treatments 1.4.4. Transcript distribution of GbIDS1 and GbIDS2 in Ginkgo 1.4.5. GbIDS1 and GbIDS2 transcript level changes in Ginkgo by MeJA and SA treatments 1.5. DISCUSSION 1.6. ABSTRACT IN KOREAN PART ฮ : Functional study of Ginkgo biloba (E)-4-Hydroxy-3-methylbut-2-enyl Diphosphate Reductase/Isopentenyl Diphosphate Synthase (HDR/IDS) gene in Poplar 2.1. ABSTRACT 2.2. INTRODUCTION 2.3. MATERIALS AND METHODS 2.3.1. Construction of plasmid 2.3.2. Poplar transformation and regeneration 2.3.3. Phenotypic assessment 2.3.4. Measurement of chlorophyll and carotenoid contents 2.3.5. RNA preparation and reverse transcription 2.3.6. qRT-PCR analysis 2.3.7. Statistical analysis 2.4. RESULTS 2.4.1. Establishment of transgenic poplars 2.4.2. RT-PCR analysis 2.4.3. Growth assessment of GbIDS1 overexpression poplar 2.4.4. Chlorophyll and carotenoid contents 2.4.5. Transcript level of chlorophyll related genes 2.4.6. Transcript level of GA related genes 2.5. DISCUSSION 2.6. ABSTRACT IN KOREAN PART ะจ: Functional analysis of truncated form Ginkgo biloba (E)-4-Hydroxy-3-methylbut-2-enyl Diphosphate Reductase/Isopentenyl Diphosphate Synthase (HDR/IDS) 2 gene in Arabidopsis 3.1. ABSTRACT 3.2. INTRODUCTION 3.3. MATERIALS AND METHODS 3.3.1. Construction of plasmid 3.3.2. Arabidopsis growth condition and transformation 3.3.3. Transient expression in Arabidopsis protoplast 3.3.4. Phenotypic assessment 3.3.5. Measurement of chlorophyll and carotenoid contents 3.3.6. RNA preparation and reverse transcription 3.3.7. qRT-PCR analysis 3.3.8. Statistical analysis 3.4. RESULTS 3.4.1. RT-PCR analysis 3.4.2. Targeting analysis of tGbIDS2 in Arabidopsis protoplasts 3.4.3. Growth and flowering time of tGbIDS2 overexpression transgenic Arabidopsis 3.4.4. Chlorophyll and carotenoid contents 3.4.5. Transcript levels of floral genes 3.4.6. Transcript level GA4 gene 3.5. DISCUSSION 3.6. ABSTRACT IN KOREAN OVERALL ABSTRACT IN KOREAN REFERENCESDocto

    Relationship between onset age of coronary heart disease and family histiry of coronary heat disease

    No full text
    ์—ญํ•™ ๋ฐ ๊ฑด๊ฐ•์ฆ์ง„ํ•™๊ณผ/์„์‚ฌ[ํ•œ๊ธ€] ์ด ์—ฐ๊ตฌ๋Š” ๊ด€์ƒ๋™๋งฅ ์งˆํ™˜์˜ ๊ฐ€์กฑ๋ ฅ ์žˆ๋Š” ์ง‘๋‹จ์—์„œ ๋‚˜ํƒ€๋‚˜๋Š” ์œ„ํ—˜์š”์ธ๋“ค์˜ ํŠน์„ฑ๋“ค์„ ์•Œ์•„๋ณด๊ณ , ๊ฐ€์กฑ๋ ฅ ์—ฌ๋ถ€๊ฐ€ ๊ด€์ƒ๋™๋งฅ ์งˆํ™˜์˜ ๋ฐœ์ƒ ์—ฐ๋ น์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ์•Œ์•„๋ณด๊ณ ์ž ํ•˜์˜€๋‹ค. ์—ฐ๊ตฌ ๋Œ€์ƒ์€ 1994๋…„ 7์›”๋ถ€ํ„ฐ 2003๋…„ 8์›” ๊นŒ์ง€ ์„œ์šธ ์†Œ์žฌ ์ข…ํ•ฉ๋ณ‘์›์—์„œ ๊ด€์ƒ๋™๋งฅ ์กฐ์˜์ˆ ์„ ์‹œํ–‰ํ•˜์—ฌ ๊ด€์ƒ๋™๋งฅ ์งˆํ™˜ ์ง„๋‹จ์„ ๋ฐ›์€ 4194๋ช…์ด์—ˆ๋‹ค. ์ž๋ฃŒ ์ˆ˜์ง‘์€ ์ง์ ‘ interview ๋ฐ chart review, ์ „ํ™” interview๋ฅผ ํ†ตํ•ด ๊ณ ํ˜ˆ์•• ์œ ๋ฌด, ํก์—ฐ ์œ ๋ฌด, ๋‹น๋‡จ์œ ๋ฌด, ์—ฌ์ž์˜ ๊ฒจ์šฐ ํ๊ฒฝ ์—ฌ๋ถ€, ๊ฐ€์กฑ๋ ฅ ์œ ๋ฌด, ๊ฐ€์กฑ๋ ฅ ์žˆ๋Š” ๊ฐ€์กฑ๊ณผ์˜ ๊ด€๊ณ„, ๊ฐ€์กฑ๋ ฅ ์žˆ๋Š” ๊ฐ€์กฑ์˜ ์ˆ˜, ๊ฐ€์กฑ๋ ฅ ์žˆ๋Š” ๊ฐ€์กฑ์˜ ์ง„๋‹จ๋ช… ๋“ฑ์„ ์กฐ์‚ฌํ•˜์˜€๊ณ , ์ž…์› ์‹œ ์ •๊ทœ ํ˜ˆ์•ก ๊ฒ€์‚ฌ๋ฅผ ํ†ตํ•˜์—ฌ ์ง€์งˆ ์ˆ˜์ค€์œผ๋กœ ์ด ์ฝœ๋ ˆ์Šคํ…Œ๋กค, ์ค‘์„ฑ์ง€๋ฐฉ, HDL- ์ฝœ๋ ˆ์Šคํ…Œ๋กค, LDL-์ฝœ๋ ˆ์Šคํ…Œ๋กค, ํ˜ˆ์•ก ์‘๊ณ  ์ธ์ž๋กœ๋Š” Fibrinogen, tissue Plasminogen Activator (t-PA), Plasminogen Activator Inhibitor (PAI-1), ์ง€๋‹จ๋ฐฑ ์ˆ˜์ค€์œผ๋กœ๋Š” Apolipoprotein A1(Apo-A1), Apolipoprotein B(Apo-B), Lipoprotein a(Lp a) ์™€, Homocystein์„ ํฌํ•จ์‹œํ‚ค๊ณ , inflammatory marker๋กœ C-reactive protein (CRP)๋ฅผ ์กฐ์‚ฌํ•˜์˜€๋‹ค. ํ†ต๊ณ„ ๋ถ„์„์€ SAS Ver. 8.1์„ ์‚ฌ์šฉ ํ•˜์˜€๋‹ค. ์—ฐ๊ตฌ ๊ฒฐ๊ณผ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. ์ฒซ์งธ, ๊ด€์ƒ๋™๋งฅ ์งˆํ™˜์˜ ๊ฐ€์กฑ๋ ฅ์ด ์žˆ๋Š” ์ง‘๋‹จ์—์„œ๋Š” ๊ด€์ƒ๋™๋งฅ ์งˆํ™˜์˜ ๋ฐœ์ƒ ์—ฐ๋ น์ด ๊ฐ€์กฑ๋ ฅ์ด ์—†๋Š” ์ง‘๋‹จ์— ๋น„ํ•ด ๋‚จ๋…€ ๊ฐ๊ฐ ์•ฝ 3-4์„ธ ๋‚ฎ์•˜๋‹ค. ๋‘˜์งธ, ์—ฐ๋ น์„ ํ†ต์ œํ•˜์—ฌ ๊ฐ€์กฑ๋ ฅ ์œ ๋ฌด์— ๋”ฐ๋ผ ๋‘ ๊ตฐ์œผ๋กœ ๋‚˜๋ˆ„์–ด ๋‹ค๋ฅธ ์œ„ํ—˜์š”์ธ์„ ๋น„๊ต ํ•˜์˜€์„ ๋•Œ, ๊ฐ€์กฑ๋ ฅ์ด ์žˆ๋Š” ๋‚จ์ž ๊ตฐ์—์„œ ํ‚ค, ์ด์ฝœ๋ ˆ์Šคํ…Œ๋กค, LDL-์ฝœ๋ ˆ์Šคํ…Œ๋กค, LDL/HDL, Apo-B๊ฐ€ ๊ฐ€์กฑ๋ ฅ์ด ์—†๋Š” ๋‚จ์ž ๊ตฐ์— ๋น„ํ•ด ๋†’์•˜๋‹ค. ์…‹์งธ, ์ง€์งˆ ์ˆ˜์ค€๊ณผ ํก์—ฐ ๋“ฑ์˜ ์ค‘์š” ์œ„ํ—˜ ์š”์ธ๋“ค์ด ๊ฐ™์€ ์กฐ๊ฑด์ผ ๋•Œ ๊ฐ€์กฑ๋ ฅ์ด ์žˆ๋Š” ๊ตฐ์—์„œ ์—†๋Š” ๊ตฐ์— ๋น„ํ•ด ๊ด€์ƒ๋™๋งฅ ๋ฐœ์ƒ ์—ฐ๋ น์ด ๋‚ฎ์•˜๋‹ค. ๋„ท์งธ, ๊ฐ€์กฑ๋ ฅ์€ ๊ด€์ƒ๋™๋งฅ ์งˆํ™˜์˜ ๋ฐœ์ƒ ์—ฐ๋ น์„ ์•ฝ 4์„ธ ์ •๋„ ๋‚ฎ์ถ”๋Š” ๋…๋ฆฝ์  ์œ„ํ—˜์ธ์ž์ด๋‹ค. ์ด์ƒ์˜ ์—ฐ๊ตฌ๊ฒฐ๊ณผ๋ฅผ ์ข…ํ•ฉํ•˜์—ฌ ๋ณด๋ฉด, ๋‚จ์ž์— ์žˆ์–ด์„œ ๊ฐ€์กฑ๋ ฅ๊ณผ ์ง€์งˆ ์ˆ˜์ค€์—์„œ ์—ฐ๊ด€์„ฑ์„ ๋ณด์ด๊ณ  ์žˆ์œผ๋ฉฐ, ๊ฐ€์กฑ๋ ฅ์€ ๊ด€์ƒ๋™๋งฅ ์งˆํ™˜์˜ ๋ฐœ์ƒ ์—ฐ๋ น์— ์˜ํ–ฅ์„ ์ฃผ๋Š” ๋…๋ฆฝ์  ์š”์ธ์ด๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ์•ž์œผ๋กœ ๊ด€์ƒ๋™๋งฅ ์งˆํ™˜์˜ ๊ฐ€์กฑ๋ ฅ๊ณผ ์—ฐ๊ด€๋˜์–ด ์ฃผ์š” ์œ ์ „์ž๋ฅผ ์ฐพ๋Š” ์—ฐ๊ตฌ์˜ ๊ธฐ์ดˆ๊ฐ€ ๋˜๊ณ  ๊ด€์ƒ๋™๋งฅ ์งˆํ™˜์˜ ๊ณ  ์œ„ํ—˜ ๊ฐ€์กฑ์— ์žˆ์–ด ์˜ˆ๋ฐฉ ๋ฐ ๊ด€๋ฆฌ์˜ ์ง€์นจ์„ ์„ธ์šฐ๋Š”๋ฐ ๋„์›€์ด ๋  ๊ฒƒ์ด๋‹ค. [์˜๋ฌธ]The aim of this study was to investigate relationship between onset age of coronary heart disease and family history of coronary heart disease. We analyzed the major risk factors in 4194 coronary heart disease patients. 247 subjects (6%)had family history of coronary heart disease(FCAD), 3947 subjects had not family history(NFCAD). The patients were diagnosed as coronary heart disease by coronary angiography at the Samsung Medical Center from Jun 1994 to Aug 2003. The mean age of the group of FCAD was significantly younger than that of the group of NFCAD. The means of Total cholesterol (TC), LDL-cholesterol, the ratio of LDL/HDL and Apo-B were significantly higher in the group of male with family history of coronary heart disease, not in the group of female. In the same condition of other risk factors (lipid profile and smoking), the onset age of coronary heart disease was lower r in the group FCAD. this study showed family history influenced onset age of coronary heart disease to be earlier for 4 year by the multivariate regression analysis. In the conclusion, the group of FCAD showed significantly younger age, higher TC, LDL, LDL/HDL and Apo-B compared with those of the group of NFCAD in the male patients, suggesting a genetic predisposition related to TC and LDL metabolism especially in male patients. and family history was found to be an independent factor for earlier onset age of coronary heart disease.prohibitio

    Relationship between the formation of N-type Ca2+ channels and dopamine release in the differentiation of dopaminergic

    No full text
    ์˜๊ณผํ•™๊ณผ/์„์‚ฌ[ํ•œ๊ธ€]ํŒŒํ‚จ์Šจ์”จ๋ณ‘์€ ์ค‘๋‡Œ์˜ ํ‘์ƒ‰์งˆ ์น˜๋ฐ€๋ถ€(substantia nigra pars compacta, SNpc)์— ์žˆ๋Š” ๋„ํŒŒ๋ฏผ์‹ ๊ฒฝ์„ธํฌ์˜ ์†์‹ค์— ์˜ํ•ด ๋‚˜ํƒ€๋‚˜๋Š” ๋Œ€ํ‘œ์ ์ธ ์‹ ๊ฒฝํ‡ดํ–‰์„ฑ ์งˆํ™˜์ด๋‹ค. ์˜ˆ์ „๋ถ€ํ„ฐ ํŒŒํ‚จ์Šจ์”จ๋ณ‘์„ ์น˜๋ฃŒํ•˜๊ธฐ ์œ„ํ•œ ์—ฐ๊ตฌ๊ฐ€ ์ง„ํ–‰๋˜์–ด ์™”์œผ๋ฉฐ, ์ตœ๊ทผ์— ์„ธํฌ์น˜๋ฃŒ์˜ ์ƒˆ๋กœ์šด ์žฌ๋ฃŒ๋กœ ์ค„๊ธฐ์„ธํฌ๊ฐ€ ๋Œ€๋‘๋˜์–ด ์—ฐ๊ตฌ๊ฐ€ ํ™œ๋ฐœํžˆ ์ง„ํ–‰๋˜๊ณ  ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์‹ค์—์„œ๋„ ์ฅ์˜ ๋ฐฐ์•„์ค„๊ธฐ์„ธํฌ์—์„œ ๋ถ„ํ™”์‹œํ‚จ ๋„ํŒŒ๋ฏผ ์‹ ๊ฒฝ์„ธํฌ(๋˜๋Š” ์ „๊ตฌ์ฒด)๋ฅผ ํŒŒํ‚จ์Šจ์”จ๋ณ‘ ๋™๋ฌผ๋ชจ๋ธ์˜ ์„ ์กฐ์ฒด์— ์ด์‹ํ•œ ํ›„, ์šด๋™ ๊ธฐ๋Šฅ ํšŒ๋ณต์„ ํ™•์ธํ•œ ๋…ผ๋ฌธ์„ ๋ฐœํ‘œํ•˜์˜€์œผ๋ฉฐ, ๊พธ์ค€ํžˆ ๋ฐฐ์•„์ค„๊ธฐ์„ธํฌ๋ฅผ ์ด์šฉํ•œ ํŒŒํ‚จ์Šจ์”จ๋ณ‘ ์น˜๋ฃŒ๊ฐ€๋Šฅ์„ฑ์ด ๋™๋ฌผ๋ชจ๋ธ์„ ํ†ตํ•ด ํ™•์ธ๋˜์–ด์ง€๊ณ  ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋ฐฐ์•„์ค„๊ธฐ์„ธํฌ๋กœ๋ถ€ํ„ฐ ๋ถ„ํ™”์‹œํ‚จ ๋„ํŒŒ๋ฏผ ์‹ ๊ฒฝ์„ธํฌ๊ฐ€ ์ƒ์ฒด๋‚ด๋กœ ์ด์‹ ํ›„ ์–ด๋– ํ•œ ์„ธํฌ ์ƒ๋ฆฌํ•™์ ์ธ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ํ†ตํ•ด ๋„ํŒŒ๋ฏผ์„ ๋ถ„๋น„ํ•˜๋Š”์ง€์— ๊ด€ํ•œ ์—ฐ๊ตฌ๋Š” ๋ฏธ๋น„ํ•œ ์‹ค์ •์ด๋‹ค. ๋„ํŒŒ๋ฏผ ์‹ ๊ฒฝ์„ธํฌ์—์„œ ๋„ํŒŒ๋ฏผ์˜ ๋ถ„๋น„๋Š” ์„ธํฌ๋ง‰์˜ ํƒˆ๋ถ„๊ทน์— ์˜ํ•ด Ca2+ ์ฑ„๋„์ด ์—ด๋ ค ์ด๋ฅผ ํ†ตํ•ด ์„ธํฌ์™ธ๋ถ€์—์„œ ์œ ์ž…๋œ Ca2+ ions์— ์˜ํ•ด ์œ ๋„๋œ๋‹ค. ์ด์— ๋ณธ ์—ฐ๊ตฌ๋Š” ์ฅ์˜ ๋ฐฐ์•„์ค„๊ธฐ์„ธํฌ์—์„œ ๋ถ„ํ™”์‹œํ‚จ ๋„ํŒŒ๋ฏผ ์‹ ๊ฒฝ์„ธํฌ์—์„œ ์ „๊ธฐ์ƒ๋ฆฌํ•™์ ์ธ ๋ฐฉ๋ฒ•๊ณผ ๋ฉด์—ญ์—ผ์ƒ‰๋ฒ•์„ ํ†ตํ•ด Ca2+ ์ฑ„๋„๊ณผ ๋„ํŒŒ๋ฏผ ๋ถ„๋น„์™€์˜ ๊ด€๊ณ„๋ฅผ ์•Œ์•„๋ณด๊ณ ์ž ํ•˜์˜€๋‹ค. Ca2+ ratiometic ใ€”Ca2+ใ€•i ์ธก์ •๋ฒ•์„ ํ†ตํ•ด ๋ง‰์ „์•• ํƒˆ๋ถ„๊ทน์— ์˜ํ•œ ์„ธํฌ๋‚ด Ca2+ ๋†๋„์˜ ์ฆ๊ฐ€๋ฅผ ํ™•์ธํ•˜๊ณ , HPLC๋ฅผ ํ†ตํ•ด ๋„ํŒŒ๋ฏผ์˜ ๋ถ„๋น„๋Ÿ‰์ด ์ฆ๊ฐ€ํ•œ ๊ฒƒ์„ ๊ด€์ฐฐํ•จ์œผ๋กœ์จ ์„ธํฌ๋‚ด ์œ ์ž…๋œ Ca2+ ions์ด ๋„ํŒŒ๋ฏผ์˜ ๋ถ„๋น„์— ๊ด€์—ฌํ•˜๋Š” ๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋ฐ˜๋ฉด์—, N-type Ca2+ channel blocker์ธ ฯ‰-conotoxin GVIA๋ฅผ KCl๊ณผ ๊ฐ™์ด ์ฒ˜๋ฆฌํ•œ ๊ทธ๋ฃน์€ KCl๋งŒ ์ฒ˜๋ฆฌํ•œ ๊ทธ๋ฃน๋ณด๋‹ค ๋„ํŒŒ๋ฏผ ๋ถ„๋น„๋Ÿ‰์ด ๊ฐ์†Œํ•œ ๊ฒƒ์œผ๋กœ ๋ณด์•„, ์ฅ์˜ ๋ฐฐ์•„์ค„๊ธฐ์„ธํฌ์—์„œ ๋ถ„ํ™”ํ•œ ๋„ํŒŒ๋ฏผ์‹ ๊ฒฝ์„ธํฌ์— N-type Ca2+ channel์ด ํ˜•์„ฑ๋˜์–ด ๊ธฐ๋Šฅ์„ ํ•˜๊ณ  ์žˆ์Œ์„ ์•Œ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋˜ํ•œ Whole cell ๋ง‰์ „์•• ๊ณ ์ •๋ฒ•๊ณผ ํ˜•๊ด‘๋ฉด์—ญ์—ผ์ƒ‰์„ ํ†ตํ•ด์„œ๋„ N-type Ca2+ channel์ด ํ˜•์„ฑ๋œ ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ ๊ฒฐ๊ณผ๋กœ ๋ณผ๋•Œ, ์ฅ์˜ ๋ฐฐ์•„์ค„๊ธฐ์„ธํฌ์—์„œ ๋ถ„ํ™”์‹œํ‚จ ๋„ํŒŒ๋ฏผ์‹ ๊ฒฝ์„ธํฌ์— N-type Ca2+ channel์ด ํ˜•์„ฑ๋˜์–ด ๋„ํŒŒ๋ฏผ์˜ ๋ถ„๋น„์— ๊ด€์—ฌํ•จ์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค. [์˜๋ฌธ]Parkinson's disease (PD) is the most common neurodegenerative disease caused by loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) of the midbrain. For decades there have been many attempts to develop proper treatments for this disease. Recently, with the new technology of stem cells, research on cell therapy has been accelerated. We have also confirmed the recovery of motor function after implanting dopaminergic neurons (or precursors) derived from mouse embryonic stem (ES) cells into striatum of PD animal models, as feasible treatments applying stem cell technology have been identified. However, the physiological mechanism of dopamine (DA) release in response to transplantation of dopaminergic neurons derived from mouse ES cells is uncertain. DA release in dopaminergic neurons is induced by Ca2+ ion influx through Ca2+ channels in response to membrane depolarization. Herein, the purpose is to elucidate the relationship between Ca2+ channels and DA release in dopaminergic neurons derived from mouse ES cells by electrophysiological experiments and immunostaining. Firstly, the attempt to clarify the increase in DA release observed by HPLC made it clear that the influx of Ca2+ ions induced DA release. Secondly, decrease in DA release was observed with conotoxin GVIA (N-type Ca2+ channel blocker) with a KCl group compared to the KCl group only. This implies that the N-type Ca2+ channels formed in dopaminergic neurons derived from mouse ES cells function properly. Furthermore, N-type Ca2+ channels were identified with the whole cell patch clamp technique and immunofluorescence-staining. These results lead to the conclusion that the N-type Ca2+ channels were formed in dopaminergic neurons derived from mouse ES cells and that Ca2+ channels activated by Ca2+ ion influx in response to membrane depolarization caused DA release.ope

    ์“ฐ๊ธฐ ์œค๋ฆฌ ๊ต์œก์˜ ๋‚ด์šฉ ์—ฐ๊ตฌ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ตญ์–ด๊ต์œก๊ณผ(๊ตญ์–ด๊ต์œก์ „๊ณต), 2013. 8. ๊น€์ข…์ฒ .๋ณธ ์—ฐ๊ตฌ์˜ ๋ชฉ์ ์€ ๊ตญ์–ด๊ณผ ๊ต์œก์˜ ๋‚ด์šฉ์œผ๋กœ์„œ ์“ฐ๊ธฐ ์œค๋ฆฌ์— ๋Œ€ํ•œ ๊ตฌ์ฒด์ ์ธ ๊ต์œก ๋ฐฉ์•ˆ์„ ๊ตฌ์•ˆํ•˜๋Š” ๋ฐ ์žˆ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ๋ณธ๊ณ ์—์„œ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์€ ์—ฐ๊ตฌ ๋ฌธ์ œ๋ฅผ ์„ค์ •ํ•˜์˜€๋‹ค. ์ฒซ์งธ, ์šฐ๋ฆฌ์˜ ์ „ํ†ต์ ์ธ ์–ธ์–ด๋ฌธํ™”์™€ ํ•™์ƒ๋“ค์—๊ฒŒ ํ•„์š”ํ•œ ํ•ต์‹ฌ ์—ญ๋Ÿ‰ ๋“ฑ์„ ๊ณ ๋ คํ•  ๋•Œ, ๊ตญ์–ด๊ณผ ๊ต์œก์—์„œ ๋‹ค๋ฃจ์–ด์•ผ ํ•  ์“ฐ๊ธฐ ์œค๋ฆฌ์˜ ๊ฐœ๋… ๋ฐ ํŠน์„ฑ์€ ๋ฌด์—‡์ธ๊ฐ€? ๋‘˜์งธ, ์“ฐ๊ธฐ ์œค๋ฆฌ์˜ ์‹ค์ฒœ์— ๊ด€์—ฌํ•˜๋Š” ์š”์†Œ์™€ ํ•˜์œ„ ๋ฒ”์ฃผ๋Š” ์–ด๋–ป๊ฒŒ ๊ทœ์ •ํ•  ์ˆ˜ ์žˆ๋Š”๊ฐ€? ์…‹์งธ, ์“ฐ๊ธฐ ์œค๋ฆฌ ๊ต์œก์˜ ๋ชฉํ‘œ๋Š” ๋ฌด์—‡์ด๋ฉฐ, ๊ตฌ์ฒด์ ์ธ ๊ต์œก ๋‚ด์šฉ์€ ์–ด๋–ป๊ฒŒ ๊ตฌ์„ฑํ•  ์ˆ˜ ์žˆ๋Š”๊ฐ€? ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ธํ„ฐ๋„ท๊ณผ ๊ฐ™์€ ๋งค์ฒด๋ฅผ ํ†ตํ•˜์—ฌ ๊ฒ€์ƒ‰ํ•œ ์ž๋ฃŒ๋ฅผ ๊ธ€์“ฐ๊ธฐ์— ํ™œ์šฉํ•˜๋Š” ๋ฐฉ์‹์ด ๋ณดํŽธํ™”ํ•˜๊ณ  ์žˆ๊ณ , ์ด ๊ณผ์ •์—์„œ ํ‘œ์ ˆ๊ณผ ๊ฐ™์€ ์“ฐ๊ธฐ ์œค๋ฆฌ ๋ฌธ์ œ๊ฐ€ ์ฒจ์˜ˆํ•˜๊ฒŒ ๋“œ๋Ÿฌ๋‚œ๋‹ค๋Š” ์ ์— ์ฃผ๋ชฉํ•˜์—ฌ ์ž๋ฃŒ ํ†ตํ•ฉ์  ๊ธ€์“ฐ๊ธฐ๋ฅผ ๋…ผ์˜์˜ ์ฃผ๋œ ๋Œ€์ƒ์œผ๋กœ ์‚ผ์•˜๋‹ค. ์—ฐ๊ตฌ ๋ฐฉ๋ฒ•์œผ๋กœ๋Š” ๋ฌธํ—Œ ์—ฐ๊ตฌ์™€ ์งˆ์  ๋‚ด์šฉ ๋ถ„์„(qualitative content analysis) ๋ฐฉ๋ฒ•์„ ํ™œ์šฉํ•˜์˜€๋‹ค. ๋จผ์ € ๋ฌธํ—Œ ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด ๋งํ•˜๊ธฐ์™€ ์“ฐ๊ธฐ์—์„œ์˜ ์œค๋ฆฌ์— ๋Œ€ํ•œ ๋…ผ์˜๋ฅผ ๊ณ ์ฐฐํ•˜์˜€๊ณ , ์“ฐ๊ธฐ ๊ณผ์ •์—์„œ ์œค๋ฆฌ์  ์š”์†Œ์˜ ๊ด€๋ จ ์–‘์ƒ์— ๋Œ€ํ•œ ๋ถ„์„ํ‹€์„ ๊ฐœ๋ฐœํ•˜๊ธฐ ์œ„ํ•ด, ๋ ˆ์ŠคํŠธ์˜ 4-๊ตฌ์„ฑ ์š”์†Œ ๋ชจํ˜•(Four-Component Model)๊ณผ ์œค๋ฆฌ์  ์ •์ฒด์„ฑ(moral identity) ์ด๋ก ์˜ ์ ํ•ฉ์„ฑ์— ๋Œ€ํ•ด ๊ฒ€ํ† ํ•˜์˜€๋‹ค. ์งˆ์  ๋‚ด์šฉ ๋ถ„์„ ๋ฐฉ๋ฒ•์€ ๊ณ ๋“ฑํ•™๊ต 1, 2ํ•™๋…„ ํ•™์ƒ๋“ค์ด ์ž‘์„ฑํ•œ 173ํŽธ์˜ ๊ธ€๊ณผ ์“ฐ๊ธฐ ๊ณผ์ •์—์„œ ํ™œ์šฉํ•œ ํ•™์Šต์ง€ ๋ฐ ์‹ฌ์ธต ์„ค๋ฌธ์ง€์˜ ๋ถ„์„์— ์ ์šฉํ•˜์˜€๋‹ค. โ…ก์žฅ์—์„œ๋Š” ์œ ๊ต์  ์†Œํ†ต ๋ฌธํ™”์™€ ์ˆ˜์‚ฌํ•™์˜ ๋…ผ์˜๋ฅผ ๊ณ ์ฐฐํ•˜์—ฌ, ์“ฐ๊ธฐ ์œค๋ฆฌ์— ๋Œ€ํ•œ ๊ฐœ๋… ๋ฐ ํŠน์„ฑ์„ ๊ทœ์ •ํ•˜์˜€๋‹ค. ์“ฐ๊ธฐ ์œค๋ฆฌ ๊ต์œก์€ ์œค๋ฆฌ ์˜์‹ ๊ทธ ์ž์ฒด๋ณด๋‹ค๋Š” ์“ฐ๊ธฐ ์œค๋ฆฌ๋ฅผ ์ค€์ˆ˜ํ•˜๋ฉฐ ๊ธ€์„ ์“ฐ๋Š” ๋Šฅ๋ ฅ์„ ๊ธธ๋Ÿฌ์ฃผ์–ด์•ผ ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๊ด€์ ์—์„œ ์—ฐ๊ตฌ์ž๋Š” ์œค๋ฆฌ์  ๊ธ€์“ฐ๊ธฐ๋ฅผ ์“ฐ๊ธฐ ์œค๋ฆฌ์˜ ์‹ค์ฒœ์œผ๋กœ ๊ฐ„์ฃผํ•˜๊ณ  ํ•„์ž๊ฐ€ ํ…์ŠคํŠธ์˜ ์œค๋ฆฌ์„ฑ์„ ๊ฐ–์ถ”๊ธฐ ์œ„ํ•ด, ์“ฐ๊ธฐ ์œค๋ฆฌ๋ฅผ ์ง€ํ‚ค๋ฉด์„œ ๊ธ€์„ ์“ฐ๋Š” ๊ณผ์ • ๋˜๋Š” ํ–‰์œ„๋กœ ์ •์˜ํ•˜์˜€๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์œค๋ฆฌ์  ๊ธ€์“ฐ๊ธฐ์˜ ๊ตฌ์„ฑ ์š”์†Œ๋ฅผ ํ–‰์œ„ ์ฃผ์ฒด์˜ ์œค๋ฆฌ์  ์‹ค์ฒœ, ํ…์ŠคํŠธ์˜ ์œค๋ฆฌ์„ฑ, ๋‹ดํ™”๊ณต๋™์ฒด์˜ ์“ฐ๊ธฐ ์œค๋ฆฌ ๊ด€๋ จ ๋งฅ๋ฝ์œผ๋กœ ์„ค์ •ํ•˜์˜€์œผ๋ฉฐ, ์ž๋ฃŒ ํ†ตํ•ฉ์  ํ…์ŠคํŠธ ์“ฐ๊ธฐ๋ฅผ ์˜ˆ๋กœ ๋“ค์–ด ์ด๋Ÿฌํ•œ ๊ตฌ์„ฑ ์š”์†Œ๋“ค์ด ์‹ค์ œ์ ์ธ ๊ธ€์“ฐ๊ธฐ์—์„œ ์–ด๋–ป๊ฒŒ ์ƒํ˜ธ์ž‘์šฉํ•˜๋Š”์ง€ ์‚ดํŽด๋ณด์•˜๋‹ค. โ…ข์žฅ์—์„œ๋Š” ํ•™์ƒ๋“ค์ด ์ž‘์„ฑํ•œ ํ…์ŠคํŠธ์— ๋Œ€ํ•œ ๋‚ด์šฉ ๋ถ„์„ ๊ฒฐ๊ณผ๋ฅผ ์ œ์‹œํ•˜์˜€๋‹ค. ์œค๋ฆฌ์  ๊ธ€์“ฐ๊ธฐ์˜ ๊ต์œก ๋‚ด์šฉ์„ ์„ค๊ณ„ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๋จผ์ € ์“ฐ๊ธฐ ๊ณผ์ •์—์„œ ์“ฐ๊ธฐ ์œค๋ฆฌ๊ฐ€ ์–ด๋–ป๊ฒŒ ๊ด€๋ จ๋˜๋Š”์ง€ ์‚ดํŽด๋ณด๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•˜๋‹ค. ๋”ฐ๋ผ์„œ 1์ ˆ์—์„œ๋Š” ์“ฐ๊ธฐ ๊ณผ์ œ ๋ถ„์„ ๋‹จ๊ณ„, ์ž๋ฃŒ ์ฝ๊ธฐ ๋ฐ ๊ด€์  ์ •๋ฆฝ ๋‹จ๊ณ„, ๋‚ด์šฉ ์„ ์ • ๋ฐ ์กฐ์ง ๋‹จ๊ณ„, ์ž๋ฃŒ ํ†ตํ•ฉ ๋ฐ ํ‘œํ˜„ ๋‹จ๊ณ„, ๊ณ ์ณ์“ฐ๊ธฐ ๋‹จ๊ณ„์— ๋”ฐ๋ฅธ ์“ฐ๊ธฐ ์œค๋ฆฌ์˜ ๊ด€๋ จ ์–‘์ƒ์„ ๋ถ„์„ํ•˜์˜€๋‹ค. 2์ ˆ์—์„œ๋Š” ์œค๋ฆฌ์  ๊ธ€์“ฐ๊ธฐ์— ์˜ํ–ฅ์„ ๋ฏธ์น  ์ˆ˜ ์žˆ๋Š” ํ•„์ž์˜ ๊ฐœ์ธ์  ํŠน์„ฑ์„ ์‚ดํŽด๋ณด์•˜์œผ๋ฉฐ, ํ•˜์œ„ ํ•ญ๋ชฉ์€ ์“ฐ๊ธฐ์˜ ์œค๋ฆฌ์  ์ธก๋ฉด์— ๋Œ€ํ•œ ๋ฏผ๊ฐ์„ฑ, ํ•„์ž๋กœ์„œ์˜ ์œค๋ฆฌ์  ์ •์ฒด์„ฑ ๋ฐ ์œค๋ฆฌ์  ์ •์„œ, ๋ฌธ์ œ ํ•ด๊ฒฐ์— ํ•„์š”ํ•œ ์œค๋ฆฌ์  ํŒ๋‹จ๋ ฅ, ์“ฐ๊ธฐ ํšจ๋Šฅ๊ฐ๊ณผ ์ž๊ธฐ ๊ทœ์ œ ๋Šฅ๋ ฅ์ด๋ฉฐ, ์ด๋Ÿฌํ•œ ํ•ญ๋ชฉ๋“ค์€ ๋ ˆ์ŠคํŠธ์˜ ์ด๋ก ๊ณผ ์œค๋ฆฌ์  ์ •์ฒด์„ฑ ์ด๋ก ์„ ํ™œ์šฉํ•˜์—ฌ ๊ตฌ์„ฑํ•˜์˜€๋‹ค. ํ•™์ƒ๋“ค์ด ์œค๋ฆฌ์  ๊ธ€์“ฐ๊ธฐ์— ๋Œ€ํ•œ ๋‹ดํ™”๊ณต๋™์ฒด์˜ ์˜ํ–ฅ์œผ๋กœ ์–ธ๊ธ‰ํ•œ ๋‚ด์šฉ๋“ค์€ ์ฃผ๋กœ ๊ตญ์–ด ์ˆ˜์—…๊ณผ ๊ด€๋ จ๋˜์–ด ์žˆ์œผ๋ฏ€๋กœ, 3์ ˆ์€ ๋‹ดํ™”๊ณต๋™์ฒด๋กœ์„œ์˜ ๊ตญ์–ด ์ˆ˜์—…, ๊ต์‚ฌ์˜ ํ‰๊ฐ€ ์šด์˜ ๋ฐฉ์‹๊ณผ ์œค๋ฆฌ์  ๋™๊ธฐํ™”๋กœ ๊ตฌ์„ฑํ•˜์˜€๋‹ค. โ…ฃ์žฅ์—์„œ๋Š” โ…ข์žฅ๊นŒ์ง€์˜ ๋…ผ์˜๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์“ฐ๊ธฐ ์œค๋ฆฌ ๊ต์œก์˜ ๋‚ด์šฉ์„ ์„ค๊ณ„ํ•˜์˜€๋‹ค. ๋จผ์ € ์“ฐ๊ธฐ ์œค๋ฆฌ ๊ต์œก์˜ ๋ชฉํ‘œ๋กœ ํ•ต์‹ฌ ์—ญ๋Ÿ‰์œผ๋กœ์„œ์˜ ์œค๋ฆฌ์  ๊ธ€์“ฐ๊ธฐ ๋Šฅ๋ ฅ, ํ•„์ž์˜ ์œค๋ฆฌ์  ์ •์ฒด์„ฑ ํ˜•์„ฑ๊ณผ ์ธ์„ฑ๊ต์œก, ๋‹ดํ™”๊ณต๋™์ฒด์˜ ์œค๋ฆฌ์  ์†Œํ†ต ๋ฌธํ™” ํ˜•์„ฑ ๋ฐ ์†Œํ†ต์˜ ์ƒ์‚ฐ์„ฑ ์ œ๊ณ  ๋“ฑ ์„ธ ๊ฐ€์ง€๋ฅผ ์„ค์ •ํ•˜์˜€๋‹ค. ์“ฐ๊ธฐ ์œค๋ฆฌ ๊ต์œก์˜ ๋‚ด์šฉ ๋ฒ”์ฃผ๋Š” ํ•„์ž๋กœ์„œ์˜ ์ •์ฒด์„ฑ, ๋Œ€์ƒ๊ณผ์˜ ๊ด€๊ณ„ ํ˜•์„ฑ, ์†Œํ†ต์  ํ•ฉ๋ฆฌ์„ฑ์œผ๋กœ ๊ตฌ์„ฑํ•˜๊ณ , ๊ฐ ๋ฒ”์ฃผ์— ๋”ฐ๋ฅธ ๊ต์œก ๋‚ด์šฉ์„ ์ƒ์„ธํ™”ํ•˜์˜€๋‹ค.โ… . ์„œ๋ก  1 1. ์—ฐ๊ตฌ์˜ ๋ชฉ์ ๊ณผ ํ•„์š”์„ฑ 1 2. ์—ฐ๊ตฌ์‚ฌ 6 3. ์—ฐ๊ตฌ ๋ฐฉ๋ฒ• 11 II. ์“ฐ๊ธฐ ์œค๋ฆฌ ๊ต์œก์˜ ์ด๋ก ์  ๋ฐฐ๊ฒฝ 17 1. ์“ฐ๊ธฐ ์œค๋ฆฌ์— ๋Œ€ํ•œ ํ•™์ œ์  ์ ‘๊ทผ 17 1) ์ „ํ†ต์  ์†Œํ†ต ๋ฌธํ™”์™€ ์œค๋ฆฌ 17 (1) ์ธ(ไป)๊ณผ ์˜ˆ(๏ฆถ)๋ฅผ ํ†ตํ•œ ์œค๋ฆฌ์  ์†Œํ†ต 19 (2) ํ•„์ž์˜ ์œค๋ฆฌ์„ฑ๊ณผ ๊ธ€์˜ ์œค๋ฆฌ์„ฑ 21 2) ์ˆ˜์‚ฌํ•™๊ณผ ์œค๋ฆฌ 25 (1) ์†Œํ†ต ํ–‰์œ„์˜ ์œค๋ฆฌ์„ฑ 26 (2) ์—ํ† ์Šค์™€ ํŒŒํ† ์Šค์˜ ์œค๋ฆฌ 27 (3) ์‹ ์ˆ˜์‚ฌํ•™์—์„œ์˜ ์ž‘๋ฌธ๊ณผ ์œค๋ฆฌ 29 3) ๋„๋• ์‹ฌ๋ฆฌํ•™๊ณผ ์“ฐ๊ธฐ ์œค๋ฆฌ์˜ ์‹ค์ฒœ 31 (1) ์œค๋ฆฌ์  ํ–‰์œ„์— ํ•„์š”ํ•œ ๊ตฌ์„ฑ ์š”์†Œ 32 (2) ์œค๋ฆฌ์  ์ •์ฒด์„ฑ์— ์˜ํ•œ ์œค๋ฆฌ์  ๋™๊ธฐํ™” 45 2. ์“ฐ๊ธฐ ์œค๋ฆฌ์™€ ์œค๋ฆฌ์  ๊ธ€์“ฐ๊ธฐ 50 1) ์œค๋ฆฌ์  ๊ธ€์“ฐ๊ธฐ์˜ ๊ฐœ๋… ๋ฐ ํŠน์„ฑ 50 (1) ์“ฐ๊ธฐ์˜ ๋ณธ์งˆ ๊ตฌํ˜„์œผ๋กœ์„œ์˜ ์œค๋ฆฌ์  ๊ธ€์“ฐ๊ธฐ 53 (2) ์“ฐ๊ธฐ ์œค๋ฆฌ์˜ ์‹ค์ฒœ์œผ๋กœ์„œ์˜ ์œค๋ฆฌ์  ๊ธ€์“ฐ๊ธฐ 56 2) ์œค๋ฆฌ์  ๊ธ€์“ฐ๊ธฐ์˜ ๊ตฌ์„ฑ ์š”์†Œ 59 (1) ํ–‰์œ„ ์ฃผ์ฒด์˜ ์œค๋ฆฌ์  ์‹ค์ฒœ 59 (2) ํ…์ŠคํŠธ์˜ ์œค๋ฆฌ์„ฑ 62 (3) ๋‹ดํ™”๊ณต๋™์ฒด์˜ ์“ฐ๊ธฐ ์œค๋ฆฌ ๊ด€๋ จ ๋งฅ๋ฝ 63 3) ์“ฐ๊ธฐ ์‹ค์ œ์—์„œ์˜ ์“ฐ๊ธฐ ์œค๋ฆฌ 65 (1) ์ž๋ฃŒ ํ†ตํ•ฉ์  ๊ธ€์“ฐ๊ธฐ์˜ ๊ฐœ๋… 65 (2) ์ž๋ฃŒ ํ†ตํ•ฉ์  ๊ธ€์“ฐ๊ธฐ์˜ ์œค๋ฆฌ์  ์†Œํ†ต ๊ตฌ์กฐ 66 III. ์“ฐ๊ธฐ ๊ณผ์ •์—์„œ ์“ฐ๊ธฐ ์œค๋ฆฌ์˜ ๊ด€๋ จ ์–‘์ƒ ๋ฐ ์˜ํ–ฅ ์š”์ธ 73 1. ์“ฐ๊ธฐ ๊ณผ์ •์—์„œ์˜ ์“ฐ๊ธฐ ์œค๋ฆฌ ๊ด€๋ จ ์–‘์ƒ 76 1) ์“ฐ๊ธฐ ๊ณผ์ œ ๋ถ„์„ ๋‹จ๊ณ„ 77 (1) ์“ฐ๊ธฐ ์œค๋ฆฌ ์ ์šฉ ๋Œ€์ƒ ํŒŒ์•…ํ•˜๊ธฐ 78 (2) ์žฅ๋ฅด์  ํŠน์„ฑ๊ณผ ์“ฐ๊ธฐ ์œค๋ฆฌ ๊ด€๋ จ์ง“๊ธฐ 81 (3) ๊ณผ์ œ ์ˆ˜ํ–‰์— ๋”ฐ๋ฅธ ์œค๋ฆฌ์  ๊ฒฐ๊ณผ ์˜ˆ์ƒํ•˜๊ธฐ 87 2) ์ž๋ฃŒ ์ฝ๊ธฐ ๋ฐ ๊ด€์  ์ •๋ฆฝ ๋‹จ๊ณ„ 89 (1) ๊ฐ๊ด€์ ์ธ ํƒœ๋„๋กœ ์ž๋ฃŒ ์ฝ๊ธฐ 89 (2) ํ™”์ œ์— ๋Œ€ํ•œ ์ง€์‹ ์žฌ๊ตฌ์„ฑํ•˜๊ธฐ 91 (3) ๋‹ค์–‘ํ•œ ๊ด€์ ์— ๋Œ€ํ•œ ํ‰๊ฐ€ ๋ฐ ์ž์‹ ์˜ ๊ด€์  ์ •ํ•˜๊ธฐ 100 3) ๋‚ด์šฉ ์„ ์ • ๋ฐ ์กฐ์ง ๋‹จ๊ณ„ 103 (1) ์‹ ๋ขฐ์„ฑ ์žˆ๋Š” ๋‚ด์šฉ ์„ ์ •ํ•˜๊ธฐ 103 (2) ์ฐฝ์˜์ ์œผ๋กœ ๋‚ด์šฉ ์กฐ์งํ•˜๊ธฐ 107 4) ์ž๋ฃŒ ํ†ตํ•ฉ ๋ฐ ํ‘œํ˜„ ๋‹จ๊ณ„ 113 (1) ์ •๋‹นํ•œ ๋ฐฉ์‹์œผ๋กœ ์ž๋ฃŒ ํ†ตํ•ฉํ•˜๊ธฐ 113 (2) ์ž๋ฃŒ์— ์˜์กดํ•˜์ง€ ์•Š๊ณ  ๋‚ด์šฉ ์ „๊ฐœํ•˜๊ธฐ 121 (3) ๋Œ€์ƒ์— ๋Œ€ํ•œ ์œค๋ฆฌ์  ํƒœ๋„ ํ‘œํ˜„ํ•˜๊ธฐ 131 5) ๊ณ ์ณ์“ฐ๊ธฐ ๋‹จ๊ณ„ 133 2. ์œค๋ฆฌ์  ๊ธ€์“ฐ๊ธฐ์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ์š”์ธ 139 1) ํ•„์ž์˜ ๊ฐœ์ธ์  ํŠน์„ฑ 139 (1) ์“ฐ๊ธฐ์˜ ์œค๋ฆฌ์  ์ธก๋ฉด์— ๋Œ€ํ•œ ๋ฏผ๊ฐ์„ฑ 139 (2) ํ•„์ž๋กœ์„œ์˜ ์œค๋ฆฌ์  ์ •์ฒด์„ฑ ๋ฐ ์œค๋ฆฌ์  ์ •์„œ 141 (3) ๋ฌธ์ œ ํ•ด๊ฒฐ์— ํ•„์š”ํ•œ ์œค๋ฆฌ์  ํŒ๋‹จ๋ ฅ 145 (4) ์œค๋ฆฌ์  ๊ธ€์“ฐ๊ธฐ๋ฅผ ์ง€์†ํ•  ์ˆ˜ ์žˆ๋Š” ์ž์งˆ 153 2) ๋‹ดํ™”๊ณต๋™์ฒด์˜ ์“ฐ๊ธฐ ๋ฌธํ™” 157 (1) ๋‹ดํ™”๊ณต๋™์ฒด๋กœ์„œ์˜ ๊ตญ์–ด ์ˆ˜์—… 159 (2) ๊ต์‚ฌ์˜ ์“ฐ๊ธฐ ํ‰๊ฐ€ ๋ฐฉ์‹ 160 IV. ์“ฐ๊ธฐ ์œค๋ฆฌ ๊ต์œก์˜ ๋‚ด์šฉ ์„ค๊ณ„ 164 1. ์“ฐ๊ธฐ ์œค๋ฆฌ ๊ต์œก์˜ ๋ชฉํ‘œ 164 1) ํ•ต์‹ฌ ์—ญ๋Ÿ‰์œผ๋กœ์„œ์˜ ์œค๋ฆฌ์  ๊ธ€์“ฐ๊ธฐ ๋Šฅ๋ ฅ 164 2) ํ•„์ž์˜ ์œค๋ฆฌ์  ์ •์ฒด์„ฑ ํ˜•์„ฑ๊ณผ ์ธ์„ฑ๊ต์œก 170 3) ๋‹ดํ™”๊ณต๋™์ฒด์˜ ์œค๋ฆฌ์  ์†Œํ†ต ๋ฌธํ™” ํ˜•์„ฑ ๋ฐ ์†Œํ†ต์˜ ์ƒ์‚ฐ์„ฑ ์ œ๊ณ  171 2. ์“ฐ๊ธฐ ์œค๋ฆฌ ๊ต์œก์˜ ๋‚ด์šฉ ๊ตฌ์„ฑ 173 1) ์“ฐ๊ธฐ ์œค๋ฆฌ ๊ต์œก์˜ ๋‚ด์šฉ ๊ตฌ์กฐ 173 2) ์“ฐ๊ธฐ ์œค๋ฆฌ ๊ต์œก์˜ ๋‚ด์šฉ ๋ฒ”์ฃผ 175 (1) ํ•„์ž ๋ฒ”์ฃผ 175 (2) ๋‹ดํ™”๊ณต๋™์ฒด ๋ฒ”์ฃผ 178 (3) ํ…์ŠคํŠธ ๋ฒ”์ฃผ 179 3) ์“ฐ๊ธฐ ์œค๋ฆฌ ๊ต์œก ๋‚ด์šฉ์˜ ์ƒ์„ธํ™” 182 4) ์“ฐ๊ธฐ ์œค๋ฆฌ ๊ต์œก ๋‚ด์šฉ์˜ ์ ์šฉ ์›๋ฆฌ 204 V. ๊ฒฐ๋ก  211 1. ์š”์•ฝ 211 2. ์ œ์–ธ 213 ์ฐธ๊ณ  ๋ฌธํ—Œ 217 Abstract 235Docto
    corecore