76 research outputs found

    台2線 68K 八斗子滾石災害致災成因初探

    Get PDF
    基隆市北寧路於2013 年8 月31 日下午發生高強度降雨事件 (最高達94.5 mm/hr),並導致台2 線68K+000 處於當日16 時19 分左右發生落石擊毀小客車之意外。本次落石災害之發生區屬於大寮層中段塊狀砂岩,且為逆向坡之型態,現地調查結果顯示本區域具有兩組傾角近乎垂直之節理面,一組走向約略平行於海岸線,另一組走向則約略垂直於海岸線。致災成因可能與長期雨水入滲及風化作用有關,節理裂隙除因風化作用逐漸加大外,節理面上之含鐵質結核亦可能於風化後體積增加,進而加速節理開裂速度。本次落石災害之運動歷程大致可分為傾倒、滾動、墜落、彈跳、滾動等數段歷程,落石運動過程耗時約23 秒,移動路徑上之植被與風化土壤層可能為遲滯落石運動之主因。本文將說明此次災害之地質調查成果,並探討可能之破壞機制,以供未來類似災害之防治對策參考。Several rockfalls caused damages on Highway No.2 during an intensive rainfall on August 31, 2013, in Keelung. One of the rockfalls hit a car and the event was captured by a camera. This study analyzes the mechanism of the rockfall based on the video and field investigation. Two major joints which led to the hazard, one was parallel to the coast and the other was perpendicular to the coast. Both of them were almost vertical and cut the rock into several blocks. Weathering processes may have lead to the extension of joints during the heavy rainfall; the infiltration and the surface runoff took the weathered material away, making the rock unable and ultimately leading to the rockfall. The process of this hazard can be divided into topple, roll, fall, bounce and roll. The rockfall took about 23 seconds in total. This paper focuses on the results of field investigation and the mechanism of the rockfall is also discussed

    Flexible material distributing mechanism

    No full text
    本发明结构涉及物流当中滚动料体(棒、管)的传送技术,具体是一种柔性化分料机构。由摆料机构、挡料块和摆动轴组成,其中摆料机构由上摆料块、挡料块和下摆料块组成,依次与摆动轴枢接,上摆料块和下摆料块构成V形摆料体,挡料块与V形摆料体之间为摆动间歇结构。本发明能运用于不同直径料体

    Lifting device

    No full text
    本发明公开一种吊运装置,能够用于起吊孔为细长型的吊运物,吊环固定在吊运装置的顶部,T型滑动套杆一端与吊运杆套接,另一端与端盖套接,第三端一方面通过螺旋扭转压缩弹簧与固定勾体连接;另一方面滑动套杆上带有保险限位槽的轴端部分与固定勾体形成间隙滑动配合,保险定位销上套接弹簧与保险限位槽啮合,吊运杆与固定勾体焊接;将T型滑动套杆扭转一定角度与吊运杆端相对,推动T型滑动套杆,即扭转又压缩螺旋扭转压缩弹簧,T型滑动套杆在滑动腔内运动,其下端套接在吊运杆上,继续推动T型滑动套杆使保险定位销在螺旋压缩弹簧的作用下与限位槽啮合锁死,本发明具有结构简单、工作性能可靠、操作简便、实用性强等优点

    Axis used flexibility rib special compact agency

    No full text
    本发明提供一种轴用弹性挡圈专用压装机构,包括:压具本体为塔形空 腔的腔体,气弹簧一端与压具本体第一腔体顶端抵接,第一固体润滑轴承与 压具体第二柱状腔体顶端抵接,第一固体润滑轴承另一端与压具本体侧壁固 接,定位压头设于第一固体润滑轴承内,定位压头的导向顶尖与装配轴轴端 扣合相接,导向体通过第二固体润滑轴承与压具本体连接,压缩弹簧位于第 三柱状腔内,导向体下部设有导向筋,导向体与装配轴套接;定位压头使压 具本体、导向体相对于装配轴径向定位,弹性挡圈在导向体上被压具本体准 确地压装到位,克服了传统压装过程中定位性不好,挡圈容易压偏变形的缺 点,具有结构形式简单、操作简便、实用性强等优点

    A Study on the Polymer/Fullerene Bulk Heterojunction Solar Cells

    No full text
    有機固態太陽能電池近幾年已逐漸受到各界重視,主要原因是其效率雖不如矽晶太陽能電池,但還可達到5~6 %,且其製作成本相較於矽晶太陽能電池來得便宜且簡易,對於可撓性及輕量化方面亦是矽晶太陽能電池所無法比擬的,故科學家才會持續不斷地探討其工作機制與元件效能。雖然有機固態太陽能電池效率表現尚無法運用至耗電量較大之設備上,卻已可操作於小型風扇或電子計算機等耗電量低之電器上。本研究主要目的乃探討電子施受體比例與電子傳輸層、電洞傳輸層對於單層異質接面太陽能電池效能的影響,並提出氧化聚合電洞傳輸層製備方法,以改進元件在含有水氣的環境下元件老化的問題。 在電子施受體比例之研究方面,本研究嘗試改變不同比例之poly(3-hexylthiophene) ( P3HT ) 與C60衍生物[6,6]-phenyl-C61-butyric acid methyl ester ( PCBM ) 比例並製作太陽能電池元件,觀察元件效率與短路電流隨著施受體比例改變之趨勢,發現當固定電子施體濃度,增加受體濃度時,元件效率與短路電流會隨之增加,且在施受體重量比例為1:0.8時達到最佳值。然而,如再增加受體濃度反而導致電池元件與短路電流同時下降。本研究利用原子力顯微鏡來觀察電子施受體之比例對於薄膜表面形態之影響,發現當固定施體濃度,逐漸增加受體比例,薄膜中相分離之現象會漸趨明顯,至施受體重量比超過1:0.8以後,則會發生縱向相分離。因此,此現象再配合元件性能可得知,應選擇適當的施受體重量比 ( 本研究之最佳比例為1:0.8 ),才能避免過度的相分離發生,以降低電子再結合機率,使短路電流與元件效率能同時維持在最高點。 在電洞傳輸層方面,本研究將比較PEDOT:PSS加入DMSO成膜後對元件效率的影響,並經由交流阻抗分析方法觀察加入不同量的DMSO所形成的PEDOT:PSS膜在元件中對於電荷載子移動所造成的阻力變化。結果發現,當加入DMSO於PEDOT:PSS薄膜後,由交流阻抗分析中發現阻抗有降低之趨勢,然而元件整體效率卻不如原始沒有加DMSO的表現。有關原因目前正在調查文獻並設法透過其它分析方式研究中。在電子傳輸層方面,本研究比較元件是否含有LiF緩衝層 ( buffer layer ) 對於元件效率的影響,發現加入LiF電子傳輸層可以增加電池的短路電流以及Fill Factor,有效增加光電轉換效率。 本研究在未使用手套箱與無塵室的環境下,製作之太陽能電池元件效率在100 mW/cm2之光強度照射下可達2.68 % ( 反應面積0.25 cm2 ),而D. L. Carroll團隊及A. J. Heeger團隊在2005年以類似系統 ( P3HT與PCBM ) 於手套箱、無塵室中分別做出在80 mW/cm2光照下的4.9 % ( 反應面積0.19 cm2 ) 及5.1 % ( 反應面積0.148 cm2 )。由此元件效率數據顯示,吾人所製作之元件的性能雖不及上述兩研究團隊,不過元件製作技術目前已驅成熟,相信未來能在手套箱環境下進行元件製作,可以更佳提升元件效率,進而迎頭趕上國外研究團隊。Solid type polymer solar cells has been hotly studied in this decade, although the efficiency is still lower than 5~6 %, its low fabrication cost and easy process make it attractive to researchers, and its flexibility is another outstanding property. It’s power conversion efficiency is low but already enough for some low power devices, such as small fans or calculators. This study is mainly discussing the effect of donor/acceptor ratio, electron transfer layer and hole transfer layer on the performances of bulk heterojunction solar cells, and suggests a process of oxidation polymerization of hole transfer layer in order to prevent the degradation of cell in the environment containing water molecules. In the research of donor/acceptor ratio, we tried to fabricate solar cell devices with different ratio of donor and acceptor and observe the trend of cell efficiency and short circuit current change with donor/acceptor ratio, and we found that when we fix the concentration of electron donor, and increase the concentration of acceptor, the cell efficiency and short circuit current increases, at the point of donor/acceptor = 1/0.8 reaches the optimum. And if we keep on increasing the concentration of acceptor, the cell performance and short circuit current decreases gradually. In this research, we use atomic force microscope ( AFM ) to observe the morphology of thin film, and found that when acceptor increases, the phase separation in the thin film will increase, when the acceptor concentration is higher than donor/acceptor = 1/0.8, vertical phase separation will occur, and the possibility of recombination will be increased. This research also tried to increase the conductivity of hole transfer layer by adding DMSO into PEDOS:PSS solution. We found that the conductivity will not be improved by adding DMSO into PEDOT:PSS solution, because the mixed solution cannot provide a perfect thin film. We also compare the cell performances with and without LiF electron transfer layer and found that adding LiF layer can increase the cell efficiency by increasing short circuit current and fill factor. In this research, we did not fabricate our solar cell devices in the glove box or in the clean room, and we get 2.68 % power conversion efficiency under 100 mW/cm2. Our cell performances are still low, but higher cell conversion efficiency is expectable when the solar cell devices are fabricated in the glove box.中文摘要 I 英文摘要 III 致謝 V 目錄 VII 表目錄 X 圖目錄 XII 第一章 緒論 1 1-1 前言 1 1-2 太陽能電池技術簡介 2 1-2-1 半導體簡介 4 1-2-2 太陽能電池類型 7 1-2-2-a無機太陽能電池 7 1-2-2-b染料敏化太陽能電池 9 1-2-2-c層疊式太陽能電池(Tandem cell) 10 1-2-2-d有機電子施受體單/雙層異質接面太陽能電池 10 1-2-3 高分子單層異質接面太陽能電池 17 1-3 交流阻抗分析原理 23 第二章 文獻回顧與研究目的 31 2-1 有機半導體太陽能電池 31 2-1-1 單層結構太陽能電池 31 2-1-2 電子施/受體雙層結構太陽能電池 31 2-1-3 電子施/受體單層異質接面太陽能電池 31 2-2 太陽能電池特徵曲線與電池輸出常數 41 2-2-1 短路電流(Short Circuit Current, ISC) 43 2-2-2 開環電壓(Open Circuit Voltage, VOC) 44 2-2-3 填充因子(Fill Factor, FF) 45 2-3 研究動機與架構 46 第三章 實驗設備與方法 48 3-1 儀器設備 48 3-2 實驗藥品 49 3-3 實驗方法 50 3-3-1 導電玻璃與藥品之前處理 50 3-3-2 有機感光材料之製備 50 3-3-3 旋轉塗佈PEDOT:PSS及有機感光層 51 3-3-4 熱蒸鍍鋁金屬電極 52 3-4 太陽電池光電化學測試 54 3-4-1 實驗裝置 54 3-4-2 光電流-電壓特徵曲線 54 3-4-3 交流阻抗法 56 第四章 利用P3HT/PCBM作為電子施受體製作太陽能電池元件之探討 57 4-1 施體-受體濃度比例最適化 57 4-2 電子傳輸層之影響 70 4-3 電洞傳輸層之影響 74 4-4 以氧化聚合方法製備PEDOT導電層之探討 76 4-4-1 溶劑對於氧化聚合PEDOT元件之影響 78 4-4-2 Imidazol比例對於氧化聚合PEDOT元件之影響 81 4-5 在手套箱中製作元件 86 第五章 結論與未來改進方向 90 5-1 結論 90 5-1-1 施體-受體濃度比例最適化 90 5-1-2 電子傳輸層之影響 90 5-1-3 電洞傳輸層之影響 91 5-1-4 溶劑對於氧化聚合PEDOT元件之影響 91 5-1-5 Imidazol比例對於氧化聚合PEDOT元件之影響 92 5-1-6 在手套箱中製作元件對於元件效率之影響 92 5-2 未來改進方向 93 第六章 參考文獻 95 附錄A Air mass能量計算方式 101 附錄B元件製作歷程 10

    Electrochemical Surface Modification for Application in Organic Optoelectronics

    No full text
    本論文主要目的是以電化學方法聚合導電高分子,對現有之有機光電元件進行表面改質,進而用來提升一般有機太陽能電池的效率以及發展混色電致色變薄膜。 第一部分(第三章),我們使用電化學聚合方法將噻吩(thiophene)單體聚合在高分子Poly(3,4-ethylenedioxythiophene) (PEDOT)電洞傳輸層上,形成與主動層連接的電子予體(electron donor)緩衝層來增進載子收集效率。此緩衝層能夠使主動層中的n-型材料不再接觸到電洞傳輸層,藉此減少電子受體觸碰電洞傳輸層所造成的再結合現像,如此一來可以提升短路電流,進而提升整體元件效率。在塗佈主動層之前,還可以將緩衝層在電解質環境中施加電位使其部份氧化還原來調變緩衝層的功函數(work function),進而改善太陽能電池元件的開環電壓,將太陽能電池元件更進一步最佳化。 第二部分(第四章)利用聚苯乙烯(polystyrene, PS)小球堆積作成模板,並在模板的縫隙中以電化學聚合的方式成長PEDOT薄膜,再將PS小球的模板用甲苯(toluene)溶劑移除,可以得到有碗狀結構的PEDOT電洞傳輸層,與一般平面電洞傳輸層相比,碗狀電洞傳輸層所擁有的半球狀理論表面積約為兩倍。在此電洞傳輸層上,我們用真空蒸鍍的方式沿著PEDOT的起伏形貌沉積銅酞菁(copper phthalocyanine, CuPc)及奈米碳球(如碳60或碳70)製作成雙層(bilayer)結構的太陽能電池,於是主動層中的電子予體—受體接面也由平面變為半球形,這種有結構的電洞傳輸層使得雙層結構太陽能電池中電子予體—受體的接面大幅增加。原本雙層結構太陽能電池的主動層受限於電荷載子移動性而無法做厚,又因主動層厚度不足而犧牲對可見光的吸收。本章引入有結構之主動層增加了電子予體—受體接面,使激子(exciton)分離機率大增,同時增加入射光在主動層中通過的路徑,使得同樣厚度的主動層能有更強的吸收,避免對入射光能的浪費,改善了雙層太陽能電池最大的缺點。與無結構的雙層太陽能電池相比,有結構的太陽能電池可將元件的短路電流由4.82 mA cm–2提升到9.18 mA cm–2,效率由0.97%提升到2.45%。 第三部分(第五章)則是將第二部分同樣方法所製備出來的PEDOT用作電致色變電極,在碗狀PEDOT層聚合完成後繼續用電化學方法將苯胺(aniline)分子聚合其上。因為PEDOT的碗狀結構有較銳利的邊緣與較平滑的底部,使得電化學聚合的過程中,苯胺單體會因為電荷集中(charge concentration)的效應而優先沉積於較銳利的結構邊緣,結果可以得到PEDOT在下,聚苯胺(polyaniline,PANI)在上的複合膜。對此複合膜施加氧化電位時,因為兩種材料都可接觸到電解質,所以PEDOT與PANI會同時氧化,整體顯示為綠色;施加還原電位時,兩種材料也會同時還原,整體顯示為藍色。結構上的孔洞使得外層的PANI薄膜不會完全覆蓋內層的PEDOT,電解液可以藉由結構上的孔洞順利的接觸外層的PANI薄膜與內層的PEDOT,使得此有結構複合薄膜的著色效率高於無結構的複合薄膜,更接近理論計算值,且變色時間也由於複合薄膜與電解質之間接觸良好而縮短了一半。這個部份的應用也暗示了未來可以用結構來調整兩種電聚合高分子的比例,使得電致色變元件的變色範圍更能預測,也更多樣化。In this dissertation, we use electrochemical process to modify the surface of conventional organic optoelectronics. To improve the performance of unmodified organic photovoltaics and achieving dual-color electrochromic films. In the first part (in Chapter 3), we deposited the thiophene monomer on the surface of poly(3,4-ethylenedioxythiophene) (PEDOT) hole transfer layer through electrochemical polymerization process to form a buffer layer connecting the electron donor domain in the active layer and the hole transfer layer. It increased the charge carrier collection efficiency and reduced the recombination due to the contact of acceptor domain with hole transfer layer. Thus, the cell performance was improved. We also proved that we can tune the work function of the polythiophene buffer layer by applying potential, further improve the open circuit voltage of the solar cell device. In the second part (in Chapter 4), we created a template by spreading polystyrene beads on the ITO substrate. Then grew the PEDOT hole transfer layer bottom-up between the gap of polystyrene beads. After removal of the polystyrene template with solvent, we obtain a PEDOT hole transfer layer featuring bowl-like structure. After depositing the copper phthalocyanine (as the electron donor) and fullerene (C60 or C70 as the electron acceptor) along the feature of the structured PEDOT, we created a bilayer solar cell with structured active layer. Which dramatically increases the donor—acceptor interfaces. Compare with the result of solar cell devices without structure (planar active layer), the structured active layer improves the short circuit current from 4.82 mA cm-2 to 9.18 mA/cm-2; improves the power conversion efficiency from 0.97% to 2.45%. The third part (in Chapter 5), we used the bowl-like structured PEDOT layer as the bottom layer of electrochromic film and electrochemically polymerize the aniline monomer on the rim of the bowl-like structure. As we apply the potential on the structured PEDOT, the aniline monomer will condense on the sharp edge of the rim, but not the smooth bottom of the bowl-like structure, because of the charge concentration effect, forming a PANI-PEDOT composite electrochromic film. By applying an oxidative potential to this structured composite film, PANI and PEDOT change color simultaneously and the color turns green; while applying a reductive potential to this structured composite film, PANI and PEDOT change color simultaneously and turn blue. The hole structure allows both the bottom PEDOT layer and the top PANI layer to have good contact with the electrolyte, thus providing much higher coloration efficiency than the planar composite film. Also the switching time of the structured electrochromic film became shorter due to the easier contact of electrolyte with both electrochromic materials.致 謝 I 摘 要 I Abstract III Table of Contents V List of Tables VIII List of Figures X Chapter 1 Introduction 1 1.1 Preface: Electrochemical Surface Modification 1 1.2 Methods of Polymerization for Conducting Polymers 2 1.2.1 Oxidative polymerizations 2 1.2.2 Electrochemical polymerizations 4 1.2.3 Metal-catalyzed polymerizations 5 1.3 Buffer Layer Used in Solar Cells 7 1.4 Nano Structure Used in Solar Cells 8 1.5 Nano Structure Used in ECDs 10 1.6 Future Directions and Challenges 15 1.7 Objective and Outline of this Dissertation 16 Chapter 2 Experiment 17 2.1 A Strategic Buffer Layer of PT Enhances the Efficiency of BHJ Solar Cells 17 2.1.1 Materials and reagents 17 2.1.2 Electrochemical deposition of the polythiophene buffer layer 17 2.1.3 Fabrication of PV device 18 2.1.4 Characterizations 19 2.2 Organic Solar Cells Featuring Nanobowl Structures 19 2.2.1 Materials and Reagents 19 2.2.2 The preparation of polystyrene beads template 20 2.2.3 Electrochemical polymerization of PEDOT hole transfer layer 20 2.2.4 Fabrication of PV device 22 2.2.5 Morphology and Material Characterizations 23 2.3 Dual-color Electrochromic Films Incorporating a Periodic Polymer Nanostructure 24 2.3.1 Materials and Reagents 24 2.3.2 Fabrication of Electrochromic Films with Nanostructure 24 2.3.3 Characterizations 26 Chapter 3 A Strategic Buffer Layer of PT Enhances the Efficiency of BHJ Solar Cells 28 3.1 A solar cell with polythiophene buffer layer 28 3.2 Geometry and architecture of the device 29 3.3 Solar cell performances of device with or without buffer layer 32 3.4 The morphology of the buffer layer 32 3.5 Switching HOMO level of the buffer layer 36 3.6 Summary 42 Chapter 4 Organic Solar Cells Featuring Nanobowl Structures 43 4.1 The needs of structure in active layer 43 4.2 Preparation of the structured active layer 49 4.3 Morphology and Material Characterizations 50 4.4 The active layer along the structured PEDOT 51 4.5 Performances of the devices 54 4.6 Optical properties enhanced by the structure 58 4.7 Anti-reflection issue 61 4.8 Electrical properties enhanced by tuning the work function of PEDOT 64 4.9 Variations of HOMO level and VOC 69 4.10 Summary 70 Chapter 5 Dual-color Electrochromic Films Incorporating a Periodic Polymer Nanostructure 71 5.1 Concept of Electrochromic Films with Nanostructure 71 5.2 Fabrication of Electrochromic Films with Nanostructure 72 5.3 Characterization 74 5.4 Morphology of the PEDOT Bottom Layer 75 5.5 CV Characteristic of the Composite Film 77 5.6 Optical Properties of the Composite Films 82 5.7 Control Material Ratios with Depositing Charge Densities 84 5.8 Coloration Efficiency Improvement 87 5.9 The Reduction of Ionic Resistance 90 5.10 The Improvement of Switching Time & Stability 95 5.11 Summary 99 Chapter 6 Conclusions 100 6.1 A solar cell with polythiophene buffer layer (Ch 3) 100 6.2 Conclusions of the organic solar cells featuring nanobowl structures (Ch 4) 101 6.3 Conclusions of the dual-color electrochromic films incorporating a periodic polymer nanostructure (Ch 5) 102 Chapter 7 References 104 Appendix A 114 Author’s Profile 11

    甲烷再燃烧对突扩燃烧器中煤粉燃烧和NO生成影响的数值研究

    No full text
    再燃烧是降低煤粉燃烧器中NO生成的有效手段.本文用纯双流体模型,包括k-ε-kp两相湍流模型,EBU-Arrhenius燃烧模型,六热流辐射模型,NO生成湍流反应的AUSM模型,氮释放的简化Solomon模型等对燃烧器进口不同布风位置加入等量甲烷的再燃烧工程进行了数值模拟,讨论了再燃烧对于NO生成和排放的影响.本文部分模拟结果和实验数据进行了对比分析,验证了模拟结果的合理性.同时使用化学平衡软件对所讨论的工况进行了分析
    corecore