4 research outputs found

    Tilting objects in the category of coherent sheaves and in the stable category of vector bundles on weighted projective lines

    Get PDF
    1987年,为了从几何的角度来理解Ringel介绍的canonical代数,Geigle-Lenzing引入了加权射影线的概念.他们证明了加权射影线的凝聚层范畴中存在canonical倾斜层,其自同态代数是一个canonical代数,因此凝聚层范畴与该canonical代数的有限维模范畴的导出范畴之间是三角等价的,从而建立了代数与几何的一个联系.此外,凝聚层范畴的向量丛子范畴具有多种不同的Frobenius正合结构,相应的稳定三角范畴分别对应三角奇异,Kleinian奇异以及Fuchsian奇异等不同的奇异理论.本学位论文主要研究加权射影线的凝聚层范畴以及向量丛范畴的两种不同的稳定范畴中的倾斜...The notion of weighted projective lines were introduced by Geigle-Lenzing in 1987, in an attempt to give a geometric treatment for the so-called canonical algebras, introduced and studied by Ringel. They showed that the category of coherent sheaves on a weighted projective line admits a tilting sheaf whose endomorphism algebra is a canonical algebra. Hence there is an equivalence betwe...学位:理学博士院系专业:数学科学学院_基础数学学号:1902010015395

    加权射影线的凝聚层范畴与圈李代数

    Get PDF
    本文介绍了从根范畴构造复李代数的方法,应用到加权射影线的凝聚层范畴,得到相应的星型图对应的Kac-Moody李代数的圈(loop)代数的实现.作为应用,本文得到了Kac-Moody李代数的Weyl群的范畴化.国家自然科学基金(批准号:11471177)资助项

    加权射影线上的tilting对象和cluster-tilting对象

    Get PDF
    本文在加权射影线相关的范畴中讨论tilting对象与cluster-tilting对象之间的关系,证明当亏格为1时,向量丛稳定范畴中的tilting对象与相应的cluster范畴中的cluster-tilting对象对应.特别地, cluster范畴中的cluster-tilting对象由加权射影线上凝聚层范畴中的tilting对象诱导.中央高校基本科研业务费专项资金(批准号:2682017ZDPY12和2682018ZT25)资助项

    The Folding of the Root Category of the Tubular Alegebra A of Type T(4,4,2) \mathbb{T}(4,4,2) and the Root System of the Elliptic Lie Algebra of Type F4(1,2) F_{4}^{(1,2)}

    No full text
    折叠理论是联系箭图与赋值箭图,联系代数闭域上的代数表示论与有限域代数表示论的重要工具.Tubular代数是一类重要的有限维代数,对应着D4Eq(q=678)D_4,E_q(q=6,7,8)型椭圆李代数.利用折叠理论,本文讨论tubular代数AA在Frobenius同态下的不动点子代数AFA^F的根范畴与对应的F4(12)F_4^{(1,2)}型椭圆李代数,在不可分解对象的维数向量与根系的层面上讨论其对应关系.论文分为三章. 第一章中我们介绍了与论文有关的研究方向及发展动态,并概述了本文的主要工作. 第二章是学习[DD1,DD2,DD3]的读书报告. 根据[DD1,DD2,DD3],我们回顾了AA-模范畴与...In[DD1,DD2,DD3],thenotionofFrobeniusmorphismswereinturducedintotherepresentationtheoryofalgebra.ThemainadvantageofusingFrobeniusmorphismsistolinkthestructureandrepresentationofanalgebra...In [DD1, DD2, DD3], the notion of Frobenius morphisms were inturduced into the representation theory of algebra. The main advantage of using Frobenius morphisms is to link the structure and representation of an algebra Bdefinedoverafinitefield defined over a finite field \mathbb{F}_qtothatofanalgebra to that of an algebra Adefinedoverthealgebraicclosure defined over the algebraic closure kof of \mathbb{F}_q$. Tubular algebras are certain special classes of...学位:理学硕士院系专业:数学科学学院数学与应用数学系_基础数学学号:1902007115209
    corecore