15 research outputs found

    基于FPGA和ARM的现场总线设备

    No full text
    根据现场总线的特点,提出一种基于现场可编程逻辑门阵列(FPGA)和高级精简指令集机器(ARM)的现场总线设备设计框架。FPGA负责完成协议栈链路下层逻辑和物理线路控制逻辑,该部分功能有严格的时延限制,ARM负责完成协议栈链路上层逻辑和网络层以上所有层逻辑,该部分功能有稍微宽松的时延限制。实验结果表明,该设计框架能够满足通信、互联和实时性要求

    含铜氧化酶在活性炭上的固定及直接电化学

    No full text

    Direct Electrochemistry of GOD on Glassy Carbon Electrode Modified with Mesoporous Carbon

    No full text
    使用简单的方法将葡萄糖氧化酶(GOD)固定在介孔碳(Mesoporous Carbon)修饰的玻碳电极(GCE)表面.循环伏安测试表明:修饰电极上的GOD在0.1mol/L磷酸缓冲溶液(PBS)(pH=7.1)中发生了准可逆的氧化还原反应,其克式量电位为-0.4294 V,并且该电化学反应包含有两电子两质子的传递.在氮气饱和的情况下,以羧基二茂铁作为电子传递中介体,GOD能将葡萄糖彻底催化氧化,可见介孔碳修饰电极上的GOD保持了其生物学活性.Glucose oxidase(GOD) is immobilized on glassy carbon electrode mesoporous carbon by simple method.Cyclic voltammetric results indicated that on GOD of the modified electrode a quasi-reversible redox reaction took place(GCE) surface modified at a formal potential of-0.4294 V in 0.1 mol/L phosphate buffer solution(PBS)(pH 7.1).The electrochemical reaction consisted of a two-electron transfer coupled with a two-proton transfer.The GOD can completely catalyze oxidation of glucose via electron transfer intermedia of ferrocene monocarboxylic acid(FMCA) in saturated solutions with N2.The bioactivity of GOD on the modified electrode with mesoporous carbon was obviously unattacked.作者联系地址:中国科学院长春应用化学研究所,中国科学院长春应用化学研究所,中国科学院长春应用化学研究所 吉林长春130022,长春工程学院,吉林长春130021,吉林长春130022,吉林长春130022Author's Address: 1.Changchun Institute of Applied Chemistry,Chinese Academy of Sciences,Changchun 130022,Jilin,China;2.Changchun Institute of Technology,Changchun 130021,Jilin,Chin

    The Electrocatalytic Performance of Pd Catalysts Supported on PVP Modified MWCNTs for Formic Acid Oxidation

    No full text
    用聚乙烯吡咯烷酮(PVP)修饰的多壁碳纳米管(MWCNTs)作为Pd纳米粒子的载体,制得了Pd/PVP-MWCNTs催化剂并研究了其对甲酸氧化的电催化性能. 红外光谱仪(FTIR)和透射电镜(TEM)观测结果表明,Pd/PVP-MWCNTs催化剂中的Pd纳米粒子平均粒径小、分散性好. 因此,Pd/PVP-MWCNTs催化剂对甲酸电氧化有很好的电催化性能.In this paper the MWCNTs were modified by Poly (N-vinyl-2-pyrrolidone) (PVP) to support Pd nanoparticles, which were used as the catalyst for formic acid electrooxidation. And the performance of Pd/PVP-MWCNTs catalysts was studied by electrochemical measurements. The observations from Fourier transforms infrared spectrometer (FTIR) and transmission electron microscopy (TEM) illustrated that the Pd nanoparticles with a small size and narrow size distribution were highly dispersed on PVP-MWCNT support. Therefore, the Pd/PVP-MWCNTs catalysts showed excellent catalytic activity for formic acid electrooxidation.国家高技术研究发展计划(No. 2007AA05Z159, No. 2007AA05Z143),国家自然科学基金(No. 20876153, No.20703043, No. 21073180,No. 20933004,No. 21011130027)和吉林省科技研究项目(No. 20102204)资助作者联系地址:1. 中国科学院长春应用化学研究所 电分析化学国家重点实验室,吉林省先进化学电源实验室,吉林 长春 130022; 2. 中国科学院研究生院,北京 100049Author's Address: 1. State Key Laboratory of Electro-analytical Chemistry, Laboratory of Advanced Power Sources, Changchun Institute of Applied Chemistry, Changchun 130022, China; 2. Graduate School of the Chinese Academy of Sciences, Beijing 100049通讯作者E-mail:[email protected]

    Acetylcholinesterase Biosensor Platform Based on BP2000 for the Detection of Carbaryl

    No full text
    为给农药西维因检测提供一种新方法,根据西维因抑制乙酰胆碱酯酶活性的原理,以黑珍珠2000(BP2000)为乙酰胆碱酯酶的固定化材料,采用滴凃电极法构建了基于乙酰胆碱酯酶的西维因生物传感平台. 结果表明,固定在BP2000 上的乙酰胆碱酯酶保持了对氯化乙酰胆碱的催化活性,并且由于BP2000 材料的引入,提升了电极有效的电化学活性表面积,而且电极上物质的电化学氧化拥有较低氧化电位(0.630 V)并伴随质子传输. 由BP2000 搭建成功的乙酰胆碱酯酶生物传感平台对西维因检测的线性响应范围为2.0 ng·mL-1 ~ 12.5 ng·mL-1,检测限为3.15 ng·mL-1. 本研究对酶生物传感平台和酶生物燃料电池体系中酶电极的构建提供了一种简单方法及高效载体.With the purpose of providing a new method for carbaryl (a pesticide) detection, on the basis of the principle that acetylcholinesterase (AChE) activity can be restrained by carbaryl, an AChE biosensor platform based on BP2000 (as a fixation) was constructed by dropping method. As a result, it revealed that AChE immobilized on BP2000 maintained its catalytic activity for acetylcholine (ATCl), and due to the introduction of the BP2000 material, the effective electrochemical surface area of the modified electrode was enlarged. In addition, the electrochemical oxidation at the modified electrode occurred at low potential (0.630 V) accompanied by proton transmission. The AChE biosensor platform based on BP2000 matrix for carbaryl detection was able to reflect a linear response in the range of 2.0 ng·mL-1 ~ 12.5 ng·mL-1 with the detection limit of 3.15 ng·mL-1. At last, this work will provide a simple method and an efficient matrix in establishing an enzyme electrode of enzymatic biosensor platform and enzymatic fuel cell.获2017年中国科学院大学生科创计划资助作者联系地址:1. 暨南大学化学与材料学院,广东 广州 511400;2. 中国科学院长春应用化学研究所,吉林省先进化学电源实验室,吉林长春 130022;3. 长春工程学院理学院;吉林长春 130012Author's Address: 1.College of Chemistry and Material Science, Jinan University, Guangzhou 511400, China; 2.Jilin Laboratory of Advanced Power, Changchun Institute of Applied Chemistry,Changchun 130022, China; 3.School of Science, Changchun Institute of Technology, Changchun 130012, Jilin, China.通讯作者E-mail:[email protected]

    The Inhibition of Amphipathic S- and N-Containing Compounds on Carbon Steel Corrosion

    No full text
    应用超分子组装技术将含硫和含氮的双亲性金属缓蚀剂有序单分子膜按设计方式修饰在碳钢表面。探讨了在有序的单分子膜内缓蚀剂分子的排列对碳钢在硫酸中腐蚀的抑制作用,深入讨论了缓蚀剂单分子膜对碳钢腐蚀过程的抑制机理。研究发现:在单分子膜中,水合氢离子传递的离子通道强烈地依赖于缓蚀剂分子的排列方式。Ordered monolayers of S- and N-containing amphipathic corrosion inhibitors were depoitod onto the surfaces of carbon steel electrode with super-molecular assembly technique. The effect of molecular aggregation of monolayers on carbon steel corrosion in 0. 05 mol dl ̄(-3)H_2SO_4 and the mechanisms of these inhibitors were discussed in details. It was found that the transport of hydrated hydrogen ion to the surface of steel depends strongly on the inhibitor molecular aggregation in the monolayers.作者联系地址:中国科学院长春应用化学研究所电分析化学研究室Author's Address: The Laboratory of Electroanalytical Chemistry of Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 13002

    Electrochemistry of Glucose Oxidase Modified on Porin-Phospholipid Biomimic Membrane

    No full text
    采用孔蛋白(MspA)和双肉豆蔻磷脂酰胆碱(DMPC)在玻碳(GC)基底表面成功构建有仿生特性的纳米通道膜,同时将葡萄糖氧化酶(GOD)修饰于膜上. 使用循环伏安法研究GOD/MspA-DMPC/GC电极的GOD直接电化学过程以及其对氧气和葡萄糖的响应. 研究发现,MspA与DMPC形成的仿生纳米通道膜内,GOD在接近生物体系FAD/FADH标准电位处实现了自身两质子、两电子表面控制的电化学反应. MspA与DMPC的仿生纳米通道膜体系为GOD提供了理想活性环境.Biomimic membrane with nano-channels, which is made up of porin MspA and 1,2-Dimyristoyl-sn-glycero-3-phosphocholine (DMPC) is constructed on glassy carbon substrate, and glucose oxidase (GOD) is modified on it. The direct electrochemical reaction and electrocatalytic behavior to oxygen and glucose of GOD on the GOD/MspA-DMPC/GC electreode are expounded by the cyclic voltammetric method. The study shows that GOD immobilized on porin MspA and DMPC biomimic membrane displays direct and surface-controlled electrochemical reaction nearby formal potential (E0′) of the flavoprotein active centre (FAD/FADH), and the electrochemical reaction contains two electrons and two protons exchange in 0.1 mmol?L-1 phosphate buffer solution (PBS) (pH 7.0). Furthermore, it is also discovered that, GOD immobilized on porin MspA and DMPC biomimic membrane possesses an excellent bioelectrocatalytic activity for the reduction of O2 and the oxidation of glucose. That is to say, the biomimic nano-channels membrane formed by porin MspA and DMPC provides an ideal living environment for GOD. So, the GOD/MspA-DMPC/GC electrode can be utilized in biosensor and biofuel cell in the future.国家973计划项目(No. Y11J032001)资助作者联系地址:1. 中国科学院长春应用化学研究所,吉林 长春 130022;2. 长春工程学院,吉林 长春 130012;3. 吉林大学,吉林 长春 130012Author's Address: 1. Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; 2. Changchun Institute of Technology, Changchun 1300122, China; 3. Jilin University, Changchun 130012, China通讯作者E-mail:[email protected]; [email protected]

    Research Progress of Metal-Nitrogen-Carbon Catalysts toward Oxygen Reduction Reaction inm Changchun Institute of Applied Chemistry

    No full text
    氧还原反应是燃料电池的核心,开发高性能催化剂一直是燃料电池技术面临的严峻挑战. 近年来,热解M-N-C催化剂的发展和以金属有机骨架材料为前驱体的运用让非贵金属氧还原催化剂的性能大幅度提升,但催化活性位点、反应机理等方面仍不甚清晰,需要分子水平上进一步的研究. 在这里,作者总结了本课题组近些年来在氧还原方向上的研究成果,首先是对催化剂活性位点进行的相关探索,提出了新的活性位点结构,为开发新型催化剂提供了帮助,并对金属氮碳催化剂进行了细致的微观调控,探讨了最佳的合成方法;其次开发了高效的双原子Co2N5催化剂,并在理论计算的指导下合成出了更为高效的FeCo双原子催化剂,具备了替代铂基催化剂的性能;最后针对芬顿反应引发的稳定性问题而开发的低芬顿反应活性的单原子Cr和单原子Ru催化剂,表现出了较高的活性和稳定性,为解决催化剂实际应用问题开辟了新的研究思路与方向. 作者相信,通过对催化剂活性位点的不断认知和对新型催化剂的不断开发,终会让非贵金属催化的商业化应用成为现实.The development of highly active and stable catalysts toward oxygen reduction reaction (ORR) has been facing severe challenges. In recent years, pyrolytic M-N-C catalysts and metal-organic framework derived materials made the performance of non-noble metal catalysts greatly improved, however, the molecular and atomic level understanding in the reaction active sites and the mechanism are still lacking. Here, we summarize the recent research progress made in the Changchun Institute of Applied Chemistry. We present a microporous metal-organic-framework confined strategy toward the preferable formation of ORR catalysts. Firstly, we studied the active site and proposed a new active site structure for the Fe-N-C catalyst, which is helpful for the development of new catalyst. The M-N-C catalyst was carefully regulated and the best synthesis method was discussed; Secondly, a highly efficient binuclear Co2N5 catalyst was developed, which performs approximately 12 times higher activity than the conventional CoN4 site and shows unprecedented catalytic activity in an acidic electrolyte with the half-wave potential of 0.79 V, presenting the best one among the Co-N-C catalysts, and a more efficient FeCo diatomic catalyst was synthesized under the guidance of theoretical calculation, indicating that the FeCoN5—OH site enables the ORR onset potential and half-wave potential up to 1.02 and 0.86 V (vs. RHE), respectively, with an intrinsic activity over 20 times higher than the single-atom FeN4 site; Finally, to overcome the stability problem caused by Fenton reaction, we developed novel single atomic Cr and Ru catalysts, showing low Fenton reaction activity, higher activity and stability after the accelerated degradation test for 20000 cycles, with the half-wave potentials being dropped only 15 and 17 mV, respectively, much lower than 31 mV of Fe-N-C catalysts. This offers a new way to solve the problem in catalyst application. We believe that upon further understanding in the active sites and the continuous development of new catalyst, the non-noble metal catalysts in PEMFCs will become truly applicable, which aids to solve the increasingly serious energy crisis environment.国家重点研发计划项目(2017YFB0102900);国家自然科学基金(21633008);国家自然科学基金(21875243);国家自然科学基金(21433003);中国科学院战略重点研究先导项目(XDA09030104);RFBRprojectnumber(FateevVladimir)(18-53-53025);吉林省科技发展项目(20170520150JH);吉林省科技发展项目(20170203003SF);吉林省科技发展项目(20180101030JC)通讯作者:葛君杰,刘长鹏,邢巍E-mail:[email protected];[email protected];[email protected]:GEJun-jie,LIUChang-peng,XINGWeiE-mail:[email protected];[email protected];[email protected].中国科学院长春应用化学研究所,先进化学电源实验室,电分析化学国家重点实验室,吉林 长春 1300222.中国科学技术大学应用化学与工程学院,安徽 合肥 2300261. State Key Laboratory of Electroanalytica Chemistry, Changchun Institute of Applied Chemistry,Chinese Academy of Sciences University of Chinese Academy of Sciences, Changchun 130022,Jilin, China2. University of Science and Technology of China, School of Applied Chemistry & Engineering, Hefei 230026, Anhui, Chin
    corecore