3 research outputs found

    高炉兰姆配料计算机程序及应用

    No full text
    本文以兰姆配料计算为基础,通过输入原始原料成份和高炉有关数据,快速地进行参数运算,得到一系列数据,为手动、自动控制高炉提供必要的实际操作依据。如通过高炉煤气成分和压力以及铁水、炉渣的数量、成分和温度的数据来改进装料程序,从而提高高炉生产能力;通过准确地计算费用及其分配的情况,以期减少费用等.通过计算得到的理论与实际的数据,同时作出RIST操作线,这样对比能为操作者提供努力方向。另外,本文可作为高炉自动化控制数学模型的一部分——外存储器

    Anaerobic Biotransformation of Environmental Pollutants Stimulated by Electric Field: Electron-Transfer Mechanisms and Application Examples

    No full text
    厌氧环境下一些微生物能够接受来自于电极的电子并将电子传递至环境污染物,这使得电驱动下生物还原技术在可持续性废水处理以及生物修复方面受到越来越多关注. 此体系中,阴极电子传递被认为是影响环境污染物厌氧转化可行性和效率的制约因素. 文中首先评述可能的电子传递原理,包括水解氢气介导的间接电子传递、人工合成电子穿梭体或者细菌分泌电子穿梭体介导的间接电子传递、以及电极与细菌之间的直接电子传递等途径. 相比间接电子传递,直接电子传递避免了将电子传递给没有起作用的介体及没有和电极接触的浮游微生物,因而更加节能. 另外,列举了自养反硝化、生物还原脱氯、重金属生物还原、CO2生物还原以及硫酸盐生物还原等应用实例. 最后,提出了此领域研究发展亟需解决的两个重要问题,包括阴极生物膜的培养以及电子从电极转至微生物内在机理的解析.The ability of some microorganisms to accept electrons from an electrode for the reduction of terminal electron acceptors in anaerobic environments has attracted growing interest on the electric field-stimulated biological reduction technology, which may open new possibility for the sustainable wastewater treatment and bioremediation in the field of environmental engineering. Here, we reviewed the extracellular electron transfer mechanism which is thought to play a key role in determining the feasibility and efficiency for the anaerobic biotransformation of environmental pollutants. Possible mechanisms that may be involved in bioelectrochemical reactors (BERs) with biocathodes include indirect electron transfer via hydrogen generated from water electrolysis or via a soluble mediator that can be artificial or secreted from bacteria, and direct transfer from the cathode to the microorganism. Direct electron transfer has many advantages over indirect electron transfer because it avoids the loss of electrons to unused mediators and planktonic cells, and thus allows significant reduction in power requirements. In addition, potential application examples of anaerobic biotransformation of environmental pollutants, known as autotrophic denitrification, microbial reductive dechlorination, heavy-metal bioreduction, CO2 bioreduction, sulfate bioreduction stimulated by an applied electric field were also reviewed. Finally, we proposed that more efforts should be made on developing new strategies for growing cathode biofilms and further disclosing biochemical mechanisms for the cathode extracellular electron transfer, in order to achieve the promising applications of this biotechnology.国家自然科学基金项目(No. 21177042,No. 21037001),广东省自然科学基金项目(No. S2011010002231)和华南理工大学中央高校基本业务经费(No. 2012ZZ0048)资助作者联系地址:华南理工大学 环境科学与工程学院,工业聚集区污染控制与生态修复教育部重点室,污染控制与生态修复广东省普通高等学校重点实验室,广东 广州 510006Author's Address: College of Environmental Science and Engineering, the Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters of Ministry of Education, the Key Laboratory of Environmental Protection and Eco-Remediation of Guangdong Regular Higher Education Institutions, South China University of Technology, Guangzhou 510006, China通讯作者E-mail:[email protected]

    基于古地磁与~(230)Th定年的西沙西科1井乐东组生物礁沉积年代的初步研究

    No full text
    生物礁是重要的自然资源,在全球气候变化与碳循环中扮演了重要角色.磁性地层学是建立年代框架的有效手段,但是,由于生物礁沉积物中天然剩磁强度弱,南海地区生物礁的磁性地层学研究尚未很好展开.为此,本文利用西沙群岛西科1井乐东组生物礁沉积样品进行了详细的岩石磁学和磁性地层学研究.结果显示,西沙群岛乐东组记录了布容正极性时、奥杜维尔正极性时和松山负极性时.通过对比已有的钻孔资料,本文认为应基于岩石地层特征这一标准将西沙地区的乐东组埋深予以统一.在此基础上,综合磁性地层与~(230)Th定年结果,本文将乐东组的底界限定在~2.0 Ma.</p
    corecore