21 research outputs found
Research on facial spectrum and color characteristics of five-zang disease status
目的:观察疾病状态人群面色光谱色度情况,为疾病状态五脏病评价提供可供依据。方法:采用日产柯尼卡美能达CM-2600d分光测色仪,观测健康组(183例)、疾病组(370例)额部、眉间部、鼻部、下颏、左右颧部、左右眼胞8处明亮度l、红光度A、黄光度b、饱和度C值及波长段(400~700nM)下的面色反射率值等指标,并据中医理论对疾病状态进行五脏病位分析。结果:疾病组l值显著低于健康组,b、C值均显著高于健康组;疾病组各波长段下反射率显著低于健康状态组(P<0.05)。疾病组除左右眼胞外的6个位点间的l、A、b、C值有显著性差异(P<0.05),不同点位有其特异性的色度变化特征。疾病组五脏病各组光谱色度特征比较有显著差异(P<0.05),结果与中医面部脏腑五色理论在一定程度上相符合。结论:运用光谱色度测定方法,可以作为诊断疾病状态五脏病的重要指标。Objective: To observe disease status facial spectrum and color,providing good quantitative basis for disease assessment.Methods: We gathered the facial color information in health(183) and disease groups(370) including L,a,b,C values and reflection of different wavelengths in 400-700nm with CM-2600D spectral photometric color measuring instrument on 8 points including frontal part,glabellas nose,mandible two cheeks and eye cells and analysized disease status five-zang positioning according to the principle of TCM syndrome differentiation.Results: L value of Disease group was lower than health status group and b,C values were higher than health status group,reflection of different wavelengths of disease group were lower than health group(P<0.05).6 points in disease group between loci L,a,b,C values with varying degrees of significant differences(P<0.05).Different point had its own specificity facial complexion variation characteristics.Facial spectrum and color of each five-zang disease group had significant difference through comparion of facial complexion.To a certain extent the result was consistent with TCM facial organs Five-color theory.Conclusion: There existed diagnostic value in distinguishing five-zang disease status in some degree by spectral photometric color measuring technique.国家科技支撑计划(No.2012BAI37B06);国家高技术研究发展计划(863计划)资助项目(No.2008AA02Z407);国家自然科学基金资助项目(No.30873463;No.81173200);国家自然基金青年项目(No.81102558);上海市重点学科(第三期)建设项目(No.S30302;No.S30303)---
基于基因组学的中医“证”本质的研究概况
随着后基因组时代(即功能基因组学)的到来,基因组学使得现代分子生物学从局部观走向整体观,从线性思维走向复杂思维,因此成为生命科学的研究热点,并在中医药领域得到广泛的应用。文章从基因组学在中医证候本质研究中的理论探讨、应用实例、存在问题及展望等方面进行了系统性的文献研究,以探讨基因组学与中医证候本质的相关性及意义
光谱法的中医舌诊研究与应用概况
舌诊是中医独特的诊法之一,文字、语言及图画等主观性、经验性的描述虽沿用至今,但很难全面、客观表达舌象的完整信息;现代技术的发展为中医舌诊研究提供了新的思路和方法,如光谱法的应用,对还原舌象信息具有重要意义。本文简要介绍光谱法,归纳其在中医舌诊领域的研究与应用概况,并提出存在的问题及展望,为进一步研究提供参考。国家重点研发计划(2017YFC1703301);;国家科技支撑计划(2012BAI37B06);;国家自然科学基金(81373556、81102558
慢性疲劳患者中医常见证候要素研究
目的 从证候要素角度探讨慢性疲劳(CF) 的常见中医证型。方法 通过流行病学调查收集CF 患者, 自拟《慢性疲劳调
查问卷》进行匿名问卷调查, 统计分析其证候要素的分布情况。结果 调查的有效样本2 958 例, CF 患者782 例, 占26144% , 中医各
证候要素频数按从多到少排列依次是脾虚证、心虚证、肝郁证、气虚证、血虚证、肾虚证、血瘀证、阳虚证、肺虚证、痰浊证; 其中慢性
疲劳综合征(CFS) 为174 例占5188% , 原发性慢性疲劳( ICF) 为608 例占20156% , ICF 发病率明显高于CFS, 差异有统计学意义(P <
0105)。CFS 的证候要素组合形式主要集中在两证~ 四证组合, ICF 的证候要素组合形式主要集中在单证~ 三证组合。结论 CF
的常见中医证候要素是脾虚证、心虚证、肝郁证和气虚证, 中医病机包括虚实两方面, 病位与脾、心、肝关系密切。国家高技术研究发展计划(“863 ”计划) 资助项目
(2008AA 02Z407
基于随机森林法的慢性疲劳证候要素特征症状的选择
目的对慢性疲劳(CF)进行中医证候要素特征症状的提取。方法采用流行病学整群抽样调查法,选择福建省闽南地区的部分高校、中学、小学与医院的CF患者782例,填写《慢性疲劳中医临床症状分级量化表》。记录患者症状、舌象和脉象等临床资料,对临床资料进行中医证候要素的诊断。引入随机森林方法 ,对该表中的95个症状进行编码,选取CF常见证候要素的主要症状并衡量症状对各证候要素的贡献程度。结果得到CF4个证候要素的症状集。脾虚证:食后腹胀或午后腹胀,食欲减退,面色萎黄,大便溏泄,消瘦;心虚证:心悸,胸闷,脉细,失眠或多梦,健忘;肝郁证:急躁易怒或抑郁寡欢,喜叹息,口苦,咽干,脉弦;气虚证:舌胖或有齿痕,气短喘促,少气懒言,自汗。将上述症状集作为模型输入,各模型预测准确率分别为96.13%、94.75%、95.89%、94.26%。结论随机森林方法对CF证候要素具有良好的分类性能,CF主要包含脾虚证、心虚证、肝郁证和气虚证4类常见证候要素,每类证候具有特征性症状体系
A Medical Image Color Correction Method Based on Supervised Color Constancy
提出了一种室内自然光条件下的医学图像采集分析的“拓扑剖分-还原“(TrM)模型。该模型根据医学图像颜色特征,应用自制的彩色、灰度色标作为校正的监督色,在lAb(l*A*b*均匀色空间,简称lAb)色空间分别对一维l*空间和二维A*b*空间进行“拓扑剖分-影射还原“,并采用分段校正法进行l*值的校正,采用三角形拓扑剖分-重心逼近法进行A*b*值的校正。通过对不同条件下22幅图像的198个色块的校正结果显示,与白平衡校正比较,TrM模型校正后Δl*、ΔC*和ΔE明显降低(P<0.01),校正后图像色差更小,颜色与饱和度值更接近真实值。TrM模型校正方法能明显降低自然光条件下医学图像的色差,具有良好的颜色校正效果。This paper presents a medical image acquisition and analysis methodTRM(Topology Resolve-Map) Model-under natural light condition indoors.Firstly,in accordance to medical image color characteristics,a colorful and grayscale color control patch was made fou use as supervised color."Topology Resolve-Map-Restoration" was carried on in LAB color space of the one-dimensional L* space and the two-dimensional a*b* space.Then,L* value was regulated by subsection regulation and a*b* value was regulated by triangulation topological cutting close in on center of gravity method.After correction of the 198 color blocks in 22 pictures,the results showed that,by comparison with the standard value,the ΔL*,ΔC* and ΔE decreased significantly(P<0.01) after correction by TRM.After correction,the difference in image's color is reduced,the color saturation is improved and the value is closer to true value.TRM model can significantly reduce the color difference of the medical image under natural light condition;it has a good effect on color correction.国家高技术研究发展计划(863计划)资助(2008AA02Z407);国家自然科学基金资助项目(30873463;30300443);上海市重点学科资助项目(S30302
Progress in clinical application of tongue inspection objectivity based on digital image processing technique
舌诊作为中医望诊的重要组成部分,一直是临床辨证及疗效评价的重要依据之一,传统中医舌诊重于形象描述轻于客观量化的特点限制了中医诊断方法与技术的发展,然而随着近10年计算机技术的发展,数字图像处理技术在中医舌诊客观量化的研究中已取得了一定的成果,同时也被大量应用于临床研究。文章对近5年有关数字图像处理技术的舌诊客观化在疾病及相关指标、中医证候、疗效评价、健康与亚健康状态及体质的客观化辨识、中医舌诊检索技术方面的临床应用研究进行了概述,并且指出了其在临床应用研究中存在的问题与展望。As an essential component of inspection in traditional Chinese medicine(TCM), tongue inspection was always one of the important bases for clinical syndrome differentiation and efficacy evaluation.Traditional tongue inspection focused on image description and despised the objective quantitative, which limited the development of TCM diagnosis methods and technologies.With the development of computer technology in recent 10 years, it had achieved certain achievements in applying digital picture processing technique in objective researches of TCM tongue inspection, and the digital picture processing technique was also applied in clinical research widely.This article summarized the clinical application of digital picture processing technique in objective researches of TCM tongue inspection in related indicators of diseases, TCM syndromes, efficacy evaluation, objective identification of health and sub-health status and constitutions and TCM tongue inspection technologies, and pointed out the existing problems and prospects in its clinical application.国家自然科学基金项目(No.81173200;No.81102558;No.81373556); 国家科技支撑计划(No.2012BAI37B06); 上海曙光计划(No.12SG36)~
基于图像区域分割方法的舌质与舌苔识别
舌象的图像识别是舌象信息计算机诊断的主要内容之一。实现舌质、舌苔的区域识别是舌诊计算机识别过程中的重要步骤,也是后期舌体和舌苔颜色识别和纹理特征分析的重要前提。应用彩色图
像区域分割方法,根据舌象颜色的区域特征,采用分裂- 合并算法、色度阈值法对舌象进行了区域划分,建
立舌质、舌苔的区域分割方法,实现舌质与舌苔的分割。实验结果显示,分裂- 合并算法、色度阈值法具有
良好的分割效果。国家高技术研究发展计划(“863”计划)基金资
助项目( 2008AA02Z407 ) ; 国家自然科学基金资助项目(30873463, 30300443 ) ; 上海市重点学科建设资助项目( S30302
