15 research outputs found

    红外光学系统中衍射面冷反射的分析与评价

    No full text

    Deformation Analysis of the Glass Preform in the Progress of Precision Glass Molding for Fabricating Chalcogenide Glass Diffractive Optics with the Finite Element Method

    No full text
    Precision glass molding (PGM) technology is a cost-efficient process for the production of micro/nanostructured glass components with complex surface geometries. The stress distribution, surface profile, and reduced refractive index of the molded lens are based on the lens being fully formed. The process of the deformation of the glass preform is rarely discussed, especially in the case of multi-machining parameters in the experiment. The finite element method (FEM) was adopted to analyze the glass preform deformation. Due to the phenomenon of incomplete deformation of the glass preforms in the experiments, two groups of finite element simulations with different boundary conditions were carried out with MSC.Marc software, to reveal the relationship between the deformation progress and the parameters settings. Based on the simulation results, a glass preform deformation model was established. The error between the model result and the simulation result was less than 0.16. The establishment method of the glass preform deformation model and the established model can be used as a reference in efficiently optimizing PGM processing parameters when the designed lens has two different base radii of curvature

    IodoTMT-labeled redox proteomics reveals the involvement of oxidative post-translational modification in response to para-hydroxybenzoic acid and hydrogen peroxide stresses in poplar

    No full text
    Poplar is widely planted as an economic and ecological tree species. However, accumulation of the phenolic acid allelochemical para-hydroxybenzoic acid (pHBA) in soil is a severe threat to the growth and productivity of poplar. pHBA stress leads to excessive production of reactive oxygen species (ROS). However, it is unclear which redox-sensitive proteins are involved in the pHBA-induced cellular homeostasis regulatory mechanism. We here identified reversible redox-modified proteins and modified cysteine (Cys) sites in exogenous pHBA- and hydrogen peroxide (H2O2)-treated poplar seedling leaves by using the iodoacetyl tandem mass tag-labeled redox proteomics method. In total, 4786 redox modification sites were identified in 3176 proteins, with 104 and 91 proteins being differentially modified at 118 and 101 Cys sites in response to pHBA and H2O2 stresses, respectively. The differentially modified proteins (DMPs) were predicted to be mainly localized in the chloroplast and cytoplasm, with most proteins being enzymes with catalytic activities. The KEGG enrichment analysis of these DMPs revealed that proteins related to the MAPK signaling pathway, soluble sugar metabolism, amino acid metabolism, photosynthesis, and phagosome pathways were extensively regulated by redox modifications. Moreover, combined with our previous quantitative proteomics data, 8 proteins were upregulated and oxidized under both pHBA and H2O2 stresses. Reversible oxidation of Cys sites in these proteins might be actively responsible for the regulation of tolerance to pHBA-induced oxidative stress. Based on the aforementioned results, a redox regulatory model activated by pHBA- and H2O2-induced oxidative stress was proposed. This study conducts the first redox proteomics analysis of poplar in response to pHBA stress and provides a new insight into the mechanistic framework of reversible oxidative post-translational modifications to gain a better understanding of pHBA-induced chemosensory effects on poplar

    Dehydrogenation of Isobutane with Carbon Dioxide over SBA-15-Supported Vanadium Oxide Catalysts

    No full text
    A series of vanadia catalysts supported on SBA-15 (V/SBA) with a vanadia (V) content ranging from 1% to 11% were prepared by an incipient wetness method. Their catalytic behavior in the dehydrogenation of isobutane to isobutene with CO2 was examined. The catalysts were characterized by N2 adsorption, X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectroscopy, and temperature-programmed reduction (TPR). It was found that these catalysts were effective for the dehydrogenation reaction, and the catalytic activity is correlated with the amount of dispersed vanadium species on the SBA-15 support. The 7% V/SBA catalyst shows the highest activity, which gives 40.8% isobutane conversion and 84.8% isobutene selectivity. The SBA-15-supported vanadia exhibits higher isobutane conversion and isobutene selectivity than the MCM-41-supported one

    Platycodon grandiflorus Polysaccharides Alleviate Cr(VI)-Induced Apoptosis in DF-1 Cells via ROS-Drp1 Signal Pathway

    No full text
    Hexavalent chromium (Cr(VI)) is a widespread heavy metal that has been identified as a human carcinogen, and acute or chronic exposure to Cr(VI) can cause organ damage. Platycodon grandiflorus polysaccharide (PGPS) is a constituent extracted from the Chinese herb Platycodon grandiflorus, which has various pharmacological effects. Therefore, the author investigated the role of PGPSt in Cr(VI)-induced apoptosis in chicken embryo fibroblast cell lines (DF-1 cells). Firstly, this study infected DF-1 cells using Cr(VI) to set up a model for cytotoxicity and then added PGPSt. Then, the intracellular reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and apoptosis rate were evaluated. The results showed that PGPSt could inhibit Cr(VI)-induced mitochondrial damage and increase the apoptosis rate. For further exploration of the mechanism of regulation of PGPSt, the ROS-Drp1 pathway was investigated. The antioxidant N-acetyl-L-cysteine (NAC) and mitochondrial division inhibitor 1(Mdivi-1) were added, respectively. The results showed that the NAC and Mdivi-1 restored abnormal mitochondrial fission and cell apoptosis. Thus, PGPSt can alleviate Cr(VI)-induced apoptosis of DF-1 cells through the ROS-Drp1 signaling pathway, which may suggest new research ideas for developing new drugs to alleviate Cr(VI) toxicity
    corecore