24 research outputs found
Research on Process and Influencing Factors of Nitrification in Fujian Coastal Aquaculture Water
海水养殖业是福建省重要的经济产业之一。本文通过现场采样调查,比较和分析了不同养殖模式下的水质,探讨了各环境参数与硝化作用之间的关系。同时通过实验室模拟,研究了养殖水体中硝化作用的动力学及环境因子(温度、pH、光强、盐度等)对硝化作用的影响。 通过现场调查研究,对不同养殖模式下的水体进行分析,结果如下:平潭网箱养殖区的无机氮(NH4+-N、NO3--N、NO2--N)、溶解氧(DO)、化学需氧量(COD)、浊度、叶绿素a及悬浮物等参数均较高。厦门滩涂养殖区的营养盐浓度相对较低。湄洲湾港湾养殖区的NO3--N和NH4+-N的浓度都介于厦门养殖区和平潭养殖区之间。东山工厂化养殖区的NH4+-N浓度...Seawater aquaculture is the main economical industry of Fujian Province. Field research was done in this article, in order to compare and analyze the water quality under different aquaculture modes. The relationship between environmental parameters and nitrification was studied. At the same time, kinetics and the influence of environmental factors(temperature,pH,light,salinity)were researched, on ...学位:理学硕士院系专业:海洋与环境学院海洋学系_海洋化学学号:20042701
Seasonal variation and assessment of water quality in Meizhou Bay
根据2005年1月~2005年11月间4个航次的调查资料,阐述了湄洲湾海域营养盐的变化特征,并对NH4-N、NO3-N、NO2-N、PO4-P、pH、盐度、DO、COD和叶绿素等进行了分析,对海域进行了富营养化评价及有机污染评价。结果表明:该海域N、P营养盐随月份呈现不同的变化规律。不同季节的N/P值变化较大。根据有机污染评价,湄洲湾海域属于水质较好类型;富营养化评价的结果显示,湄洲湾海域秋季和冬季处于富营养化状态。On basis of in-situ detecting data during 4 cruises from January to November in 2005,variation features of inorganic nitrogen and phosphate in Meizhou Bay were analyzed,so were the parameters such as pH,salinity,DO,COD and chlorophyll a.Combined with the economy developing status of Meizhou Bay,the main parameters of water quality,the status of nourishment and organic pollution were assessed.The results indicate that,the value of N/P varies with seasons,and the water quality is comparatively fine based on the organic pollution estimation,when in autumn and winter,Meizhou Bay is rich in nutrients,which in based on the estimation of nourishment.Suggestions were also made on the basis of the results of water investigation of Meizhou Bay.福建省重大前期专项(2005HZ1014);; 福建省自然科学基金(D0610020
Vegetative Recovery for the watershed Landslides caused by 921 Earthquake in TA-CHIA Creek
921地震造成台灣中部多處崩塌,裸露坡面鬆散之土質易因豪雨引發土石災害,造成生命財產之損失。崩塌地整治需長期監測,在有限人力物力下,需依植生復育狀況調整治理區位,以避免土砂災害危及河川水質。
本研究選定大甲溪主流天輪至德基大壩間之河段,依支流劃分為30個集水區,利用地震前後不同時期之衛星影像判釋崩塌區位,藉由通用土壤流失公式及泥砂遞移率之演算,評估集水區崩塌區位之泥砂產量,做為崩塌地治理優先順序之指標。
由集水區出流口泥砂產量所推算之崩塌區位沖蝕深度,可作為集水區崩塌地治理順位之指標。依此指標,集水區崩塌區位復育順序前三者依序為No.0,No.30,No.28,其年平均沖蝕深度分別為30.04 cm,16.59 cm,9.80 cm。崩塌地之植生復育宜根據不同區位配置適當的工法。崩塌地植生復育工程以基礎工最為重要,藉由集水區坡面泥砂遞移率之計算可標定崩塌地基礎工之適當配置區位。Chi-Chi earthquake caused lots of landslides in Central Taiwan. Fragile debris of the landslides is susceptible to erosion and having the potential disaster during the rainy season. The effectiveness of landslide treatment should be long-term monitored. Under the limitation of manpower and finance, the priority of treatment zone needs to be set and adjusted according to the recovery status of the monitored landslides for avoiding sedimentation in the aquatic ecosystem.
The river segment (Tian-Lun to Der-Ji dam) of Ta-Chia Creek was selected and the watersheds of it's tributaries were delineated in this study. Sediment yield of the landslide, before and after the quake, in the interested watersheds were estimated by using Universal Soil Loss Equation (USLE) couple with the calculation of sediment delivery ratio (SDR).
Annual erosion depth calculated from the sediment yield of watershed outlet can be as the priority index for landslide treatments. Results show that the top-three watershed need to be treated priority is No.0, No.30, and No.28 in order, and the annual erosion depth of the three watersheds is 30.04 cm, 16.59 cm, and 9.8 cm respectively. Vegetative engineering methods should be placed at the suitable sites for landslide restoration. Toe-protection work is a key to vegetative restoration for a landslide. The placement sites of toe-protection work in the analyzed watershed can be displayed effectively using the calculation of sediment delivery ratio.謝誌
目錄
中文摘要
英文摘要
圖次
表次
壹、前言
貳、前人研究
一、遙測技術、崩塌地判釋及地理資訊系統
二、土壤流失量與泥砂產量
(一)土壤流失量估算
(二)泥砂產量估算
(三)崩塌地對環境之影響
三、崩塌地治理與植生復育
(一)地震崩塌地
(二)崩塌地治理
(三)崩塌地之植生復育
參、材料與方法
一、試區概況
(一)環境基本資料
(二)水系分佈
二、研究流程
三、分析方法
(一)資料蒐集
(二)資料分析
(三)泥砂產量分佈
肆、結果與討論
一、崩塌地分佈與崩塌區位分佈特性
(一)崩塌地分佈
(二)崩塌區位分佈特性
二、崩塌區位沖蝕深度
三、植生復育率分析
四、崩塌地植生復育序位指標
(一)崩塌區位
(二)崩塌地之泥砂產量
(三)崩塌區位植生復育評估
伍、結論
參考文
集水區土砂脈衝動力行為之研究
Diversities of the terrains and landscapes incorporated with annual typhoon events, Taiwan suffers serious geologic hazards, such as landslide, debris flow and flooding, the concepts and measurements of ecological engineering are mainly adopted for the hazards treatment and/or risk management after the impact of the catastrophic 921 Earthquake. It is important to evaluate the effects of energy accumulation on the behaviors of ecosystem for watersheds.
This study attempts to establish a pulsing model, which uses the Systems Ecology approach to discuss the natural hazard and its interactive behaviors with the system energy. The pulsing energy patterns of the landslide events are described in the model. The results can be used to depict the principle of ecological engineering in the watershed hazard treatment.
According to the literatures review and case studies, the phenomenon of a landslide can be considered as a dynamic behavior of external pulsing, which contributes watershed nutrient recycle and energy metabolism. The model simulation shows that: 1). the magnitude of pulsing sediment has a close relationship between the energy inflows and/or outflows; 2). the interaction of sediment energy with the system components occurred in the whole process of production, storage and transformation is interactive; and the outcomes also affect the trend of system development; 3). the more external energy flow the higher production of the system, and it then increase the potential destruction energy; 4). check dam simulation shows that there exist a phenomenon of energy accumulation. The dynamic behavior of internal pulsing yields the failures of the engineering construction. The abrupt increasing of total pulsing energy and the irregular pulsing patterns make it difficult to handle the hazards management. To solve the above problem, the strategies of integrated management for a watershed are recommended as follows:
1. Reducing sediment pulsing energy: considering how energy accumulation can be abated, watershed sediment should be released at the right time and space to avoid huge pulse.
2. Increasing feedback mechanism and strengthening the resilience and resistance of watershed: landslide caused by natural external force is one kind of energy subsidy for ecological system. It not only can supply sediment materials for downstream and nourish flood plain, riparian vegetation zone, but also can provide the best protection against natural hazard events in the future.
3. Maintaining natural mechanism of sediment transport: the design with considering natural pulse on river should store extra energy and reach the balance condition of sediment erosion and deposition. Wandering channel can be an appropriate design to meet the mechanism.
4. Shifting the concept of preventing natural hazards: this study suggests the best strategy is stressed on abating or/and shunning the hazards, then human can coexist peacefully with nature.台灣位處地殼運動頻繁之板塊交界帶,又由於每年颱風過境攜帶豐沛的豪雨,塑造了特殊及多樣的地形景觀,亦形成不少地質災害如山崩、土石流等事件,公部門長期在集水區管理上投入工程建設以控制土砂運移。九二一地震後,產官學界中興盛起生態工程之概念,重新檢視對生態環境的態度及調整對自然災害的防治策略,惟現階段較少考量能量累積效應對集水區生態系統之影響。
爰本研究乃分析自然事件所產生之破壞能量與系統間之交互作用,並以自然崩塌事件為例,應用系統生態學之理論與能量分析方法,建立集水區土砂脈衝能量系統生態模型,分析能量流動特性對系統演替之影響,作為應用生態工程整災之理論基礎探討。
經文獻分析與案例觀察,由生態能量觀點可知集水區受到颱風或地震等外力引起之崩塌現象,為土砂外部脈衝動力行為,衍生之生態效應為促進坡面土體養份循環之能量代謝作用;另由模擬結果顯示1. 土砂脈衝能量與系統各環節之能流進、出量有關。 2.土砂能量從生產、儲存、轉換等過程皆與其他組成份彼此交互作用,並影響下一時間之發展。3. 流入系統之外部能量愈高,系統之生產力愈大,亦使系統有較高之破壞能量。4.防砂壩控制土砂能流之運移,其能量積蓄效應引起土砂內部脈衝動力行為,所產生崩塌之總土砂脈衝能量激增及脈衝型態不規則等現象,實增加防災管理之困難度。有關集水區之整體治理策略,依研究分析結果,茲建議如下;
1. 減低土砂脈衝能量:可在安全場址及安全時期分階段釋放集水區自然產出之土砂量,避免「零存整付」之脈衝現象。
2. 增加回饋機制、強化集水區之彈性與抗性:經自然外力事件所產生之崩落土石,對系統之生態效益為一種能量津貼,不僅補充中、下游流域經平日淘刷所失去之土砂,另可提供洪水平原、濱溪植生帶等植群自然生長所需之土壤與養份,成為系統面對未來之災難事件最佳之防護。
3. 維持自然河道之輸砂機制:河道設計應考量可隨著大自然之脈動儲存額外之能量並達沖淤平衡。彎曲之河道為最佳之設計可維持自然河道之輸砂機制。
4. 改變防災思維,以減災、避災為導向:由於人類無法改變颱風、豪雨或地震等外部能量流入系統,因此災害防不勝防,惟可透過能流分析與管理,以減輕、迴避土砂脈衝能量為導向,實為人類因應自然外力之最佳策略。摘 要 i
ABSTRACT iii
目 錄 v
表目錄 vii
圖目錄 ix
專有名詞 xii
第一章 緒論 1
第一節 前言 1
第二節 研究概述 2
第三節 論文架構及研究流程 3
第二章 文獻回顧 6
第一節 生態系統 6
第二節 系統生態學之內涵 19
第三節 脈衝相關研究 28
第三章 材料與方法 49
第一節 試區概述 49
第二節 系統生態模型 51
第四章 結果 62
第一節 生態能量系統分析 62
第二節 集水區土砂運移及崩塌能流之特性 75
第三節 集水區基本能流分析與福山案例測試 83
第四節 基本外部脈衝能量系統生態模型之建置 92
第五節 內、外部脈衝能量之效應 131
第六節 脈衝之週期及振幅 138
第五章 討 論 144
第一節 破壞能量及管理 144
第二節 土砂脈衝能量與系統之自我復育 150
第三節 災害能量分配、善勢利導之整災措施 152
第六章 結論與建議 155
一、結論 155
二、建議 158
參考文獻 160
附錄
