6 research outputs found

    打造新世代優視兒童: 運用治療性遊戲於學前兒童視力保健之介入模式發展與成效探討

    No full text
    [[abstract]]目前學前兒童近 3 成入小學前已近視,隨著年紀增長,可能產生高度近視的問題,其高度近視所導致的失明,已經列為我國不可治療性失明的第一位,嚴重影響國人健康及生活品質;因而若是能發展出一套適合學前兒童視力保健的健康促進創新教學策略與教材,從小埋下視力保健的知能,養成正確用眼態度及護眼行為,則可及早預防其視力惡化的問題。因而本研究計畫採雙組前後測、介入性研究的研究設計,以認知行為遊戲治療當作理論架構,發展治療性遊戲,設計多元學習活動策略,探討其對學前兒童之視力保健知識、態度和行為成效的影響,希望本研究成果可有效提升學前兒童視力保健的學習成效,並能藉以提升國內學前兒童的視力健康。[[note]]科技部[[note]]2020-08-01~2021-10-3

    Studies on three important Phytophthora diseases in recent year in Taiwan

    No full text
    疫病菌 (Phytophthora deBary) 為植物強敵, 目前發表之有效種 (species) 約有百餘種,存在台灣的約有30 種,近年在台灣造成重大疫情者包括 (1) Phytophthora infestans US11 菌系釀成之馬鈴薯與番茄晚疫病;(2) P. citrophthora 新菌系引起之金柑疫病;及 (3) P. capsici 同絲配對型 (具A2配對型之傾向) 崛起,造成之茄科與瓜類疫病。茲說明如下:(1) 台灣自1997年12 月在台中后里地區爆發嚴重之馬鈴薯與番茄晚疫病後,兩個月內病害遍及全台,並導致馬鈴薯栽培區南移至斗南地區,目前已經證實病害發生係因強毒性菌株US11 入侵之結果,該菌系為A1 配對型、致病性強、生長快速 (於最適溫20℃時,新菌系直線生長速率平均為5.15 mm、舊菌系為2.68 mm)、耐高溫 (新菌系最高生長溫度27-29℃、舊菌系24-25℃)、及抗多種化學農藥 (滅達樂【metalaxyl】對新菌系菌絲生長抑制濃度(LD50)為200-400 ppm、舊菌系為0.005-0.001 ppm,抗藥性提高4-40 萬倍)。(2) 宜蘭地區之金柑,於1995-1997 年,爆發植株大量急速萎凋與死亡現象,伴隨嚴重之枝枯、流膠、落葉與落果,受害地區高達80%以上。分離到相關性最高的病原菌為柑橘疫病菌 (P. citrophthora),但為害金柑之菌系與一般為害柑橘屬的P. citrophthora 菌系有很大差異。在寄主專一性方面,金柑屬疫病 菌系不會造成柑橘屬植株死亡,反之亦然;此外,兩者之菌落型態不同,菌絲蛋白電泳圖譜略異,核醣體內轉錄區間ITS (ITS1-5.8S rDNA-ITS2) 的基因序列亦略異。金柑菌系的ITS 序列長度均為779 bp,且全部序列相同;β 微管蛋白(β-tubulin) 的部份DNA 序列(長度651 bp)亦完全相同,所有菌株似源自單一菌株;柑橘屬菌系ITS 全長為782、783 或784 bp,與柑橘菌系相比,所有金柑菌系在ITS1 區域有4 處鹼基對缺遺與2 處鹼基置換,而在ITS2 區有6 處鹼基置換。顯示台灣之金柑疫病非由本土柑橘屬菌系引起。(3) 番椒疫病菌 (P. capsici) 在台灣的記錄一直為A1 配對型,直到2007年4 月首度發現同絲型出現,目前 (2010 年) 同絲型已遍佈全台,僅高山地區尚可分離到A1 型。與A1 菌系比較,同絲型新菌系除會形成卵胞子外,其胞囊較狹長且脫落率較高、產胞較嗜高溫 (同絲型產胞最適溫為28-32℃,A1 菌系大部分為24℃)、且毒性較強。比較分析同絲型番椒疫病菌系間之親緣關係,ITS 序列全長均為753 bp,有6 處相異,可以分為3群;β 微管蛋白(β-tubulin) 的部份DNA 序列(長度651 bp),亦有8 處相異,可以分為9 群。從以上特性尚無法判斷台灣A2 菌株崛起之原因。 Phytophthora deBary are important plant pathogens distributed world wide. Currently, there are about hundreds good species of Phytophthora have been formally described and documented in the world. Among them 30 species are distributed in Taiwan. Some of them have caused severe economic loss in recent year, including that (1) Phytophthora infestans US11 caused potato and tomato late blight since 1997;(2) a new strain of P. citrophthora induced kumquat blight and decline from 1985 through to 1987; and (3) the homothallic strain (with A2 tendency) of P. capsici appeared and attacked solanaceae and cucurbit crops seriously since 2007

    髖部骨折與腦中風相關風險之研究

    No full text
    [[abstract]]髖部骨折不僅造成病人活動受限、日常生活獨立性減低、喪失信心,甚至導致失能及死亡,而腦中風病人容易發生髖部骨折。本研究目的在探討不同腦中風類型(缺血性腦中風、非缺血性腦中風)病人發生髖部骨折的相關風險,採病例對照性研究,樣本來自2007年國家衛生研究院發行的全民健康保險研究資料庫,選擇第一次發生髖部骨折的住院病人877位為病例組,控制年齡、性別與影響骨質疏鬆的藥物(抗心律不整和毛地黃、雙磷酸鹽、利尿劑、荷爾蒙、β-阻斷劑、鈣通道阻斷劑、硝酸鹽、抗糖尿病藥物、類固醇)。依病例組性別及年齡層別1比5頻率匹配,選擇4,385位病人為對照組,研究對象總共5,262人。採SAS 9.1統計套裝軟體,以次數、百分比、平均值及標準差呈現資料,邏輯式迴歸進行資料分析。結果顯示腦中風病人發生髖部骨折的勝算比為1.35;缺血性腦中風者更高。女性腦中風病人發生髖部骨折的風險高,71-80歲腦中風病人發生髖部骨折的風險高於18-70歲腦中風病人。本研究證實腦中風病人發生髖部骨折的風險高於沒有腦中風病人;建議腦中風病人需預防發生髖部骨折,定期監測骨質密度,加強預防跌倒及病理性骨質疏鬆的護理指導,更要鼓勵女性及年長腦中風病人適當曬太陽、步行及鈣質攝取

    (62(2):184-194) Use of Polycarbonate Membrane for Detection of Extracellular Enzymes of Phellinus noxius on Solid Media

    No full text
    褐根病為近年來台灣普遍發生的木本植物根部病害之一,被為害植物的根系組織嚴重腐敗。本文利用薄膜培養基測試法探討褐根病菌分泌10 種細胞外泌酵素 (extracellular enzymes) 之能力。試驗結果顯示分別分離自南投縣、高雄市等地區所採集罹病植株之5 支褐根病菌供試菌株 (PN18.1:分離自南投縣中興新村之櫸木;PN22.1:南投縣國姓鄉之木麻黃;PNG1.1:南投縣水里鄉之葡萄;PNP1.1:高雄市甲仙區之梅樹;及PNZ1.1:高雄市阿蓮區之印度棗) 皆能分泌澱粉分解酵素 (amylase)、纖維分解酵素 (cellulase)、果膠分解酵素 [pectinases, 含polygalacturonases (PGs) 與pectate transeliminases (PTEs)]、蛋白分解酵素 (protease)、磷酸分解酵素 (phosphatase)、尿素分解酵素 (urease)、脂質分解酵素 (lipase) 及木質分解酵素 (laccase);但不能分泌磷脂分解酵素 (phosphatidase) 與幾丁質分解酵素 (chitinase)。除木質分解酵素外,各菌株分泌各種分解酵素的能力隨酵素種類的不同而有強弱之差異,可達到5% 顯著性水準。然而所有供試菌株分泌木質分解酵素的活性均甚高。本研究所建立褐根病菌分解酵素之檢測技術,可進一步應用於褐根病菌致病機制之研究。 Brown root rot caused by Phellinus noxius is one of the most serious diseases associated with decline of fruit trees and ornamental woody trees in Taiwan. The objective of this study was to develop a modified polycarbonate membrane method for detection of extracellular enzymes produced by P. noxius growing on solid agar media. Five isolates of P. noxius collected from different host plants in Taiwan were used in this study, including isolate PN22.1 from ironwood (Casuarina equisetifolia) at Guosing, Nantou, isolate PNG1.1 from grapevine (Vitis vinifera) at Shueili, Nantou, isolate PN18.1 from zelkova (Zelkova serrata var. serrat) at Chungsin, Nantou, isolate PNP1.1 from plum (Prunus mume) at Jiasian, Kaohsiung and isolate PNZ1.1 from Indian jujube (Zizyphus mauritiana) at Alian, Kaohsiung. They were tested for production of extracellular enzymes by growing each isolate on polycarbonate membrane disc (0.2 μm in pore diam.) which was placed on PDA amended with enzyme-reaction chemicals for detection of enzymes. Results showed that eight extracelluar enzymes, including amylase, cellulase, pectinases (polygalacturonase and pectate transeliminase), protease, phosphatase, lipase and laccase, were detected in all the five isolates of P. noxius, but no phosphatidase and chitinase were detected from these isolates. Among the eight enzymes detected, the level of laccase secreation was high in all the five isolates, but the level of secretion of other seven enzymes varied with the isolates tested. The technique for detection of enzymes can be applied to pathogenecity analysis in P. noxius and other fungi

    Phytophthora fruit rot of peach in Taiwan

    No full text
    一九九九年六月至七月間台中石岡一鶯歌桃果園的果實採收後,於儲運期問發生嚴重腐敗現象。罹病果實初現淡褐色水浸狀圓形斑點,病斑面積迅速擴大轉為暗褐色,並長出白色密緻的黴狀物。經組織分離,共獲得兩種疫病菌,分別為Phytophthora meadii與P. citrophthora,將兩種疫病菌的游走子接種於鶯歌桃果實,2-3天後均會造成果實腐敗,病徵與儲運期間發生者一致,證明此種桃果實腐敗係由疫病菌引起。此外,自罹病果園與鄰近碰柑園內的落果、根系與土壤中,均可以分離至到P. citrophthora。由於農民於果實採收後曾以水清洗所有果實,而果實於2-3天內嚴重發病,因此推測桃果實發病原因,為少數罹病果實上的胞囊於清洗過程中釋放人量游走子成為二次感染源,再侵染其他健康果實所致。採收時如將病果剔除,並在清洗水中加人10 ppm次氯酸鈉,可有效防治該病害。兩種疫病菌有部份特性相似,包括菌絲生長溫度為8-32℃,最適溫為20-28℃;胞囊具顯著乳突及脫落性,胞囊柄長中等,平均約為9 11 m,均不形成厚膜胞子。兩者的相異處為P. meadii的胞囊較長,長寬比值平均約為1.5-1.6,而P. citrophthora者較短,約為1.3;其中P. meadii均為A2配對型,本身會形成卵胞子(self-oospores);而P. citrophthora為A1配對型,但本身不會形成卵胞子。當兩者直接配對時亦無卵胞子產生。此外,兩菌的菌絲蛋白質電泳圖譜相近,僅有些微差異。在台灣,疫病菌危害鶯歌桃果實為首度報導,而P. meadii危害桃樹為世界首度發現。 Peach (Prunus persica) fruit, harvested from an orchard located at Shigang, Taichung County, occurred a serious disease in 1999. Light brown water-soaking spots appeared on affected fruit at the early stage. The diseased areas turned brown and soft, and were covered with a thick layer of white mold subsequently under high moist condition. Phytophthora meadii and P. citrophthora were isolated from diseased fruit. Disease symptoms similar to those appeared in the field and market were reproduced on the fruit 2-3 days after inoculation with zoospore suspension of each Phytophthora isolate tested. The same fungi were reisolated from all of the inoculated diseased fruit. Since all harvested fruit were washed with the water collected from a ditch nearby and most disease symptoms appeared within 2-3 days in the market, the severe Phytophthora fruit rot of peach might be a result of zoospore infection during the washing process. P. citrophthora was frequently isolated from the fibrous roots and rhizosphere soil of peach plants as well as the dropped citrus fruits, roots and soil in an adjacent ponkan orchard. It was considered possible that the diseased fruit from the field produced large amount of zoospores in the wash water, severing as secondary inoculum to infect other health fruit. Removing diseased fruits combined with adding 10 ppm NaClO into the washing water was highly effective in controlling the Phytophthora brown rot disease. Some characteristics of the two Phytophthora species from peach were similar. Both species were able to grow on V-8 agar between 8-32 with the optimum growth temperature of 20-28 . Sporangia of both species had semi-spherical papilla and were deciduous with pedicel length about 9-11 m in average. Chlamydospores were absent. However, the colony patterns of the two species grown on V-8 agar and PDA were different. Sporangia of P. meadii isolates (L/B ratio of 1.5-1.6) were much longer than those of P. citrophthora isolates with L/B ratio of 1.3. All of the peach isolates of P. meadii belonged to A2 mating type, which formed self-oospores while paired with A1 type of P. parasitica and vice versa. All P. citrophthora isolates were A1 type, which stimulated A2 type of P. parasitica to form oospores but didn't form self-oospores themselves. Sex organs were not produced when these two species were paired directly. The mycelial soluble protein patterns of isolates of both species analyzed by SDS PAGE electrophoresis were similar but with some difference. This is the first report of peach Phytophthora fruit rot in Taiwan. To our best knowledge, this is also the first report of peach fruit disease caused by P. meadii in the world
    corecore