72 research outputs found
No spin-localization phase transition in the spin-boson model without local field
We explore the spin-boson model in a special case, i.e., with zero local
field. In contrast to previous studies, we find no possibility for quantum
phase transition (QPT) happening between the localized and delocalized phases,
and the behavior of the model can be fully characterized by the even or odd
parity as well as the parity breaking, instead of the QPT, owned by the ground
state of the system. Our analytical treatment about the eigensolution of the
ground state of the model presents for the first time a rigorous proof of
no-degeneracy for the ground state of the model, which is independent of the
bath type, the degrees of freedom of the bath and the calculation precision. We
argue that the QPT mentioned previously appears due to unreasonable treatment
of the ground state of the model or of the infrared divergence existing in the
spectral functions for Ohmic and sub-Ohmic dissipations.Comment: 5 pages, 1 figure. Comments are welcom
Viscum album extract suppresses cell proliferation and induces apoptosis in bladder cancer cells
Purpose: To evaluate the effect of Viscum album (VA) extract on the progression of bladder cancer (BC) and its effect on the proliferation and apoptosis of T24 and J82 bladder cancer cells.
Methods: 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay (MTT assay) was conducted to examine the proliferation of bladder cancer cells. Flow cytometry (FCM) was employed to assess changes in the cell cycle of bladder cancer cells. The expression levels of proliferating cell nuclear antigen (PCNA), CLND1 (cyclin D1), p21, and p27 in control and VA extract-treated (100, 200, or 300 μg/mL) T24 and J82 cells were measured by immunoblot assay. The effects of VA extract on T24 or J82 cell apoptosis were evaluated using FCM. Immunoblot assay was performed to evaluate Bcl2, Bax, and cleaved caspase 3 expression in control or VA extract-treated bladder cancer cells. In addition, the effect of VA extract on Axl-AKT pathways was also evaluated by immunoblot assay.
Results: Viscum album extract treatment significantly blocked bladder cancer cell proliferation and induced cell cycle arrest. In addition, VA extract stimulated bladder cancer cell apoptosis. Moreover, this study found that VA extract suppressed Axl-AKT pathways in bladder cancer.
Conclusion: Viscum album extract exerts anti-proliferation and pro-apoptosis effects on bladder cancer cells. These abilities render Viscum album extract as promising agent in bladder cancer treatment
Interactions between oxidative stress and senescence in cancer: Mechanisms, therapeutic implications, and future perspectives
BACKGROUND:
Recently, numerous studies have reported the interaction between senescence and oxidative stress in cancer. However, there is a lack of a comprehensive understanding of the precise mechanisms involved.
AIM:
Therefore, our review aims to summarize the current findings and elucidate by presenting specific mechanisms that encompass functional pathways, target genes, and related aspects.
METHODS:
Pubmed and Web of Science databases were retrieved to search studies about the interaction between senescence and oxidative stress in cancer. Relevant publications in the reference list of enrolled studies were also checked.
RESULTS:
In carcinogenesis, oxidative stress-induced cellular senescence acts as a barrier against the transformation of stimulated cells into cancer cells. However, the senescence-associated secretory phenotype (SASP) is positively linked to tumorigenesis. In the cancer progression stage, targeting specific genes or pathways that promote oxidative stress-induced cellular senescence can suppress cancer progression. In terms of treatment, many current clinical therapies combine with novel drugs to overcome resistance and reduce side effects by attenuating oxidative stress-induced senescence. Notably, emerging drugs control cancer development by enhancing oxidative stress-induced senescence. These studies highlight the complacted effects of the interplay between oxidative stress and senescence at different cancer stages and among distinct cell populations. Future research should focus on characterizing the roles of distinct senescent cell types in various tumor stages and identifying the specific components of SASP.
CONCLUSION:
We've summarized the mechanisms of senescence and oxidative stress in cancer and provided illustrative figures to guide future research in this area
Isolation and characterization of a novel arenavirus harbored by Rodents and Shrews in Zhejiang province, China
AbstractTo determine the biodiversity of arenaviruses in China, we captured and screened rodents and shrews in Wenzhou city, Zhejiang province, a locality where hemorrhagic fever diseases are endemic in humans. Accordingly, arenaviruses were detected in 42 of 351 rodents from eight species, and in 12 of 272 Asian house shrews (Suncus murinus), by RT-PCR targeting the L segment. From these, a single arenavirus was successfully isolated in cell culture. The virion particles exhibited a typical arenavirus morphology under transmission electron microscopy. Comparison of the S and L segment sequences revealed high levels of nucleotide (>32.2% and >39.6%) and amino acid (>28.8% and >43.8%) sequence differences from known arenaviruses, suggesting that it represents a novel arenavirus, which we designated Wenzhou virus (WENV). Phylogenetic analysis revealed that all WENV strains harbored by both rodents and Asian house shrews formed a distinct lineage most closely related to Old World arenaviruses
Putative carboxylesterase gene identification and their expression patterns in Hyphantria cunea (Drury)
The olfactory system of insects is important for behavioral activities as it recognizes internal and external volatile stimuli in the environment. Insect odorant degrading enzymes (ODEs), including antennal-specific carboxylesterases (CXEs), are known to degrade redundant odorant molecules or to hydrolyze important olfactory sex pheromone components and plant volatiles. Compared to many well-studied Type-I sex pheromone-producing lepidopteran species, the molecular mechanisms of the olfactory system of Type-II sex pheromone-producing Hyphantria cunea (Drury) remain poorly understood. In the current study, we first identified a total of ten CXE genes based on our previous H. unea antennal transcriptomic data. We constructed a phylogenetic tree to evaluate the relationship of HcunCXEs with other insects\u27 CXEs, and used quantitative PCR to investigate the gene expression of H. cunea CXEs (HcunCXEs). Our results indicate that HcunCXEs are highly expressed in antennae, legs and wings, suggesting a potential function in degrading sex pheromone components, host plant volatiles, and other xenobiotics. This study not only provides a theoretical basis for subsequent olfactory mechanism studies on H. cunea, but also offers some new insights into functions and evolutionary characteristics of CXEs in lepidopteran insects. From a practical point of view, these HcunCXEs might represent meaningful targets for developing behavioral interference control strategies against H. cunea
Hsa-miRNA-765 as a key mediator for inhibiting growth, migration and invasion in fulvestrant-treated prostate cancer
Fulvestrant (ICI-182,780) has recently been shown to effectively suppress prostate cancer cell growth in vitro and in vivo. But it is unclear whether microRNAs play a role in regulating oncogene expression in fulvestrant-treated prostate cancer. Here, this study reports hsa-miR-765 as the first fulvestrant-driven, ERβ-regulated miRNA exhibiting significant tumor suppressor activities like fulvestrant, against prostate cancer cell growth via blockage of cell-cycle progression at the G2/M transition, and cell migration and invasion possibly via reduction of filopodia/intense stress-fiber formation. Fulvestrant was shown to upregulate hsa-miR-765 expression through recruitment of ERβ to the 5′-regulatory-region of hsa-miR-765. HMGA1, an oncogenic protein in prostate cancer, was identified as a downstream target of hsa-miR-765 and fulvestrant in cell-based experiments and a clinical study. Both the antiestrogen and the hsa-miR-765 mimic suppressed HMGA1 protein expression. In a neo-adjuvant study, levels of hsa-miR-765 were increased and HMGA1 expression was almost completely lost in prostate cancer specimens from patients treated with a single dose (250 mg) of fulvestrant 28 days before prostatectomy. These findings reveal a novel fulvestrant signaling cascade involving ERβ-mediated transcriptional upregulation of hsa-miR-765 that suppresses HMGA1 protein expression as part of the mechanism underlying the tumor suppressor action of fulvestrant in prostate cancer. © 2014 Leung et al
A comparative study of the cowpea and bean strains of southern bean mosaic virus
Features of the primary structure and translation of the genomic RNAs of the cowpea and bean strains of southern bean mosaic virus have been investigated in order to assess the similarity of the two viruses. The sequence of 400 bases at their 3' termini have been determined. These include the 3' noncoding regions and extend well into the coat protein cistrons. The noncoding regions (136 bases for the cowpea strain RNA and 129 bases for the bean strain RNA) show no obvious sequence homology. However, extensive base as well as amino acid sequence homology exists in the coding region. RNAs from both strains have a small protein attached to their 5' terminus-the protein in the cowpea strain being the smaller of the two. In vitro studies show that there are similarities in the overall mode of translation of the genomes of the two viruses. Although corresponding proteins are synthesized they differ in size
- …