96 research outputs found

    七家灣拆壩後之河道演變模式

    Get PDF
    This study focused on channel responses one and a half years after dam removal in the Chijiawan Creek and proposed a channel evolution model based on analyses of hydrology, morphology, and images. Channel adjustment is highly influenced by the distance between the dam and the headcut erosion. We defined nine and six stages of the channel evolution model for the upstream and downstream reach, respectively, according to the cross sections 48 m upstream and 30 m downstream from the dam. It took a couple of minutes to reach stage B (main channel migration) and one year or so to reach stage E3 (widening and continued incision). As Chijiawan Creek has not reached the quasi-equilibrium state, stage F’, we suggest that the establishment of a long-term channel evolution model is critical for in-situ monitoring.為探究七家灣溪一號壩拆壩後達到準平衡階段之河道演變模式,本研究蒐集水文、地形與影像資料,分析拆壩後一年半之河道演變情形,做為建立長期河道演變模式之基礎。七家灣溪之河道調整程度和距壩遠近與溯源侵蝕有關。本研究根據壩上游48 m 處與下游30 m 處斷面,分別定義上下游九個與六個河道演變階段。在時間尺度上,上游河道進入階段B(主河道調整) 僅需數分鐘、進入階段E3(河道拓寬並持續下切) 需1~2 年、而準平衡階段F’尚未達到,因此以此研究所建立之河道演變模式為基礎,持續監測未來七家灣溪達到準平衡階段之過程有其必要

    從五幕數位音樂舞劇《水鬼城隍爺》 探討結合舞蹈、音樂和數位互動的跨領域表演藝術集體創作

    Get PDF
    [[abstract]]  本論文嘗試以深入淺出的方式,探討目前全球藝術潮流,如何廣泛應用數位理論與技術於表演藝術創作中。內容主要以「數位藝術」(Digital Art)為出發點,並以李和莆(文彬)教授製作的數位音樂舞劇《水鬼城隍爺/艋舺過水霞海城隍》(Water Ghost, City God/ Water Ghost, City God/Hsiahai City God Through Water of Mengjia) 為例,分析表演藝術的創作與數位藝術設計,並結合互動感應輔助系統,深入探討音樂劇場的創作,特別有關數位聲音、影像的設計製作與多媒體應用的設計理論與實務創作。而經由「電腦軟體」(Software)的應用與設計逐步解說,進一步探討數位藝術中的「視覺效果」(Visual Effects)和「聽覺效果」(Sound Effects)的素材與美學,並以多方面相關文獻資料之比較為基礎,探討《水鬼城隍爺》的作曲家對於跨領域藝術創作所應賦予不同的時代新義。筆者並在理論與實際作品分析中,將數位藝術創作的源流與發展,理論與實際應用作更清晰之剖析。其主要目的在於希冀提倡國內的數位創作能做多方位的跨領域結合,除了希望能提供表演藝術創意的實質內涵,並在「傳統創作」與「數位創作」手法之間,深入不同的美學角度探討,以提供各領域學者專家對於數位音樂舞劇有更透徹的認識並了解。

    [[alternative]]使用T-S模糊小腦控制DC-DC昇壓式轉換器之輸出電壓調節

    No full text
    碩士[[abstract]]本論文提出使用T-S模糊小腦模型控制DC-DC升壓轉換器的輸出電壓調節。模糊和非線性系統控制理論,是我們實現DC-DC升壓轉換器的基礎。T-S CMAC設計的靈感來自於PDC設計控制增益和權重值成一個單一的向量擴充與T-S模糊和CMAC相似。這種方法的優點有三個方面, 1) CMAC的初始權重提高了準確性 - 我們CMAC的權重使用從PDC設計的LMI解出的控制增益。2)基於LMI設計引入了自適應能力CMAC的設計允許時變參數在系統中。3) 放寬對系統不確定性的假設, 我們放棄去假設一個系統不確定性嚴格上限為已知。[[abstract]]We propose a output voltage regulation for DC-DC boost converter using Takagi-Sugeno fuzzy cerebellar model articulation control (T-S CMAC). The theory control for fuzzy and nonlinear systems is our mainly theory to implement the DC-DC Boost converter. The T-S CMAC design is inspired by the architectural similarity of the T-S fuzzy and CMAC where the PDC design control gains and weighting parameter are augmented into a single vector. The advantages of this approach are three fold, i) increases accuracy of CMAC initial weights - we assign the initial weights of CMAC using the control gains solved by the LMIs from the PDC design; and ii) introduces adaptive ability in LMI-based design - the CMAC design allows time-varying parameters in the system; and iii) relaxes assumption on system uncertainty - we drop the assumption that a strict upper bound on system uncertainty is known.[[tableofcontents]]Contents Abstract in Chinese I Abstract in English II Contents III List of Figures V List of Tables VII 1 Introduction 1 1.1 Research Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Fuzzy System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.2 Linear Matrix Inequalities . . . . . . . . . . . . . . . . . . . . . 3 1.1.3 Cerebellar Model Articulation Controller with T-S Fuzzy Model 4 1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3 Problem Formulation and Motivations . . . . . . . . . . . . . . . . . . 12 1.4 Organization of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2 DC-DC Boost Converter Mathematical Model 13 2.1 DC-DC Boost Converter Structure . . . . . . . . . . . . . . . . . . . . 13 2.2 Mathematical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2.1 Averaging Method of One Time Scale Discontinuous System . . 14 2.2.2 DC-DC Boost Converter Maths models . . . . . . . . . . . . . . 15 3 Takagi-Sugeno Fuzzy Cerebellar Model Articulation Controller 20 3.1 Nominal Tracking Controller . . . . . . . . . . . . . . . . . . . . . . . . 20 3.2 Overall Controller Design . . . . . . . . . . . . . . . . . . . . . . . . . 23 4 Numerical Simulations 27 4.1 DC-DC Boost Converter Element Choose . . . . . . . . . . . . . . . . . 27 4.2 DC-DC Boost Converter Simulations and Results . . . . . . . . . . . . 30 4.2.1 Example 1 (Reference voltage variation test) . . . . . . . . . . . 30 4.2.2 Example 2 (Varying load in different reference voltage) . . . . . 33 5 Practical Experiments 36 5.1 Experiment Environment . . . . . . . . . . . . . . . . . . . . . . . . . . 36 6 Conclusions and Future Works 40 6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 6.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 6.2.1 Z-Source Inverter . . . . . . . . . . . . . . . . . . . . . . . . . . 41 6.2.2 Harmonic compute and measure . . . . . . . . . . . . . . . . . . 43 References 31 List of Figures 1.1 CMAC basic structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2 CMAC separate each input to each memory region . . . . . . . . . . . 5 1.3 CMAC structure with T-S fuzzy model . . . . . . . . . . . . . . . . . . 6 2.1 System structure of DC-DC Boost Converter . . . . . . . . . . . . . . . 13 2.2 MOSFET turn-on condition . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3 MOSFET turn-off condition . . . . . . . . . . . . . . . . . . . . . . . . 16 4.1 Boundary condition at DC-DC Boost Converter’s CCM/DCM . . . . . 29 4.2 Output voltage ripple at DC-DC Boost Converter’s CCM condition . . 29 4.3 Output Voltage when Vref = 40v, RLoad = 60Ω. . . . . . . . . . . . . . 31 4.4 Output error when Vref = 40v, RLoad = 60Ω. . . . . . . . . . . . . . . . 31 4.5 Output Voltage when Vref = 60v, RLoad = 60Ω. . . . . . . . . . . . . . 32 4.6 Output error when Vref = 60v, RLoad = 60Ω. . . . . . . . . . . . . . . . 32 4.7 Output Voltage when Vref = 40v, RLoad = 100Ω. . . . . . . . . . . . . . 34 4.8 Output error when Vref = 40v, RLoad = 100Ω. . . . . . . . . . . . . . . 34 4.9 Output Voltage when Vref = 60v, RLoad = 100Ω. . . . . . . . . . . . . . 35 4.10 Output error when Vref = 60v, RLoad = 100Ω. . . . . . . . . . . . . . . 35 5.1 System structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5.2 DSP card . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5.3 DSP I/O box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 5.4 TDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 5.5 Power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 6.1 ZSI system structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 6.2 Non-shoot-through states . . . . . . . . . . . . . . . . . . . . . . . . . . 42 6.3 Shoot-through states . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 List of Tables 4.1 Parameter of DC-DC Boost Converter . . . . . . . . . . . . . . . . . . 30 4.2 Parameter of DC-DC Boost Converter . . . . . . . . . . . . . . . . . . 33[[note]]學號: 600470206, 學年度: 10

    以價值共創探討藥價關係

    No full text
    [[abstract]]台灣於1995年實施全民健保後,雖然健保制度的確減輕了國民的財務負擔,但自從健保實施總額支付制度以來,醫院面對競爭壓力,醫療開支大幅增加,遠超過原核定保費所能支應,為因應醫療環境高壓競爭及瞬息萬變的健保支付制度及內部全方位革新的需求,需建置完整的管理架構將組織願景目標與各類活動及員工日常作業連結。因此,本研究將探討健保實施總額支付制度背後所衍生的許多漏洞,提出實務管理。本研究引用C.K. Prahalad (2004)提出價值共創,價值共創的四大基礎要素,即對話、資訊入口、資訊透明及利害分析,便是所謂的 DART 架構,以此架構做為本研究的分析架構。此外,我們也訪談各藥商的經營者為本研究之資料收集,透過價值共創之分析架構,對於四個相關機構,包含醫院、藥商、衛福部、醫改會,歸納出建議與結果。 After Taiwan implemented universal health insurance in 1995, although the health insurance system did reduce the financial burden of the nationals, since the implementation of the total payment system for health insurance, the hospital has faced competitive pressures, and medical expenses have increased substantially, far exceeding the original approved premiums. In response to the high pressure of the medical environment and the everchanging health care payment system and the need for comprehensive internal innovation, it is necessary to establish a complete management structure to link the vision of the organization with the activities of various activities and employees. Therefore, this study will explore many of the loopholes behind the health care implementation total payment system and propose practical management. This study cites C.K. Prahalad's four basic elements of value creation and value creation, namely dialogue, information entry, information transparency and interest analysis, is called DART architecture, which is the analytical framework for this research. In addition, we also interviewed the operators of each drug dealer for the data collection of the study. Through the analysis framework of value creation, the recommendations and results were summarized for the four relevant institutions, including hospitals, drug dealers, and the Medical Reform Association

    [[alternative]]磁性元素摻雜對CeO2奈米粒子電子結構與磁性之影響

    No full text
    博士[[abstract]]本論文利用同步輻射X光吸收光譜(XAS)與X光放射光譜(XES)的量測來研究磁性元素摻雜對二氧化鈰(CeO2)納米粒子的電子結構,並針對其變化加以討論,藉此了解電子結構與磁性之間的關連性。利用Ce L3-edge和M4,5-edge的量測可以觀察出的Ce的價電子數的改變情況。觀察摻雜物(Fe與Cr)的價數變化,則可利用其K-edge和L2,3-edge的量測,也可以說明在摻雜時的其價電子數的改變情況。利用O K-edge吸收光譜,可以發現在其吸收前景所形成的特徵峰,是因為Ce 4f的電子與O 2p的電子混成所形成的,此混成軌域的吸收強度隨著磁性元素摻雜濃度的增加有很明顯的改變。   實驗結果說明,利用不同磁性元素的摻雜,在CeO2 NP的系統中所引起的磁性機制是不同的。在Fe摻雜系列的樣品,在Fe摻雜濃度較低時(低於5%),會形成具有鐵磁性的Fe3+-Vo-Ce3 +的電子組態(Vo表示為氧空缺),因此在Fe低濃度摻雜時,其磁性會隨著摻雜量增加而提高。然而,隨著Fe摻雜濃度持續增加,除了原來具有磁性的Fe3+-Vo-Ce3 +的電子組態外,因為Fe摻雜濃度增加,也產生了反鐵磁的電子組態Fe3+-Vo-Fe3+,反而造成磁性的降低。而在Cr摻雜系列的樣品,隨著Cr3+摻雜濃度的增加,對系統形成了具有鐵磁性的Cr3+-Vo-Ce3+電子組態也隨之增加,因此造成了磁性的提升。[[abstract]]This study reports the electronic structure of magnetic element doped CeO2 nanoparticles (NPs). Systematic synchrotron radiation based X-ray spectroscopy analysis was utilized to investigate the electronic structures in CeO2 NPs, which is determined by coupled X-ray absorption spectroscopy (XAS) and X-ray emission spectroscopy (XES). The result revealed that the magnetic properties are correlated to the electronic structures. Ce L3-edge and M4,5-edge spectra reveal the variations of the charge states of Ce. Transition metal (TM) K-edge and L2,3-edge spectra indicate the variations of their valence states upon TM doping. The pre-edge features of oxygen K-edge spectra due to the hybridization between cerium 4f and oxygen 2p states depend strongly on the concentration of magnetic element doping. Our results indicate that, for Fe-doped samples, ferromagnetic Fe3+-Vo-Ce3+ configuration is formed at low Fe concentrations (below 5%). While, at higher Fe concentrations, anti-ferromagnetic Fe3+-Vo-Fe3+ configuration is formed. For Cr-doped samples, the major effect of magnetic properties in Cr3+ doping system is formed the ferromagnetic Cr3+-Vo-Ce3+ configuration.[[tableofcontents]]Table of Contents Acknowledgment.............................................i Abstract..................................................ii Table of Contents.........................................iv List of figures............................................v 1. Introduction 1.1 CeO2...................................................1 1.2 Diluted Magnetic Semiconductor.........................4 1.3 Sample Preparation.....................................6 2. Experiments Techniques 2.1 Introduce..............................................9 2.2 Synchrotron Radiation.................................11 2.3 Beamline utilities....................................15 2.4 X-ray Absorption Spectroscopy (XAS)...................17 2.5 X-ray Emission Spectroscopy (XES).....................24 2.5-1 Non-resonant X-ray emission Spectroscopy............25 2.5-2 Resonant X-ray Emission Spectroscopy................26 3. Results and Discussion 3.1 Fe doped CeO2 EXAFS, XAS and XES......................29 3.2 Cr doped CeO2 XAS and XES.............................62 4.Conclusion..............................................84 5.Bibliography............................................85 List of figures Fig. 1-1 Structure of CeO2 is cubic fluorite structure, where the red circle is oxygen and yellow circle is cerium.....................................................3 Fig. 1-2 Schematic diagram of solid oxide electrochemical cells (SOCs)...............................................3 Fig. 1-3 (a) XRD results for pure CeO2 NPs and Cr doped with various concentrations from 1% to 20%, and (b) Fe doped concentrations from 1% to 11%..............................8 Fig. 2-1 The electromagnetic spectrum spans the range from radio waves at long wavelengths to gamma rays at short wavelengths...............................................11 Fig. 2-2 (a) Advanced Light Source (ALS), Lawrence Berkeley National Lab (LBNL), CA. (b) National synchrotron radiation center (NSRRC), Taiwan....................................14 Fig. 2-3 Schematic diagram of produce of synchrotron light source....................................................14 Fig. 2-4 The experimental device of beamline 7.0.1 including the x-ray emission spectrometer...........................16 Fig. 2-5 Schematic diagram of the electron beam disturbed by the undulator magnet to alternative magnetic field emitted radiation into the beamline...............................16 Fig. 2-6 Schematic illustration of x-ray absorption spectroscopy process......................................19 Fig. 2-7 Energy levels, absorption edges and different fluorescence emission linesz..............................19 Fig. 2-8 X-ray absorption spectrum of Fe K-edge, as an example with corresponds to excitation of a Fe 1s electron into empty p state. The spectrum is divided into XANES and EXAFS.....................................................21 Fig. 2-9 (a) EXAFS, pictorial pictorial view of photoelectron scattering process in the single scattering regime, and (b) in the multiple scattering regimes........22 Fig. 2-10 Schematic view of x-ray absorption spectrometer.23 Fig. 2-11 The decay mechanism of XAS total electron yield and the total fluorescence modes..........................23 Fig. 2-12 Schematic process of O K-edge XAS and XES.......25 Fig. 2-13 RXES of CeO2 and corresponding transitions between energy levels diagram...................................................28 Fig. 2-14 The end-station experimental arrangement for XES experime..................................................28 Fig. 3.1-1 Ce L3-edge EXAFS of CeO2 bulk, NP and NPs with different Fe concentrations (1% to 11%)...................30 Fig. 3.1-2 Fe K-edge EXAFS of CeO2 bulk, NP and NPs with different Fe concentrations (1% to 11%)...................31 Fig. 3.1-3 Ce L3-edge XAS of CeCl3, CeO2 bulk, NP and NPs with different Fe concentrations (1% to 11%) and fitting result....................................................34 Fig. 3.1-4 The variation of IC/Itotal in the XAS spectra of CeO2 NPs as a function of concentration of Fe doping......35 Fig. 3.1-5 Ce M4, 5-egde XAS of CeO2 NPs with various Fe contents (1% to 11%) and of reference samples that contains trivalent and tetravalent Ce..............................36 Fig. 3.1-6 (a) Enlargement of experimental (black line) M5-edge and that fitted (red line) by linear combination of CeO2 and CeAl2 spectra. (b) Enlargement of 4f0 satellite feature. (c) Comparison of intensities of satellite features and Ce3+/ (Ce3++Ce4+) ratios..............................38 Fig. 3.1-7 (a) Fe L3-edge XAS of Fe doped CeO2 samples and the reference oxides......................................40 Fig. 3.1-7 (b) Fe K-edge derivative spectra (symbolic lines) of 3% Fe doped CeO2 and the reference oxides..............41 Fig. 3.1-8 Fe L2, 3-edge of XAS of CeO2 NPs with different concentrations of Fe; inset shows those of FeO, Fe2O3 and Fe3O4.....................................................44 Fig. 3.1-9 (a) Fe charge state against L3/L2 ratio. (b) Correlation among Fe L3/L2 ratio, A5/B5 intensity ratio and Ce3+/ (Ce3++Ce4+) ratio...................................45 Fig. 3.1-10 O K-edge XAS of CeO2 bulk, NP and NPs with different Fe concentrations (1% to 11%)...................48 Fig. 3.1-11 (a) Enlargement of pre-edge region. The red area at the bottom is fitted a Gaussian function, from which is determined the amount of Ce 4f-O 2p hybridized states. (b) Variation of intensity of peak A3.........................49 Fig. 3.1-12 O K-edge X-ray absorption-emission spectrums..53 Fig. 3.1-13 (a) First-order derivative of XAS and XES spectra for bandgap determination. (b) Bandgap versus Fe concentration.............................................54 Fig. 3.1-14 O Kα RXES (O 1s → 2p → 1s) spectra of pure CeO2......................................................56 Fig. 3.1-15 The RXES spectra of Fe doped CeO2 NPs with the 3% and 7% content of Fe doping that recorded the excitation energy at (a) 530eV and (b) 532.4 eV, respectively........57 Fig. 3.1-16 RXES spectra of pure CeO2 NPs recorded at different excitation energies near the Ce 3d5/2 thresholds................................................59 Fig. 3.1-17 The Ce 3d5/2 thresholds REXS spectra of Fe doped CeO2 NPs recorded the excitation energy at (a) 881.1 eV and (b) 882.1 eV..............................................60 Fig. 3.1-18 The Ce 3d5/2 thresholds REXS spectra of Fe doped CeO2 NPs recorded the excitation energy at 883.6 eV.......60 Fig. 3.2-1 Ce L3-edge XAS of CeO2 NP and NPs with different Cr concentrations (3% to 11%) and fitting result..........64 Fig. 3.2-2 The variation of IC/Itotal in the XAS spectra of CeO2 NPs as a function of concentration of Cr doping......65 Fig. 3.2-3 Ce M4, 5-edge XAS spectum results for CeAl2, pure CeO2 NPs and Cr doped samples.............................68 Fig. 3.2-4 (a) Schematic diagram of is fitted result (red dots) by linear combination of CeO2 (Ce4+) and CeAl2 (Ce3+) spectra. (b) Enlargement of experimental data (black line) M5-edge and that fitted data (red dots) with Cr doped CeO2 samples. (c) Comparison of intensities of satellite features and Ce3+/ (Ce3++Ce4+) ratios..............................69 Fig. 3.2-5 Cr L3-edge XAS of Cr doped CeO2 samples and the reference oxides..........................................72 Fig. 3.2-6 Cr L2, 3-edge XAS of different concentrations Cr doped CeO2 NPs and Cr2O3..................................73 Fig. 3.2-7 O K-edge XAS spectrum results for pure CeO2 NPs and Cr doped samples......................................75 Fig. 3.2-8 O K-edge X-ray absorption-emission spectrums...77 Fig. 3.2-9 (a) First-order derivative of XAS and XES spectra for bandgap determination. (b) Bandgap versus with Cr concentration.............................................78 Fig. 3.2-10 The RXES spectra of Cr doped CeO2 NPs with the lowest and highest content of Cr doping that recorded the excitation energy at (a) 530eV and (b) 532.4 eV, respectively..............................................81 Fig. 3.2-11 The Ce 3d5/2 thresholds REXS spectra of Cr doped CeO2 NPs with the lowest and highest content of Cr doping that recorded the excitation energy at (a) 881.1 eV and (b) 882.1 eV, respectively....................................82 Fig. 3.2-12 The Ce 3d5/2 thresholds REXS spectra of Cr doped CeO2 NPs with the lowest and highest content of Cr doping that recorded the excitation energy at 883.6 eV...........83[[note]]學號: 896210019, 學年度: 10

    [[alternative]]Obstacle-avoiding routing algorithm for redistribution layer

    No full text
    碩士[[abstract]]重分佈層(RDL,Redistribution Layer)目前多使用在覆晶技術(Flip-Chip)上,而覆晶技術是一種將IC與基板(substrate)相互連接,基於小尺寸晶片、高I/O密度的封裝(Packging)方法。在封裝的過程中,先將晶片的墊片(pad)長出凸塊(bump),然後將其翻覆過來,以面朝下的方式讓晶片上的墊片透過金屬導體與基板的接合點相互連接的封裝技術。 然而,覆晶技術最初的I/O接點並不具有面陣列(area array)的設計,使得此技術在早期受到不小的阻礙,於是才出現了重分佈層這樣的技術來解決這個問題,重分佈層是在晶圓表面沉積金屬層和介質層並形成相應的金屬佈線,來對晶片的I/O接點進行重新佈局,將其以面陣列形式佈置到較寬鬆的區域。 雖然截至今日,覆晶技術已不算是陌生的新技術了,探討重分佈層繞線演算法的論文數量也不在話下,而本篇論文則是在探討,當重分佈層中的繞線工程遇到了不可抗力的障礙(obstacle)而影響了繞線路徑時,線路該如何規劃以避開障礙。本論文從近期論文裡所討論到的模組下去做改善,並運用更為簡易之演算法省去較為複雜的步驟。 繞線演算法之目的為,讓晶片四個邊緣的I/O接腳(I/O pad)重新分布到平面陣列的凸塊墊片(bump pad)上。 大致的步驟分為:全域繞線與細部繞線兩種,而全域繞線又分成四個步驟:1)區塊分割2)區塊合併3)建立路網圖4)分配線路。其中所談到的「區塊模組」探討的是:當一個矩形區塊的四個周圍有數條線路須經過此區塊時,該如何正確的分配線路的空間與走位。 鑑於「區塊合併」的步驟中限制了區塊每邊不可超過兩個障礙物阻擋,在演算法上更加深了其複雜度,且此步驟雖有益處,但也有其弊端,故省略此步驟以達到更快速的要求;也因此,在「區塊模組」的演算法上收到了簡化之效果,前者演算法需考慮區塊的四個周圍是否有障礙物的包覆,但若省去「區塊合併」的步驟便不用考慮到這樣的問題。 最後的研究成果與前篇相較之下,若是在障礙物較少的狀況下,多數的測試結果都能以稍快的速度與更短的路徑達成繞線問題;而若是在障礙物較多的狀況下,雖繞線路徑相較前篇較不明顯,但在演算的速度上卻能快上非常多。 未來,重分佈層將有可能因三維晶片技術(3D-IC)的突破與發展,而大量仰賴重分佈層的輔助,所以重分佈層在未來還是有可觀的存在價值。[[abstract]]RDL, redistribution layer, mostly applies on Flip-Chip technology in recent years. Here is the mention of Flip-Chip technology, which connecting both integrated circuit and the substate together, based on small-size chip and high-IO-density packaging. In the package process, first, deposits solder balls on each of the pads. And then, flipped and positioned, so that the solder balls will facing the connectors on the external circuitry. However, in the early, Flip-Chip''s I/O ports doesn''t have plane array designing. So it receives a big difficulty when developing. To solve this problem, the designing of redistribution layer is came out. Redistribution layer is a re-routing layer between deposited metal layer and medium layer. It redistributes I/O port into plane array at wider area. Though, Flip-Chip technology is getting more mature nowadays, the amount of related papers are also getting much more. And this paper is focused on when the obstacles exist in the redistribution layer and affect the routing process, how we plan the new routing against it. There has a previous work "Obstacle-Avoiding Free-Assignment Routing for Flip-Chip Designs." Then we refer their model and improve it with simpler method to reduce its complexity. The purpose of the routing algorithm is to redistribute the route from the I/O pads which aroundding the origin chip to the bump pads which scattering in the plan area. The method of previous work is divided into two parts: Global Routing and Detail Routing. Then, Global Routing is divided into four steps: 1) tile partition, 2) tile merging, 3) flow-network, and 4) minimum-cost-flow solving. Step one, the routing plane is partitioned into a number of local regions called "tiles". Step two, merge some tiles based on a dynamic programming algorithm to improve solution quality and reduce the problem size. Step three, connect all models together, producing a global flow network. Step four, apply the minimum-cost maximum-flow algorithm to the network. Finally, transform the network-flow result into global routing topology. Then, based on the routing topology, detailed routing determines the specific wiring locations and completes the routing procedure. Comparing to the previous work, our method omitted the second part. Because this step restrict that the edge of each tile can only have one opening at most, which means that the edge cannot have more than two obstacle aside. In consequence, this step cannot guaranteed that the result will be better. So, if we omit this step, not also reduce the complexity of algorithm, but also avoid the case that even worse.[[tableofcontents]]Chapter 1 緒論...............................................1 1.1 研究背景與動機........................................1 1.2 論文總覽..............................................4 Chapter 2 基本概念與理論.....................................5 2.1 全域規劃與細部規劃....................................5 2.1.1 全域規劃..........................................6 2.1.2 細部規劃..........................................6 2.2 設計規則與限制........................................7 2.3 A* 搜尋演算法.........................................7 2.4 最小成本流問題........................................9 Chapter 3 前者方法論........................................10 3.1 完整繞線流程.........................................10 3.1.1 區塊劃分.........................................10 3.1.2 區塊合併.........................................11 3.1.3 流通路網結構.....................................12 3.1.4 最小成本問題應用.................................12 3.1.5 細部規劃.........................................13 3.2 障礙感知流通路網模組.................................14 3.3 現有預分配繞線方法...................................18 Chapter 4 提出的新方法......................................20 4.1 問題描述.............................................20 4.2 方法分析與改進.......................................20 4.3 提出的新模組.........................................23 4.4 程式碼規劃流程圖.....................................25 4.4.1 區塊劃分.........................................25 4.4.2 建立流通路網結構.................................26 4.4.3 細部規劃.........................................27 Chapter 5 實驗結果..........................................28 Chapter 6 總結..............................................31 參考文獻....................................................32 圖 1.1 覆晶技術架構圖........................................1 圖 1.2 覆晶技術封裝流程......................................2 圖 2.1 全域規劃與細部規劃....................................5 圖 2.2 最小成本流問題示例....................................9 圖 3.1 區塊劃分.............................................10 圖 3.2 最佳化缺失...........................................11 圖 3.3 區塊中心點與中間點...................................13 圖 3.4 交叉點與軌道.........................................13 圖 3.5 含有六個變數的r-vector...............................14 圖 3.6 OA-model與九個容量變數...............................16 圖 3.7 現有預分配繞線方法流程...............................19 圖 4.1 優化後的區塊劃分.....................................21 圖 4.2 五種區塊類型.........................................22 圖 4.3 全邊通行的三種佈線狀況...............................23 圖 4.4 簡化後的新模組.......................................24 圖 4.5 區塊劃分流程圖.......................................25 圖 4.6 流通路網結構的建立流程圖.............................26 圖 4.7 細部規劃流程圖.......................................27 圖 5.1 結果比較折線圖.......................................29 圖 5.2 佈線結果圖...........................................30 表 5.1 結果比較表格.........................................28[[note]]學號: 602450073, 學年度: 10

    [[alternative]]The industry transformation and urban space : a case study of Yingge

    No full text
    碩士[[abstract]]都市發展快速導致產業變遷,進而影響整體都市運作,以都市計劃而言,3~5年內會在都市計畫內做通盤檢討,但目前都市計畫制定的原則上,主要是以預測人口為制定方式,再進行細部計畫的調整與修訂,但應該將各個都市計畫區所產生的各項議題做特定的考量,已達成都市計劃的目標,故藉由本研究將界定影響因子以納入考量,使都市計畫通盤檢討時容納額外的考量因子,制定修訂準則之考量。 本研究之基地於新北市鶯歌區範圍內;鶯歌區自民國50年代後,雖原有的採集煤礦業大幅沒落,但因陶瓷製造業的興盛,從事二級產業的人口依然持續增加。自民國80年後,中國大陸的廉價勞力建立,導致產業外移,陶瓷製造業逐漸沒落,政府為了振興當地產業,因此在民國83年後挹注了許多政策,使鶯歌近年來,陶瓷製造業逐漸走向精緻化的商業以及觀光機能。在此產業變遷的過程中,產生新的都市問題,導致人口壅塞、交通不便等……。 因此在都市通盤檢時,是否能有額外的因子也應一併納入考量,制定出與現況地區適宜的都市土地使用方式。 在此產業變遷的過程中,產生新的都市問題,因此在都市通盤檢時,是否能有額外的因子也應一併納入考量,制定出與現況地區適宜的都市土地使用方式。 本研究結果包含:(1)藉由台灣新都市主義的探討,了解目前台灣都市規劃所遇見之問題、(2)透過文獻的蒐集、整理與分析,得知鶯歌區產業演化每一階段的時期、(3)透過新北市民政局(都市計畫區內實際人口數)、新北市觀光局(觀光地區遊客人數統計)以及中華民國工商普查數據,分析實際人口、觀光人口以及區位商數與都市空間的關係。 本研究發現:(1)台灣都市計劃最大的問題在於,將都市計劃的擬定變成是人口與土地使用配置間的排列組合 (2)鶯歌區都市計畫區內人口數與預測人口數之間的差距並非可以單以延長計畫年期為解決辦法,應該將地區內所發生的問題納入考慮,進而改善都市空間。[[abstract]]The rapid development of urban centers leads to the transformation of industry, and this in turn affect the urban operation. In terms of urban planning division, the urban plan shall be reviewed comprehensively once every three or five years. But in principle in urban planning review, the methods and issues considered are mainly thru predicting the population growth, then adjusting and revising the detail of the urban planning. Moreover, it should be consider different issues caused by urban planning district. Therefore, the purpose of this study is to find factors that provide additional formulate criterion when reviewing the urban planning. The area of the study was located at Yingge District, New Taipei City. Although mining industry in Yingge District had drastically declined after 1961 because of the prosperity of ceramics products manufacturing, people who worked on secondary industrial sectors continually increased. After 1991, due to the cheap labor of China, the industries were offshoring, and ceramics products manufacturing gradually declined. To strength the local industry, the government formulated lots of policy after 1994, which made ceramics products manufacturing turned into refined business function and tourism function. During the process of industry transformation, it pops out new urban issues, therefore, when doing urban planning review, it should consider some additional factor of urban planning, in order to plan an appropriate urban land use which match the current area. The results of this study included: (1) the urban planning in Taiwan needs to consider other factors beside population growth. (2) By studying period of industry evolution in Yingge through collecting and sorting industry changes issues that need to be analyzed. (3)Analyzing the population, tourists, and the relation between Location Quotient and urban spatial relation. In this study the conclusions are as follow:(1) The most prominent issues of urban planning in Taiwan is assuming the population growth as a given in thw formulation of new urban plan (2) The difference between actual population in Yingge urban planning district and predicted population is quite drastic, therefore, urban planning should consider other issues such as industry change and shift of daily population fluctuation in the urban planning process.[[tableofcontents]]章節目錄 第一章 緒 論 1 1.1研究動機與目的 2 1.1.1研究動機 2 1.1.2研究目的 5 1.2研究內容、範圍與限制 6 1.2.1研究內容 6 1.2.2研究範圍 7 1.2.3研究限制 7 1.3研究流程與方法 11 1.3.1研究流程 12 1.3.2研究方法 13 第二章 相關理論與文獻回顧 14 2.1.1台灣都市新主義 14 2.1.2產業演化理論 15 2.1.3傳統產業 17 2.1.4 混合使用規畫之定義 19 2.1.5小結 20 2.2文獻回顧 20 第三章 鶯歌空間概述、都市計畫發展歷程與產業變遷概況 29 3.1.1鶯歌區地理環境 29 3.1.2鶯歌區都市空間發展 31 3.2鶯歌區都市計畫發展歷程 33 3.2.1鶯歌都市計畫-歷次計畫人口與實際人口檢討比較 39 3.2.2基地範圍都市計劃現況 41 3.3鶯歌區產業變遷概況 43 第四章 實證研究過程與結果 43 4.1實證研究設計與流程 43 4.2實證研究過程 46 4.3實證研究結果 72 第五章 結論、建議與後續研究 73 5.1結論 73 5.2建議 74 5.3後續研究 74 參考文獻 75 圖目錄 圖1.1.1-1鶯歌區產業人口比例分析圖..........................4 圖1.1.1-2鶯歌區各類陶瓷工廠數例年成長圖....................5 圖1.1.1-3鶯歌區陶瓷工廠家數消長圖..........................5 圖1.2.2-1本研究基地範圍(黑線部分為鶯歌都市計畫範圍.........7 圖1.2.3-1鶯歌區都市計畫範圍................................8 圖1.3.1-1 研究流程圖......................................12 圖3.1.1-1鶯歌區相對位置圖.................................30 圖3.2-1鶯歌區內所實施之都市計畫...........................33 圖3.2-2鶯歌都市計畫區內商業區範圍(紅色區塊)...............35 圖3.2-3鶯歌都市計畫區內工業區範圍(咖啡色區塊).............36 圖3.2-4鶯歌都市計畫區內住宅區範圍(黃色區塊)...............37 圖3.2-5鶯歌都市計畫區內公園用地範圍(綠色區塊).............37 圖3.2-6鶯歌都市計畫區內道路範圍(灰色區塊).................38 圖3.2.2-1基地範圍都市計劃現況.............................42 圖4.2-1鶯歌區歷次計畫人口與實際人口檢討比較...............47 圖4.2-2鶯歌區同慶里陶瓷老街觀光地區人口數量消長...........48 圖4.2-3民國85年鶯歌區產業區位商數圖......................53 圖4.2-4民國85年鶯歌區產業區位商數圖......................54 圖4.2-5民國90年鶯歌區產業區位商數圖......................57 圖4.2.6民國90年鶯歌區產業區位商數圖......................58 圖4.2-7民國95年鶯歌區產業區位商數圖......................61 圖4.2-8民國95年鶯歌區產業區位商數圖......................62 圖4.2-9民國100年鶯歌區產業區位商數圖.....................65 圖4.2-10民國100年鶯歌區產業區位商數圖....................66 圖4.2-11各年製造業區位商數比較............................67 圖4.2-12各年營造業區位商數比較............................67 圖4.2-13各年批發零售及餐飲業區位商數比較..................68 圖4.2-14各年運輸倉儲及通信業區位商數比較..................68 圖4.2-15各年金融保險及不動產業區位商數比較................69 圖4.2-16各年工商服務業區位商數比較........................69 圖4.2-17各年社會服務及個人服務業區位商數比較..............70 圖4.2-18各年份各地區最為顯著行業別之比較..................71 表目錄 表1.2.3-1歷年工商普查產業類別修訂統整.....................10 表2.1.3-1傳統產業相關定義.................................19 表3.3.1.1鶯歌區內都市計畫及變更時程表.....................34 表3.2.1-1鶯歌區都市計畫通盤檢討歷程.......................41 表4.2-1鶯歌區都市計劃預測人口與實際人口比較...............46 表4.2-2鶯歌區同慶里陶瓷老街觀光地區人口數量消長...........48 表4.2-3都市計劃法新北市實行細則都市土地使用相關規範.......50 表4.2-4民國85年各產業之區位商數..........................52 表4.2-5民國90年各產業之區位商數..........................56 表4.2-6民國95年各產業之區位商數..........................60 表4.2-7民國100年各產業之區位商數.........................64[[note]]學號: 603360370, 學年度: 10

    [[alternative]]X-ray absorption spectroscopy study of Al doped heusler compounds Fe2VSi

    No full text
    碩士[[abstract]]本論文以X光近邊緣結構吸收光譜 (X-ray Absorption Near Edge Structure,XANES)研究Heusler 化合物Fe2VSi1-xAlx(x=0.00~0.25)之電子結構。我們可以發現Al摻雜對Al 3p-Fe 3d以及Al 3p-V 3d是有相當強的混成。而在Fe的L3-edge的空軌域數目隨著Al摻雜的增加而增加(Fe的電洞數目增加),在摻雜量x=0.15時電洞的數目達到最大值,之後持續增加Al摻雜量,Fe的L3-edge空軌域的數目卻有下降的趨勢(電洞數目減少),而Fe的L3-edge的空軌域數目與電阻率以及熱電勢呈一相反的走勢,因此我們發現了Fe電洞濃度與熱電性質的關連性。而我們由Fe K-edge的吸收光譜中可以發現,隨著Al的摻雜並不會使其吸收峰有明顯的改變。[[abstract]]We have performed x-ray absorption near edge structure (XANES) study on a series of Fe2VSi based Heusler type compounds to study the correlations between electronic structure and the thermoelectric property. A series of Fe2VSi1-xAlx compounds with different Al concentrations (x form 0 to 0.25) were studied. The XANES results show that the unoccupied density of states above Fermi level increases with increasing Al concentration, which is positively correlated with the measured resistivity and the Seebeck coefficient data. On the other hand, increased Al concentration does not affect the hybridization between transition metal V and Fe.[[tableofcontents]]第一章 序論 ………………………………………………………… 1 第二章 樣品簡介 …………………………………………………… 3 2.1 Heusler-type化合物 ……………………………………… 3 2.2 Fe2VSi1-xAlx 的特性 ……………………………………… 5 2.3 熱電性質相關理論簡介 …………………………………… 8 第三章 X光吸收光譜簡介 ………………………………………… 10 3.1 X光吸收光譜近邊緣結構 (XANES) ………………………… 14 3.2延伸X光吸收光譜精細結構 (EXAFS) …………………… 15 3.3數據分析 ……………………………………………………… 19 第四章 實驗設備與量測方法 ……………………………………… 25 4.1 X光光源 ……………………………………………………… 25 4.2單色儀 ………………………………………………………… 26 4.3光譜測量方式 ………………………………………………… 27 4.4測量樣品的處理與準備 ……………………………………… 31 第五章 結果與討論 ……………………………………………… 33 5.1 V K-edge 吸收光譜 (XANES) ……………………………… 33 5.2 Fe K-edge 吸收光譜 (XANES) …………………………… 35 5.3 Fe L2,3-edge 吸收光譜 (XANES) ………………………… 41 5.4 V L2,3-edge 吸收光譜 (XANES) ………………………… 50 第六章 結論 ……………………………………………………… 52 參考文獻 …………………………………………………………… 53 圖2.1 Heusler-type 化合物之主要構成……………...........……...….....4 圖2.2 Heusler-type 化合物之晶格結構模型….…...…………………...4 圖2.3 Fe2VSi 化合物室溫時的立方結構圖…….………………………5 圖2.4 Fe2VSi1-xAlx X 光繞射圖……………………...........………….....6 圖2.5 Fe2VSi1-xAlx 溫度相關之電阻率與熱電功率圖……...…….……7 圖2.6 Seebeck Effect 示意圖….………………….……………..……....9 圖2.7 Petiler Effect 示意圖………………………..……………….........9 圖3.1 物質吸收截面與能量之關係圖……….......…………………....12 圖3.2 XANES與EXAFS分界圖………..…………………...………...13 圖3.3 光電子平均自由路徑與能量關係圖………...…………………15 圖3.4 單一散射與多重散射之圖示…………………...………………16 圖3.5 以雙原子分子的情況來表示吸收光譜與光電子末態波函數關 係的示意圖…………………………………………………………..17 圖3.6 出射電子受鄰近原子的背向散射,而產生干涉現象....……….17 圖3.7 選擇能量底限E0值的不同方法….…………………….………20 圖3.8 X 光吸收光譜之數據分析流程………………………………....24 圖4.1 X 吸收光譜實驗示意圖…………………………………………27 圖4.2 穿透式…………………………………………………………...27 VIII 圖4.3 X 光通過物質之強度衰減………………………………….…...28 圖4.4 螢光式……………………….......................................................29 圖4.5 電子逸出式…………………………...…………………………30 圖4.6 光子吸收過程…………...………………………………………31 圖5.1 Fe2VSi1-xAlx,V K-edge 近邊吸收光譜.......................................37 圖5.2 Fe2VSi1-xAlx,平移後V K-edge 近邊吸收光譜………………...38 圖5.3 Fe2VSi1-xAlx,Fe K-edge 近邊吸收光譜.....................................39 圖5.4 Fe2VSi1-xAlx,平移後Fe K-edge 近邊吸收光譜……………....40 圖5.5 Fe2VSi1-xAlx,Fe L2,3- edge 吸收光譜..........................................42 圖5.6 Fe2VSi1-xAlx,平移後Fe L2,3- edge 吸收光譜,並且扣除其背景 函數圖..................................................................................................43 圖5.7 Fe2VSi1-xAlx扣除背景函數後的Fe L2,3-edge 吸收光譜..............44 圖5.8 Fe2VSi1-xAlx,Fe L3-edge 面積積分值.......................................47 圖5.9 Fe2VSi1-xAlx 於300K 時,Fe L3-edge 面積積分值與電阻率比較 圖..........................................................................................................48 圖5.10 Fe2VSi1-xAlx 於300K 時,Fe L3-edge 面積積分值與熱電勢比 較圖.....................................................................................................49 圖5.11 Fe2VSi1-xAlx,V L2,3- edge 吸收光譜..........................................51[[note]]學號: 694180281, 學年度: 9
    corecore