2,992 research outputs found

    Single hole motion in LaMnO3_3

    Full text link
    We study single hole motion in LaMnO3_3 using the classical approximation for JT lattice distortions, a modified Lang-Firsov approximation for dynamical breathing-mode phonons, and the self-consistent Born approximation (verified by exact diagonalization) for hole-orbital-excitation scattering. We show that in the realistic parameter space for LaMnO3_3, quantum effects of electron-phonon interaction are small. The quasiparticle bandwidth W2.2JW \simeq 2.2J in the purely orbital t-J model. It is strikingly broadened to be of order tt by strong static Jahn-Teller lattice distortions even when the polaronic band narrowing is taken into account.Comment: 4 pages, 4 eps figure

    Hole spectral functions of LaMnO3

    Full text link
    By use of the orbital t-J model, we calculate the photoemission spectra of LaMnO3 using the exact diagonalization technique, and interpret our numerics quite well in the orbital-polaron scenario where the scattering between holes and orbital excitations is treated within the self-consistent Born approximation. The quasiparticle bandwidth is found to be of the order of J and t in the purely Coulombic and Jahn-Teller phononic model, respectively. We suggest that angle-resolved photoemission spectroscopy experiments allow one to distinguish between the orbital-polaron scenario and the Jahn-Teller polaron scenario.Comment: 5 pages with 4 eps figures. RevTeX 3.1. Correct two typo

    Phonon Effects on Spin-Charge Separation in One Dimension

    Full text link
    Phonon effects on spin-charge separation in one dimension are investigated through the calculation of one-electron spectral functions in terms of the recently developed cluster perturbation theory together with an optimized phonon approach. It is found that the retardation effect due to the finiteness of phonon frequency suppresses the spin-charge separation and eventually makes it invisible in the spectral function. By comparing our results with experimental data of TTF-TCNQ, it is observed that the electron-phonon interaction must be taken into account when interpreting the ARPES data.Comment: 5 pages, 5 figures, minor differences with the published version in Physical Review Letter

    Electrically-controllable RKKY interaction in semiconductor quantum wires

    Full text link
    We demonstrate in theory that it is possible to all-electrically manipulate the RKKY interaction in a quasi-one-dimensional electron gas embedded in a semiconductor heterostructure, in the presence of Rashba and Dresselhaus spin-orbit interaction. In an undoped semiconductor quantum wire where intermediate excitations are gapped, the interaction becomes the short-ranged Bloembergen-Rowland super-exchange interaction. Owing to the interplay of different types of spin-orbit interaction, the interaction can be controlled to realize various spin models, e.g., isotropic and anisotropic Heisenberg-like models, Ising-like models with additional Dzyaloshinsky-Moriya terms, by tuning the external electric field and designing the crystallographic directions. Such controllable interaction forms a basis for quantum computing with localized spins and quantum matters in spin lattices.Comment: 5 pages, 1 figur

    Orbital Selective Phase Transition

    Full text link
    We review theoretical investigations on the origin of the orbital selective phase where localized and itinerant electrons coexist in the d shell at intermediate strength of the on-site Coulomb interactions between electrons. In particular, the effect of spatial fluctuations on the phase diagram of the two-orbital Hubbard model with unequal bandwidths is discussed. And different band dispersions in different orbitals as well as different magnetically ordered states in different orbitals which are responsible for orbital selective phase transitions are emphasized. This is due to the fact that these two mechanisms are independent of the Hund's rule coupling, and are completely distinct from other well-known mechanisms like orbitals of unequal bandwidths and orbitals with different degeneracies. Moreover, crystal field splitting is not required in these two recently proposed mechanisms.Comment: 25 pages, 9 figure

    Fidelity susceptibility and long-range correlation in the Kitaev honeycomb model

    Full text link
    We study exactly both the ground-state fidelity susceptibility and bond-bond correlation function in the Kitaev honeycomb model. Our results show that the fidelity susceptibility can be used to identify the topological phase transition from a gapped A phase with Abelian anyon excitations to a gapless B phase with non-Abelian anyon excitations. We also find that the bond-bond correlation function decays exponentially in the gapped phase, but algebraically in the gapless phase. For the former case, the correlation length is found to be 1/ξ=2sinh1[2Jz1/(1Jz)]1/\xi=2\sinh^{-1}[\sqrt{2J_z -1}/(1-J_z)], which diverges around the critical point Jz=(1/2)+J_z=(1/2)^+.Comment: 7 pages, 6 figure

    Single nucleotide polymorphisms of one-carbon metabolism and cancers of the esophagus, stomach, and liver in a Chinese population.

    Get PDF
    One-carbon metabolism (folate metabolism) is considered important in carcinogenesis because of its involvement in DNA synthesis and biological methylation reactions. We investigated the associations of single nucleotide polymorphisms (SNPs) in folate metabolic pathway and the risk of three GI cancers in a population-based case-control study in Taixing City, China, with 218 esophageal cancer cases, 206 stomach cancer cases, 204 liver cancer cases, and 415 healthy population controls. Study participants were interviewed with a standardized questionnaire, and blood samples were collected after the interviews. We genotyped SNPs of the MTHFR, MTR, MTRR, DNMT1, and ALDH2 genes, using PCR-RFLP, SNPlex, or TaqMan assays. To account for multiple comparisons and reduce the chances of false reports, we employed semi-Bayes (SB) shrinkage analysis. After shrinkage and adjusting for potential confounding factors, we found positive associations between MTHFR rs1801133 and stomach cancer (any T versus C/C, SB odds-ratio [SBOR]: 1.79, 95% posterior limits: 1.18, 2.71) and liver cancer (SBOR: 1.51, 95% posterior limits: 0.98, 2.32). There was an inverse association between DNMT1 rs2228612 and esophageal cancer (any G versus A/A, SBOR: 0.60, 95% posterior limits: 0.39, 0.94). In addition, we detected potential heterogeneity across alcohol drinking status for ORs relating MTRR rs1801394 to esophageal (posterior homogeneity P = 0.005) and stomach cancer (posterior homogeneity P = 0.004), and ORs relating MTR rs1805087 to liver cancer (posterior homogeneity P = 0.021). Among non-alcohol drinkers, the variant allele (allele G) of these two SNPs was inversely associated with the risk of these cancers; while a positive association was observed among ever-alcohol drinkers. Our results suggest that genetic polymorphisms related to one-carbon metabolism may be associated with cancers of the esophagus, stomach, and liver. Heterogeneity across alcohol consumption status of the associations between MTR/MTRR polymorphisms and these cancers indicates potential interactions between alcohol drinking and one-carbon metabolic pathway
    corecore