19 research outputs found

    綠肥油菜應用技術

    No full text

    荷蘭土壤重金屬污染風險評估技術與管理策略

    No full text

    淺談我國作物健康管理生產體系之推動

    No full text

    不同有機資材之特性及其施用技術

    No full text

    (農業試驗所特刊第188號)Integrated Crop Management

    No full text
    健康農業為行政院農業委員會所推動『健康農業精緻卓越方案』三大主軸之一,核心目標在建構農產品安全生產管理體系,以保障消費者吃的安全。為了落實健康農業之推動,農委會自民國100 年起,動員所屬農業試驗改良場所,正式啟動我國作物健康管理生產體系推動工作。以國人日常飲食之大宗作物及藥檢不合格比例較高的作物為重點,結合各農業試驗改良場所,依單位屬性及轄區主要作物分工,開發目標作物健康管理關鍵技術,依據產業問題,整合導入現有栽培管理技術,並透過田間示範觀摩及講習,將技術推廣予農民

    The low intensity in-home parent training in applied behavior analysis for preschoolers with Autism Spectrum Disorders

    No full text
    本研究目的為,探討使用應用行為分析之低密集度短期家長訓練,對自閉症障礙類群兒童之療效,且家長介入其孩童的密集度亦為低密集度。研究設計採用的是單一受試研究法之倒反設計(within-subject reversal design),本研究共兩位受試者,家長受訓之密集度為每週一小時,兩位家長於介入期每週介入於其孩童的時數,皆為每週0.5小時,總介入期長度為八週,家長受訓的情境為自然情境,分別在個案一的家中及個案二家長上班的地點。研究對象為兩位自閉症孩童和其母親,所採用之介入方法為應用行為分析(Applied Behavior Analysis),主要之依變項為孩童個別化課程之目標行為表現,次要變項為受訓母親之執行個別化介入之技巧。資料分析以視覺分析為主,並佐以C統計分析。 個案一的介入目標為於用餐時間被餵食時的問題行為,分別是尖叫行為與轉頭逃避餵食的行為。研究結果顯示,介入期結束時,此家長訓練模式能有效減少個案一之尖叫行為(C=0.38,Z=2.1),而轉頭逃避餵食的行為也有減少,但尚未達統計的顯著水準(C=0.27,Z=1.48)。 個案二的介入目標有二,一為減少其拉扯媽媽脖子以引起媽媽注意的問題行為,二為增進個案於單一動作模仿、單一動作指令、依指令拿取物品等三種不同類別課程的正確區辨行為的發生。研究結果顯示,介入期後個案的問題行為雖有減少,但尚未達到統計上的顯著水準(C=0.24,Z=1.03);而介入期後區辨行為的增加,在單一動作模仿(C= -0.6,Z= -2.06)及依指令拿取物品(C=0.91,Z=2.94)兩個課程中,個案二之獨立的正確區辨行為有顯著的增加。但在單一指令的課程中的進步未達顯著水準(C=0.34,Z=1.19)。 整體而言兩名個案在家長訓練後的問題行為皆有減少,或觀察到特定相關能力的增加,且維持期的能力表現多與介入期沒有顯著的差異,顯示表個案的進步可維持到兩個月的期間。即本研究為低密集度家長訓練且家長為其孩童作低密集度介入之療效提供初步療效證據。 建議未來相關之研究提供更完整且詳細之相關於家長訓練各種因素的控制,且包含家長接受訓練及給與其孩童介入的密集度定義,以致能盡快找出符合經濟效益且適於長期進行的自閉症早期介入服務模式。The purpose of this study was to explore the effectiveness of a low intensity in-home parent training which adopted applied behavior analysis (ABA) on the problem behaviors of two children with autism. The aim of parent training is to help the parents to develop specific skills of training their children, and reduce their problem behaviors. Parents have two roles in this program. They are trainees when trained by therapists and trainers when they provide treatment to their own children. In this paper, we present results of a parent training program, including parents as trainers or trainees, with relatively low intensity of training in both situations. The mothers of two different autistic children were recruited and trained by the researcher, an occupational therapist, during weekly one-hour home visits. The parents were trained to provide intervention to their children 0.5 hour weekly for 8 weeks, and all the interventions were videotaped. Both child and parent outcomes were assessed before and after intervention along with a monthly follow-up for two months. Both visual inspection and statistical analysis (C statistic) were used to analyze data. For Case 1, two feeding related behaviors were the intervention target, i.e., screaming and turning head to avoid feeding when being fed by mother. The results indicated parent training program can teach parents to effectively reduce the screaming behaviors of Case 1(C=0.38, Z=2.1). Despite no statistically significant differences, a trend of decreasing head-turning behaviors was noted during the intervention phase (C=0.27, Z=1.48) as compared to the baseline phase. For Case 2, the first target behavior was neck-pulling behavior. During the intervention phase, the frequency of the behavior was not significantly lower than that in baseline phase (C=0.24, Z=1.03). The second target is the discrimination ability of Case 2 after he received training on three different discrimination tasks, i.e., simple motor imitation, following instructions to do simple motor actions, and verbal comprehension (receptive language). Results showed that Case 2’ s discriminative ability did appear in the imitation trials (C= -0.6, Z= -2.06) and the receptive language trials (C=0.91, Z=2.94) across the baseline phase and the intervention phase, but difference of the rate of correct response did not reach the statistically significant level across the first two phases in the instruction trials (C=0.34, Z=1.19). Overall, children’s problem behaviors decreased following parent’s intervention. Parents’ fidelity in implementing ABA principles improved during the training phase, and generally the improvement was maintained at the maintenance phase. Further research on the effectiveness of intervention with different levels of intensity is warranted to provide clinicians and parents the cost-effective intervention model

    (61(1):38-51)Contents of Cadmium and Lead in Vegetable Crops Produced in Taiwan

    No full text
    本研究之目的在瞭解台灣地區蔬菜鎘、鉛濃度。蔬菜樣本採自台灣地區主要蔬菜產區,共1900個樣本,取可食用部位以濃硝酸及過氯酸消化後,以感應耦合電漿原子放射光譜儀測定鎘、鉛濃度。結果顯示:各類蔬菜平均鎘濃度 (濕基) 分別為葉菜類ND–0.151 mg kg-1、(半) 結球菜類ND–0.080 mg kg-1、根莖菜類ND–0.116 mg kg-1、瓜菜及果菜類ND–0.115 mg kg-1;鉛濃度 (濕基) 則為葉菜類ND–0.294 mg kg-1、(半) 結球菜類ND–0.239 mg kg-1、根莖菜類ND–0.619 mg kg-1、瓜菜及果菜類ND–0.064 mg kg-1。蔬菜樣本中鎘濃度超出衛生署公告的「蔬果植物類重金屬限量標準」者占0.6%,鉛濃度超出限值者占0.7%,其中高麗菜、(半) 結球萵苣、胡蘿蔔分別有6.1%、9.8%、0.6%樣本鎘濃度超出限值,蘿蔔及胡蘿蔔分別有0.3%及4.0%樣本鉛濃度超出限值。 In order to understand contents of cadmium and lead in vegetable crops produced in Taiwan, a total of 1900 samples of vegetable crops were collected from major vegetable growing areas in Taiwan and used in this study. These samples were digested by concentrated nitric acid and perchloric acid and then analyzed for contents of cadmium and lead, using inductively coupled plasma atomic emission spectrometer. Results showed that mean concentrations of cadmium (fresh weight basis) were ND–0.151 mg kg-1 in leaf vegetables, ND–0.080 mg kg-1 in head vegetables, ND–0.116 mg kg-1 in root/stem vegetables, and ND–0.115 mg kg-1 in gourd/fruit vegetables, whereas mean concentrations of lead were ND–0.294 mg kg-1 in leaf vegetables, ND–0.239 mg kg-1 in head vegetables, ND–0.619 mg kg-1 in root/stem vegetables, and ND–0.064 mg kg-1 in gourd/fruit vegetables. Results also showed that 0.6% and 0.7% of vegetable samples exceeded the food regulation levels for cadmium and lead in Taiwan, respectively. We particularly emphasized that 6.1%, 9.8%, and 0.6% of cabbage, iceberg lettuce, and carrot samples exceeded the regulation levels for cadmium, respectively, while 0.3% and 4.0% of radish and carrot samples exceeded those for lead, respectively

    品種與土壤性質對蔬菜鎘濃度及其食用安全之影響

    No full text
    鎘對動物或人類毒害的濃度低於作物,在作物還能正常生長的濃度下,便可能造成動物或人類健康的危害。植物的鎘吸收量除了受品種特性影響外,也受土壤性質及栽培管理影響。台灣地區由於土壤性質複雜,故鎘濃度符合土壤污染管制標準之農田,產出之食米、蔬果不符合食品重金屬限量標準的事件偶有所聞。本研究以田間栽培試驗搭配蔬菜產區調查的方式,嘗試釐清影響台灣地區蔬菜鎘安全性之主要因子,並提出適當的管理建議。研究結果顯示:在37種供試蔬菜中,食用部位鎘累積能力前5名依序為花生 > 菠菜> 莧菜 > 紅鳳菜 > 秋葵,後5名依序為苦瓜 spinach (Spinacia oleraceae L.) > amaranth (Amaranthus tricolor L.) > gynura (Gynura bicolor DC.) > okra (Hibiscus esculentus L.), whereas the order of the five vegetables with the lowest capacities was bitter gourd (Momordica charantia L.) < cucumber (Cucumis sativus L.) < asparagus bean (Vigna unguiculata (L.) Walp. ssp. sesquipedalis (L.) Verdc.) < snap bean (Phaseolus vulgaris L.) < sponge gourd (Luffa cylindrica Roem.). Difference of Cd accumulation capacity among different cultivars of many vegetables was not significant. However, there was significant difference of Cd accumulation capacities among some cultivars of vegetables including lettuce, Chinese cabbage, cauliflower, celery, corn, and asparagus bean. As to various vegetable groups compared, edible parts of leafy vegetables were with strong Cd accumulation capacity, while legume vegetables and fruiting vegetables were weaker Cd accumulator. Soil–plant transfer prediction models of Cd in the edible parts were derived for 29 vegetable species. According to the derived models, the 0.1M hydrochloric acid extractable Cd, Mn and Zn concentrations, and pH, served as the main factors affecting Cd concentrations in the edible parts of vegetables, whereas the CEC is less important factors. To thoroughly assess Cd concentrations in vegetables and to understand the food safety of vegetables in Taiwan, 5023 vegetable samples were collected from major vegetable production areas and another 1,254 vegetable were samples collected from potentially Cd contaminated areas in Taiwan for Cd concentration analysis. The results indicated that the percentage of vegetables with Cd concentrations exceeding the regulatory concentration was merely 0.4% for major vegetable production areas, with very less concern of food safety, while that of potentially Cd contaminated areas were up to3.4%, presenting the necessary need of concern of food safety. Based on soil–plant transfer prediction models of Cd established, we also assessed the effect of adjusting soil pH and changing vegetable varieties on cadmium concentration and its safety in vegetables. The results indicated that the food safety of vegetables grown in Taoyuan and Taichung areas could greatly be ensured by managements raising soil pH up to 7.0. However, for ensuring the food safety of vegetables grown in Changhua and Ilan areas, in addition to raising soil pH up to 7.0, selecting vegetable varieties with low Cd accumulating capacity is also needed.摘要 ………………………………………………………………………… i Abstract ……………………………………………………………………… ii 目錄 …..……………………………………………………………………… iv 圖目錄 …..…………………………………………………………………… vii 表目錄 ..……………………………………………………………………… xi 第一章 前言 ..…………………………………………………………… 1 1.1 鎘的來源與用途 ..……………………………………………… 1 1.2 土壤中的鎘 ..…………………………………………………… 1 1.3 鎘的污染 ..……………………………………………………… 2 1.4 植物對鎘的吸收 ..……………………………………………… 4 1.5 土壤性質與鎘的生物有效性 ..………………………………… 4 1.6 降低植物對鎘的吸收 ..………………………………………… 6 1.7 研究動機與目的 ..……………………………………………… 7 第二章 材料與方法 ..……………………………………………………… 9 2.1蔬菜品種 ..……………………………………………………… 10 2.2蔬菜栽培試驗 ..………………………………………………… 15 2.2.1試驗地點 ..………………………………………………… 15 2.2.2石灰處理 ..………………………………………………… 15 2.2.3蔬菜栽培 ..………………………………………………… 16 2.3產地蔬菜與土壤鎘濃度調查 ..………………………………… 23 2.3.1主要蔬菜產區調查 ..……………………………………… 23 2.3.2污染風險區域調查 ..……………………………………… 23 2.4蔬菜與土壤採樣 ..……………………………………………… 29 2.5樣品前處理 ..…………………………………………………… 29 2.6樣品分析 ..……………………………………………………… 29 2.7分析品質 ..……………………………………………………… 31 2.8蔬菜食用部位鎘累積能力 ..…………………………………… 34 2.9蔬菜食用部位鎘濃度預測模式 ..……………………………… 34 2.9.1王水鎘模式 ..……………………………………………… 34 2.9.2鹽酸鎘模式 ..……………………………………………… 34 2.9.3鹽酸鎘-pH-CEC模式 ..…………………………………… 34 2.9.4鹽酸鎘-土壤性質模式 ..………………………………… 35 2.10蔬菜與土壤數據採用 ..……………………………………… 36 第三章 結果與討論 ..……………………………………………………… 37 3.1蔬菜食用部位鎘累積能力 ..…………………………………… 37 3.1.1不同蔬菜鎘累積能力 ..…………………………………… 37 3.1.2不同蔬菜類別鎘累積能力 ..……………………………… 42 3.1.3不同蔬菜栽培種鎘累積能力 ..…………………………… 43 3.2蔬菜食用部位鎘濃度預測模式 ..……………………………… 46 3.2.1模式參數校正 ..…………………………………………… 47 3.2.2模擬結果 ..………………………………………………… 54 3.2.3高低估比例 ..……………………………………………… 58 3.2.4模式驗證 ..………………………………………………… 69 3.3土壤性質對蔬菜鎘濃度的影響 ..……………………………… 78 3.3.1土壤pH值的影響 ..……………………………………… 79 3.3.2土壤錳、鋅及CEC的影響 ..……………………… 82 3.4蔬菜安全性調查 ..……………………………………………… 85 3.4.1主要產區蔬菜安全性調查 ..……………………………… 85 3.4.2鎘污染風險區域蔬菜安全性調查 ..……………………… 90 3.5鎘污染潛在風險區蔬菜之安全性研析 ..……………………… 94 3.5.1不同地區蔬菜鎘濃度風險等級分析 ..…………………… 96 3.5.2提升鎘污染潛在風險區蔬菜安全性案例研析 ..………… 102 3.5.2.1桃園地區 ..………………………………………… 102 3.5.2.2彰化地區 ..………………………………………… 106 3.5.2.3台中地區 ..………………………………………… 111 3.5.2.4宜蘭地區 ..………………………………………… 115 3.5.3鎘濃度易超標蔬菜安全適栽區分析 ..…………………… 119 3.5.3.1花生 ..……………………………………………… 119 3.5.3.2蒜頭 ..……………………………………………… 122 第四章 結論 ……………………………………………………………….. 125 參考文獻 .............................................................................. 126 附錄 ..………………………………………………………………………… 13
    corecore