29,740 research outputs found
Effective tuning of exciton polarization splitting in coupled quantum dots
The polarization splitting of the exciton ground state in two laterally
coupled quantum dots under an in-plane electric field is investigated and its
effective tuning is designed. It is found that there are significant Stark
effect and anticrossing in energy levels. Due to coupling between inter- and
intra-dot states, the absolute value of polarization splitting is significantly
reduced, and it could be tuned to zero by the electric field for proper
inter-dot separations. Our scheme is interesting for the research on the
quantum dots-based entangled-photon source.Comment: 4 pages, 2 figures, to appear in Appl. Phys. Let
The , and parameterizations of CP violating CKM phase
The CKM matrix describing quark mixing with three generations can be
parameterized by three mixing angles and one CP violating phase. In most of the
parameterizations, the CP violating phase chosen is not a directly measurable
quantity and is parametrization dependent. In this work, we propose to use
experimentally measurable CP violating quantities, , or
in the unitarity triangle as the phase in the CKM matrix, and
construct explicit , and parameterizations.
Approximate Wolfenstein-like expressions are also suggested.Comment: 14 page, 1 figur
Coherent control of high-harmonic generation using waveform-synthesized chirped laser fields
We show that waveform-synthesized chirped laser fields are efficient tools for coherent harmonic control. A single harmonic order, or two harmonic orders, can be selectively enhanced by using a two-color field allowing a moderate linear chirp for each color. Different harmonic orders within a wide spectral range can be selectively enhanced by adjusting the laser parameters. Our theory bridges two current harmonic control techniques, namely, single-color phase shaping and multicolor amplitude synthesis, and opens the door to new harmonic control possibilities
Modulating Linker Composition of Haptens Resulted in Improved Immunoassay for Histamine.
Histamine (HA) is an important food contaminant generated during food fermentation or spoilage. However, an immunoassay for direct (derivatization free) determination of HA has rarely been reported due to its small size to induce the desired antibodies by its current hapten-protein conjugates. In this work, despite violating the classical hapten design criteria which recommend introducing a linear aliphatic (phenyl free) linker into the immunizing hapten, a novel haptens, HA-245 designed and synthesized with a phenyl-contained linker, exhibited significantly enhanced immunological properties. Thus, a quality-improved monoclonal antibody (Mab) against HA was elicited by its hapten-carrier conjugates. Then, as the linear aliphatic linker contained haptens, Hapten B was used as linker-heterologous coating haptens to eliminate the recognition of linker antibodies. Indirect competitive ELISA (ic-ELISA) was developed with a 50% inhibition concentration (IC50) of 0.21 mg/L and a limit of detection (LOD) of 0.06 mg/L in buffer solution. The average recoveries of HA from spiked food samples for this ic-ELISA ranged from 84.1% and 108.5%, and the analysis results agreed well with those of referenced LC-MS/MS. This investigation not only realized derivatization-free immunoassay for HA, but also provided a valuable guidance for hapten design and development of immunoassay for small molecules
- …
