28 research outputs found
Ru和Cu协同催化湿式氧化处理氨氮废水
采用化学还原法制备了RuCu/TiO2双金属催化剂,并探究了Ru和Cu的协同作用对催化湿式氧化(CWAO)无害化处理氨氮废水催化性能的影响。研究结果表明,Cu的添加可有效改善Ru/TiO2催化剂的N2选择性,而Ru的存在可有效提高Cu/TiO2催化剂的催化活性。反应条件为0.5 MPa、150℃、[NH3]0=1000 mg·L-1、pH=12、模拟废水处理量为33 L·(kg cat)-1·h-1时,1Ru2Cu/TiO2能使废水的氨氮转化率和N2选择性分别高达87.7%和85.9%。表征结果表明:Ru和Cu的协同在催化氧化氨氮废水过程中起了关键作用,主要体现在:Ru和Cu的强相互作用导致1Ru2Cu/TiO2催化剂具有良好的抗流失性能,进而使得催化剂具有良好的稳定性;Ru和Cu的电子转移使得1Ru2Cu/TiO2具有适中的亲氧性能,有效提高了催化剂的催化活性。新疆维吾尔自治区高校科研计划项目(XJEDU2016S083);;福建省自然科学基金项目(2015J05031)~
爱德华•卡宾塔在西方与中国 :以《中间之性》为中心 = Edward Carpenter "the intermediate sex" and its influence in Europe and China
本论文主要着重介绍爱德华•卡宾塔(Edward Carpenter,1844—1929)和他出版于1908年的作品《中间之性》。卡宾塔是十九世纪末至三十年代英国推崇同性恋爱及妇女解放的先驱,对当时的社会做出了不少得贡献。但对于卡宾塔的学术研究至今并未达到一个广泛的范围,当今中文学界也几乎并无存有关于卡宾塔的专题论文。因此本论文将要补充这个空隙,对卡宾塔的思想与著作进行研究,还原他对于同志解放和妇女解放的贡献,同时向读者介绍这位同性恋爱先驱。 全文共分为四章,第一章将进一步阐明本论文的研究动机与研究状态,说明本论文是在一篇提及到了卡宾塔在中国的翻译作品的论文为前提,展开了对于卡宾塔的研究,此论文也奠基了本论文的研究基础;第二章简要但斟酌地介绍卡宾塔的生平与他的作品《中间之性》,此节的极大部分内容都是从卡宾塔的传记以及《中间之性》的原文翻译成中文,向读者介绍这位同性恋爱先驱;第三章将简略论述欧洲的同性恋史,并同时介绍与卡宾塔拥有密切关系的知名作家 E.M 福斯特,以及从卡宾塔身上得到启发而创作的小说《莫瑞斯》;第四章要探讨卡宾塔思想的局限;最后第五章则整理出卡宾塔在中国的翻译作品,进一步叙述卡宾塔在中国的翻译作品和影响。 This thesis focuses on Edward Carpenter (1844—1929) and his work “The Intermediate Sex” which was published in 1908. Edward Carpenter is a pioneer in homosexual love and promoting women rights, however, there were not much attention given to him and his works in the modern academic sphere. Academic writings related to him were almost non-existent in the Chinese academic area. Hence, this thesis would like to fill up this gap in order to restore the works and contributions of Edward Carpenter and entice its readers to explore even more in depth into his life and thoughts. This thesis is largely translated from the original sources such as his biographies and his original works. This thesis consists of five main chapters. The first chapter further discusses the value of this research and the significance of this topic. The second chapter serves as an introduction of Edward Carpenter and his work “The Intermediate Sex”. Third chapter briefly recounts the homosexuality history in Europe and how Edward Carpenter plays a part in contribution to E.M Forster’s “Maurice”. The fourth chapter will review Carpenter’s thoughts and the last chapter discusses on his translated works in China, and his resonance in the country.Bachelor of Art
平面相变存储器的制备方法
一种平面相变存储器的制备方法,包括:在衬底上依次生长一层电热绝缘材料层、相变材料层和基底材料层;去除基底材料层的四边,形成图形作为制备侧墙的基底;在该相变材料层的上面和基底材料层的表面及侧面淀积侧墙材料层;去除基底材料层上表面的和相变材料层表面的侧墙材料层,形成侧墙;去除基底材料层,只保留纳米尺寸的侧墙;去掉除了侧墙底部以外的所有相变材料;在该侧墙的一条边上搭上一条制作电极的金属层;在金属层上制备一层绝缘材料层;抛光表面直至磨到电热绝缘层上的金属表面,从而割断金属层形成中间夹有相变材料层的nano-gap电极;最后在nano-gap电极上淀积一层绝缘材料层,再在nano-gap电极两边的金属上开孔并引出电极,即形成平面相变存储器
一种平面相变存储器的制备方法
一种平面相变存储器的制备方法,包括:在衬底上依次生长一层电热绝缘材料层和基底材料层;去除基底材料层的四边,形成图形作为制备相变材料侧墙的基底;在该电热绝缘材料层的上面和基底材料层的表面及侧面淀积相变材料层;去除基底材料层上表面的和电热绝缘材料层表面的相变材料层,形成高和宽均为纳米尺寸的相变材料侧墙;去除剩余的基底材料层,只保留纳米尺寸的相变材料侧墙;在该相变材料侧墙的一条边上搭上一条制作电极的金属层;再用薄膜淀积工艺制备一层绝缘材料层;再用化学机械抛光的方法抛光表面直至磨到将相变材料侧墙顶部的金属割断,形成中间夹有相变材料侧墙的nano-gap电极;淀积一层绝缘材料,在nano-gap电极两边的金属上开孔并引出电极即可形成平面相变存储器
平面相变存储器的制备方法
一种平面相变存储器的制备方法,包括:在衬底上依次生长一层电热绝缘材料层,相变材料层和基底材料层;去除基底材料层的四边,形成基底;在相变材料层的上面和基底材料层的表面及侧面淀积侧墙材料层;去除基底材料层上表面的和相变材料层表面的侧墙材料层,在基底材料层的侧面将形成高和宽均为纳米尺寸的侧墙;去除基底材料层,只保留纳米尺寸的侧墙;去掉除了侧墙底部以外的所有相变材料,从而形成由侧墙和相变材料层构成的叠层侧墙;在该侧墙的一条边上搭上一条制作电极的金属层;去除侧墙以及侧墙表面上的金属层,从而形成中间夹有相变材料层的nano-gap电极;最后淀积一层绝缘材料,再在nano-gap电极两边的金属层上开孔并引出电极,完成平面相变存储器的制作
一种高密度相变存储器的制备方法
一种高密度相变存储器的制备方法,包括:在衬底上淀积一层金属层;在金属层上面淀积多周期的上电极层,该多周期的上电极层的每一周期包括:一层电热绝缘材料和在其表面淀积的金属材料,每生长一层金属材料后在其表面光刻一个凹槽;在多周期的上电极层上用薄膜淀积工艺淀积电热绝缘材料层,然后将表面平坦化;采用光刻方法和干法刻蚀的工艺在电热绝缘材料层的上面制备插塞小孔,该插塞小孔的宽度大于每一层金属材料上的凹槽的宽度;在插塞小孔的孔壁上的表面淀积一层相变材料,得到管状结构;采用化学气相淀积工艺,在相变材料上再淀积一层金属材料层,该金属材料层填满插塞小孔内;最后用化学机械抛光方法,去除插塞小孔表面上多余的金属材料层和相变材料,抛光表面
垂直相变存储器及制备方法
一种垂直相变存储器,包括:一衬底;一底部电极制作在衬底上;一下电热绝缘材料层制作在底部电极上;一低热导率材料包裹层制作在下电热绝缘材料层上;一上电热绝缘材料层制作在低热导率材料包裹层上;其中所述的下电热绝缘材料层、低热导率材料包裹层和上电热绝缘材料层的中间有一小孔;一加热电极插塞柱,该加热电极插塞柱位于下电热绝缘材料层、低热导率材料包裹层和上电热绝缘材料层中间的小孔内;一相变材料插塞柱,该相变材料插塞柱位于下电热绝缘材料层、低热导率材料包裹层和上电热绝缘材料层中间的小孔内,并位于加热电极插塞柱之上;一顶部电极,该顶部电极制作在上电热绝缘材料层上,并覆盖相变材料插塞柱
青藏高原高寒草地3米深度土壤无机碳库及分布特征
准确评估土壤无机碳库的大小及其分布特征有助于全面理解陆地生态系统碳循环与气候变暖之间的反馈关系。然而,由于深层土壤剖面信息匮乏,使得目前学术界对深层土壤无机碳库的了解十分有限。该研究基于342个3 m深度和177个50cm深度的土壤剖面信息,采用克里格插值方法估算了青藏高原高寒草地不同深度的土壤无机碳库大小,并在此基础上分析了该地区土壤无机碳密度的分布特征。结果显示,青藏高原高寒草地0–50 cm、0–1 m、0–2 m和0–3 m深度的土壤无机碳库大小分别为8.26、17.82、36.33和54.29 Pg C,对应的土壤无机碳密度分别为7.22、15.58、31.76和47.46 kg C·m–2。研究区土壤无机碳密度总体呈现由东南向西北增加的趋势;高寒草原土壤的无机碳密度显著大于高寒草甸的无机碳密度。整体上,不同深度的高寒草原无机碳库约占整个研究区无机碳库的63%–66%。此外,深层土壤中储存了大量无机碳,1 m以下土壤无机碳库是1 m以内无机碳库的2倍。两种草地类型土壤无机碳的垂直分布存在差异:对高寒草原而言,0–50 cm土壤无机碳所占的比例最大;但对高寒草甸而言,在100–150 cm深度土壤无机碳出现富集。这些结果表明青藏高原深层土壤是一个重要的无机碳库,需在未来碳循环研究中予以重视
一种平面相变存储器的制备方法
一种平面相变存储器的制备方法,包括如下步骤:在衬底上生长一层绝缘材料层和基底材料层;去除基底材料层的四边,形成侧墙的基底;在其表面及侧面淀积侧墙材料层;采用干法回刻形成侧墙;用湿法腐蚀去除基底材料层,只保留纳米尺寸的侧墙;在该侧墙材料层的一条边上搭上一条制作电极的金属层;在其表面制备一层绝缘材料层,将侧墙和金属层包裹在其中;抛光上表面的同时切断侧墙两旁的金属层的连接;化学机械抛光的截止面位于平面处的金属层的表面,即使得平面处的金属层全部露出;再在露出的纳米间距的金属电极上横跨上一条相变材料;最后在表面淀积一层绝缘材料,再在纳米间距的金属电极两边的金属层上开孔,并引出电极即可形成平面相变存储器
